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Abstract

To learn good joint policies for multi-agent collaboration with imperfect infor-
mation remains a fundamental challenge. While for two-player zero-sum games,
coordinate-ascent approaches (optimizing one agent’s policy at a time, e.g., self-
play [35,120]) work with guarantees, in multi-agent cooperative setting they often
converge to sub-optimal Nash equilibrium. On the other hand, directly modeling
joint policy changes in imperfect information game is nontrivial due to complicated
interplay of policies (e.g., upstream updates affect downstream state reachability).
In this paper, we show global changes of game values can be decomposed to
policy changes localized at each information set, with a novel term named policy-
change density. Based on this, we propose Joint Policy Search (JPS) that iteratively
improves joint policies of collaborative agents in imperfect information games,
without re-evaluating the entire game. On multi-agent collaborative tabular games,
JPS is proven to never worsen performance and can improve solutions provided by
unilateral approaches (e.g, CFR [44]), outperforming algorithms designed for col-
laborative policy learning (e.g. BAD [16]). Furthermore, for real-world game with
exponential states, JPS has an online form that naturally links with gradient updates.
We test it to Contract Bridge, a 4-player imperfect-information game where a team
of 2 collaborates to compete against the other. In its bidding phase, players bid
in turn to find a good contract through a limited information channel. Based on a
strong baseline agent that bids competitive Bridge purely through domain-agnostic
self-play, JPS improves collaboration of team players and outperforms WBridge5,
a championship-winning software, by +0.63 IMPs (International Matching Points)
per board over 1000 games, substantially better than previous SoTA (40.41 IMPs/b
against WBridge5) under Double-Dummy evaluation. Note that +0.1 IMPs/b is
regarded as a nontrivial improvement in Computer Bridge. Part of the code is
released in https://github.com/facebookresearch/ jps.

1 Introduction

Deep reinforcement learning has demonstrated strong or even super-human performance in many
complex games (e.g., Atari [28]], Dota 2 [30], Starcraft [42], Poker [5}29], Find and Seek [[1], Chess,
Go and Shogi [34}136/139]). While massive computational resources are used, the underlying approach
is quite simple: to iteratively improve the policy of the current agent, assuming stationary environment
and fixed policies of all other agents. Although for two-player zero-sum games this is effective, for
multi-agent collaborative with imperfect information, it often leads to sub-optimal Nash equilibria
where none of the agents is willing to change their policies unilaterally. For example, if speaking one
specific language becomes a convention, then unilaterally switching to a different one is not a good
choice, even if the other agent actually knows that language better.

In this case, it is necessary to learn to jointly change policies of multiple agents to achieve better
equilibria. One brute-force approach is to change policies of multiple agents simultaneously, and
re-evaluate them one by one on the entire game to seek for performance improvement, which is
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computationally expensive. Alternatively, one might hope that a change of a sparse subset of policies
might lead to “local” changes of game values and evaluating these local changes can be faster. While
this is intuitively reasonable, in imperfect information game (IG), a local policy change could affects
the value of both downstream and upstream decision points, leading to non-local interplay.

In this paper, we realize this locality idea by proposing policy-change density, a quantity defined at
each perfect information history state with two key properties: (1) when summing over all states, it
gives overall game value changes upon policy update, and (2) when the local policy remains the same,
the density vanishes regardless of any policy changes at other parts of the game tree. Based on this
density, the value changes of any policy update on a sparse set of decision points can be decomposed
into a summation on each decision point (or information set), which is easy and efficient to compute.

Based on that, we propose a novel approach, called Joint Policy Search (JPS). For tabular IG, JPS
is proven to never worsen the current policy, and is computationally more efficient than brute-force
approaches. For simple collaborative games with enumerable states, we show that JPS improves
policies returned by Counterfactual Regret Minimization baseline [44] by a fairly good margin,
outperforming methods with explicit belief-modeling [16]] and Advantageous Actor-Critic (A2C) [27]]
with self-play, in particular in more complicated games.

Furthermore, we show JPS has a sample-based formulation and can be readily combined with gradient
methods and neural networks. This enables us to apply JPS to Contract Bridge bidding, in which
enumerating the information sets are computationally prohibitiv Improved by JPS upon a strong
A2C baseline, the resulting agent outperforms Wbridge5, a world computer bridge program that won
multiple championships, by a large margin of 4-0.63 IMPs per board (IMPs/b) over a tournament
of 1000 games, better than previous state-of-the-art [18] that beats WBridge5 by +0.41 IMPs/b.
All of them use Double-Dummy evaluation [[19]. Note that +0.1 IMPs/b is regarded as nontrivial
improvement in computer bridge [32].

2 Related work

Methods to Solve Extensive-Form Games. For two-player zero-sum extensive-form games, many
algorithms have been proposed with theoretical guarantees. For perfect information game (PG),
a-3 pruning, Iterative Deepening depth-first Search [21]], Monte Carlo Tree Search [13] are used
in Chess [9] and Go [34! 140], yielding strong performances. For imperfect information games (IG),
Double-Oracle [26], Fictitious (self-)play [20] and Counterfactual Regret Minimization (CFR [44]
23]]) can be proven to achieve Nash equilibrium. These algorithms are coordinate-ascent: iteratively
find a best response to improve the current policy, given the opponent policies over the history.

On the other hand, it is NP-hard to obtain optimal policies for extensive-form collaborative IG where
two agents collaborate to achieve a best common pay-off [L0]. Such games typically have multiple sub-
optimal Nash equilibria, where unilateral policy update cannot help [14]. Many empirical approaches
have been used. Self-play was used in large-scale IG that requires collaboration like Dota 2 [30] and
Find and Seek [[1]. Impressive empirical performance is achieved with huge computational efforts.
Previous works also model belief space (e.g., Point-Based Value Iteration [31] in POMDP, BAD [16]))
or model the behaviors of other agents (e.g., AWESOME [11], Hyper Q-learning [37], LOLA [15]).
To our best knowledge, we are the first to propose a framework for efficient computation of policy
improvement of multi-agent collaborative IG, and show that it can be extended to a sample-based
form that is compatible with gradient-based methods and neural networks.

Solving Imperfect Information Games. While substantial progress has been made in PG, how
to effectively solve IG in general remains open. Libratus [3] and Pluribus [6] outperform human
experts in two-player and multi-player no-limit Texas Holdem with CFR and domain-specific state
abstraction, and DeepStack [29] shows expert-level performance with continual re-solving. ReBeL [3]]
adapts AlphaZero style self-play to IIG, achieving superhuman level in Poker with much less domain
knowledge. Recently, [24] shows strong performance in Hanabi using collaborative search with
a pre-defined common blueprint policy. Suphx [25] achieves superhuman level in Mahjong with
supervised learning and policy gradient. DeepRole achieves superhuman level [33] in The Resistance:
Avalon with continual re-solving [29].

In comparison, Contract Bridge with team collaboration, competition and a huge space of hidden
information, remains unsolved. While the playing phase has less uncertainty and champions of

'In the bidding phase, asides the current player, each of the other 3 players can hold 6.35 x 10*! unique
hands and there are 10*7 possible bidding sequences. Unlike hint games like Hanabi [2]], public actions in Bridge
(e.g. bid) do not have pre-defined meaning and does not decrease the uncertainty when game progresses.



computer bridge tournament have demonstrated strong performances against top professionals (e.g.,
GIB [17], Jack [22], Wbridge5 [12]), bidding phase is still challenging due to much less public
information. Existing software hard-codes human bidding rules. Recent works [43| 32} [18]] use DRL
to train a bidding agent, which we compare with. See Sec. 5 for details.

3 Background and Notation

In this section, we formulate our framework in the more general setting of general-sum games, where
each of the C players could have a different reward. In this paper, our technique is mainly applied to
pure collaborative IGs and we leave its applications in other types of games for future work.

Let h be a perfect information state (or state) of the game. From game start, h is reached via
a sequence of public and private actions: h = ajas ...ay (abbreviated as a<y). I = {h} is an
information set (or infoset) that contains all perfect states indistinguishable from the current player’s
point of view (e.g., in Poker, I hold all possibilities of opponent cards given public cards and the
player’s private cards). All h € I share the same policy o(h) = o(I) and o(I, a) is the probability
of taking action a. A(I) is the set of allowable actions for infoset I.

Let I(h) be the infoset associated with state h. ha is the unique next state after taking action a from
h. h' is a descendant of h, denoted as h [ //, if there exists a sequence of actions {a1, as,...,aq}
so that b’ = hajas .. .aq = ha<q. The successor set succ(I, a) contains all the next infosets after
taking action a from I. The size of succ(, a) can be large (e.g., the opponent/partner can make many
different decisions based on her private cards). The active set Z(o’,0) := {I : 0/(I) # o(I)} is the
collection of infosets where the policy differs between o and o”.

w7 (h) = Hf;ll o(I(a<;),a;) is the reachability: the probability of reaching state h = ajas . .. aq

following the policy o. Note that unlike CFR [44], we use fotal reachability: it includes the probability
incurred by chance (or nature) actions and other player’s actions under current policy o. Z is the
terminal set. Each terminal state z € Z has a reward (or utility) 7(z) € R, where C is the number
of players. The i-th element of r(z), r;(2), is the pay-off of the i-th player.

For state h ¢ Z, its value function v°(h) € R under the current policy o is:

v (h)= Y o(I(h),a)v’(ha) (1)

acA(I(h))

For terminal node i € Z, its value v7(z) = v(z) = r() is independent of the policy . Intuitively,
the value function is the expected reward starting from state h following o.

For IG, what we can observe is infoset I but not state h. Therefore we could define macroscopic
reachability 77 (1) = >, ., 77 (h), value function v? (/) and Q-function q7 (1, a):

v(I) =Y w7 (Wv°(h),  q°(I,a) =Y =7 (h)v°(ha) 2)

hel hel

and their conditional version: V7 (I) = v (I)/7°(I) and Q°(I,a) = q° (I, a)/w° (I). If we train
DRL methods like DQN [28] and A3C [27] on IG without a discount factor, V() and Q° (I, a)
are the terms actually learned in neural networks. As one key difference between PG and IG, v° (h)
only depends on the future of o after h but V(I also depends on the past of o before h due to
involved reachability. This is because other players’ policies affect the reachability of states h within
the current infoset I, which is invisible to the current player.

Finally, we define ©° € R as the overall game value for all C players. ¥ := v (hg) where hy is
the game start (before any chance node, e.g., card dealing).

4 A Theoretical Framework for Evaluating Local Policy Change

We start with a novel formulation to evaluate local policy change, which means that the active set
Z(o,0') ={I : o(I) # ¢’(I)} is much smaller than the total number of infosets. A naive approach
is to evaluate the new policy o’ over the entire game tree, which is computationally expensive.

One might wonder for each policy proposal ¢”, is that possible to decompose ©° — 7 onto each
individual infoset I € Z(o,0’). However, unlike PG, due to interplay of upstream policies with
downstream reachability, a local change of policy affects the utility of its downstream states. For
example, a trajectory might leave an active infoset /; and and later re-enter another active infoset
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Figure 1: (a) Basic notations. (b) Hard case: a perfect information state A’ could first leave active infoset I,
then re-enter the infoset (at 14). Note that it could happen in perfect-recall games, given all the public actions
are the same (shown in common red, green and blue edges) and I2 and I, are played by different players. (c)

Our formulation defines policy-change density p“"’, that vanishes in regions with ¢’ = o, regardless of its

upstream/downstream context where o’ # o.

I, (Fig.[I[b)). In this case, the policy change at I; affects the evaluation on I,. Such long-range
interactions can be quite complicated to capture.

This decomposition issue in IG have been addressed in many previous works (e.g., CFR-D [\ 7],
DeepStack [29], Reach subgame solving [4]), mainly in the context of solving subgames in a
principled way in two-player zero-sum games (like Poker). In contrast, our framework allows
simultaneous policy changes at different parts of the game tree, even if they could be far apart, and
can work in general-sum games. To our best knowledge, no framework has achieved that so far.

In this section, we coin a novel quantity called policy-change density to achieve this goal.

4.1 A Localized Formulation
We propose a novel formulation to localize such interactions. For each state h, we first define the
following cost ¢”° € R and policy-change density p°° € RC:
c”? (h) = (77 (h) — w7 (h))v? (h), p”? (h) = —c”? (h) + Z c”? (ha) (3)
, acA(h)
Intuitively, ¢”? (h) means if we switch from o to o/, what would be the difference in terms of
expected reward, if the new policy ¢’ remains the same for all h’s descendants. For policy-change

density p""’/, the intuition behind its name is clear with the following lemmas:
Lemma 1 (Density Vanishes if no Local Policy Change). For h, if o’(h) = o'(h), then p®° (h) = 0.

Lemma 2 (Density Summation). 9° — @ = dohez p7 (h).

Intuitively, Lemma shows that p‘”’l vanishes if policy does not change within a state, regardless of
whether policy changes in other part of the game. As a result, p""" is a local quantity with respect
to policy change. In comparison, quantities like 77, v, ¢ and 77 v7 — w7v? are non-local: e.g.,
v?(h) (or 7 (h)) changes if the downstream v (h’) (or upstream v (h’)) changes due to ¢ — o”,
even if the local policy remains the same (i.e., c(h) = o’(h)).

With this property, we now address how to decompose ©° — ©7 onto active set Z. According to
Lemmall] for any infoset I with o’(I) = o(I), the policy-change density vanishes. From Lemma[2]
the summation of density over the entire subtree is exactly the overall value difference due to the
policy change. If we put both together, we get:

Theorem 1 (InfoSet Decomposition of Policy Change). When o — o”, the change of game value is:
o =T =3 > P () )
I€T hel

Theorem|I]is the main theorem that decomposes local policy changes to each infoset in the active set
Z. We will see how it is utilized to find a better policy ¢’ from the existing one o.

4.2 Comparison with regret in CFR

From Eqn. 3] we could rewrite the density p""’/ (h) in a more concise form after some algebraic
manipulation:

p77 (W) =77 (h) | > o' (I,a)v° (ha) — v (h) 5)

acA(I)



We conceptually compare our p‘”’/ (h) with the regret term in vanilla CFR [44] (Eqn. 7), which takes
the form of 77, (h)(v? (ha) — v?(h)) for player ¢ who is to play action a at infoset I(h). The key

difference here is that our p°° (k) uses the total reachability 7 (h) evaluated on the new policy o,
while CFR uses the except-player-i reachability 77, (h) evaluated on the old policy o.

We emphasize that this small change leads to very different (and novel) theoretical insights. It leads
to our policy-change decomposition (Theorem [I)) that exactly captures the value difference before and
after policy changes for general-sum games, while in CFR, summation of the regret at each infoset 1
is an upper bound of the Nash exploitability for two-player zero-sum games. Our advantage comes
with a price: the regret in CFR only depends on the old policy ¢ and can be computed independently
at each infoset, while computing our policy-change density requires a re-computation of the altered
reachability due to new policy o’ on the upstream infosets, which will be addressed in Sec. From
the derivation, we could also see that in CFR, the assumption of perfect recall is needed to ensure
that no double counting exists so that the upper bound can hold (Eqn. 15 in [44]]), while in our Eqn.[3]
there is no such requirement.

5 Joint Policy Search for Pure Collaborative Multi-agent 1Gs

In this paper, we focus on pure collaborative games, in which all players share the common value.

Hence, we replace p""" with scalar p”"’/ (similar for v?). More general cases are left in future work.
For pure collaborative settings, we propose Joint Policy Search (JPS), a novel approach to jointly
optimize policies of multiple agents at the same time in IG. Our goal is to find a policy improvement

o’ so that it is guaranteed that the changes of overall game value 7 — 0% is always non-negative.

Algorithm 1 Joint Policy Search (Tabular form)

1: function JSP-MAIN(o)

2: fori=1...Tdo

3: Compute reachability 7w and value v under o. Pick initial infoset I .

4: o < JPS(o, {I1},1).

5: end for

6: end function

7: function JPS(c, Zcand, d) > Zeana: candidate infosets
8:  ifd > D then

9: return 0. > Search reaches maximal depth D
10: end if

11: for I € Teang and b € I do

12: Compute 77 (h) by back-tracing b’ T h until (k') is active. Otherwise 7% (h) = 7 (h).

13: end for , ,

14: Compute J77 (I) = >3, c; p7° (h) foreach I € Zcana using Eqn.

15: for I € Zcang anda € A(I) do

16: Set I active. Set o’ (I) and reachability accordingly Eqn.

17: Setr(I,a) = JPS(o,succ(I,a),d+ 1)+J”’UI(I)

18:  end for

19: return max (0, maxy o 7(I, a)) > Also consider if no infoset in Z¢ 5,4 is active.

20: end function

5.1 Joint Policy Search (JPS)
Using Theorem we now can evaluate o7 — 0 efficiently given an active set Z.

Based on that, a naive way for policy improvement, is to first pick and fix an active set Z, and then
(jointly) optimize the policies (1) on each I € Z. In contrast, our JPS uses a different strategy: it
first proposes a new policy at the current infoset, and then dynamically construct new active infosets
to focus on. The underlying motivation is that once a upstream policy on infoset I has changed, the
downstream policies on succ(]) often need to be changed as well, in particular when two agents
playing consequence action need to coordinate to jump out of local equilibrium.

This naturally leads to a depth-first search algorithm (Alg. . We first pick Z = {I, } where I is
a “root” infoset, change the policy of I; (decision (D), then pick an action a; € A(I;) (decision
®), and pick an infoset I» € succ(l1, aq1) into the active set Z (decision @), and goes down into the
game tree until a maximal depth has been reached. When the maximal depth D is reached, we have
constructed an active set Z = [I1,. .., Ip] so that I; 1 € suce(I;, a;) with some a; and Theorem
can be applied to compute the policy improvement. We then backtrace over all the decision points
(@, @ and ) and find the best policy change o’ that leads to the best improvement 2°" — ©°. Such
a procedure can be repeated for T iterations to obtain final improved policy (JSP-Main in Alg. [T)).



For each infoset I, any policy change o’ could work. Here we use one-hot policy and merge the
decision point () and ) for search efficiency:

o' (I;,a) =Ta = a;] (6)

Note that for pure collaborative games, we don’t consider mixed strategies since they are dominated

by pure strategies. To compute p""’l, before the search starts, we first sweep all the states h to get
v?(h) and 77 (h), which can be shared across different search branches. During search, the only term

we need to recompute for different search branches is the altered reachability 7", which depends on
upstream policy changes. Note that since we use depth-first search, the upstream policy change is
always available and can be easily retrieved. The search has the complexity of O(|S| + M), where
|S] is the total number of states and M is the number of policy candidates. This is more efficient than
brute-force search that requires a complete sweep of all states for each policy candidate (O(|S|M)).

Theorem 2 (Performance Guarantee for Alg.. o7 > 47 for o’ = JSP-Main(o).

5.2 Online Joint Policy Search (OJPS)

To compute quantities in Theorem [I} we still need to compute 77 and v” on all states. This
makes it hard for real-world scenarios (e.g., Contract Bridge), where an enumeration of all states is

computationally infeasible. Therefore, we consider an online sampling version. Define J 0’ (I) =
Y oher p”° (h) and .J can be decomposed into two terms .J (I) = J;(I) + Jo(I) (\ is a constant):

Ji(I) = Z(Tr”/(h)f)ma(h)) < S 6'(1,a)v7 (ha) — u“(h)> , J2(D) =AD" w7(h) < ST 1, a)Q(UI,a) — v“(z))
her a€A(I) her a€A(I)

)
If we sample a trajectory by running the current policy o and pick one perfect informa-
tion state hg, then hg ~ @°(-). Then, for I = I(h), using this sample hg, we
can compute J1(I) = (77 (hlho) — An°(hlho)) (>-,0'(I,a)v?(ha) —v?(h)) and Jo(I) =
A7 (hlho) (-, 0'(I,a)Q°(I,a) — V?(I)) can be computed via macroscopic quantities (eg., from
neural network). Here 77 (h|hg) := 7 (h)/m° (hg) is the (conditional) probability of reaching h
starting from hy. Intuitively, .J; accounts for the benefits of taking actions that favors the current state

h (e.g., what is the best policy if all cards are public?), and J5 accounts for effects due to other perfect
information states that are not yet sampled. The hyper-parameter A controls their relative importance.
Therefore, it is possible that we could use a few perfect information states h to improve imperfect
information policy via searching over the best sequence of joint policy change. The resulting action
sequence representing joint policy change is sent to the replay buffer for neural network training.

6 Experiments on Simple Collaborative Games

We try JPS on multiple simple two-player pure collaborative IGs to demonstrate its effectiveness.
Except for private card dealing, all actions in these games are public knowledge with perfect recall.
Note that JPS can be regarded as a booster to improve any solutions from any existing approaches.

Definition 1 (Simple Communication Game of length L). Consider a game where s, € {0, ..., 25 —
1}, ay € Ay = {0,1}, az € Ay € {0,...,2% — 1}. P1 sends one binary public signal for L times,
then P2 guess P1’s private s1. The reward r = 1[s1 = ag] (i.e. 1 if guess right).

Definition 2 (Simple Bidding Game of size N). Pl and P2 each dealt a private number s1, So ~
Uniform[0,..., N —1]. A = {Pass,2°,..., 2%} is an ordered set. The game alternates between P1
and P2, and P1 bids first. The bidding sequence is strictly increasing. The game ends if either player
passes, and r = 2F if s; + sy > 2F where k is the latest bid. Otherwise the contract fails and r = 0.

Definition 3 (2-Suit Mini-Bridge of size N). PI and P2 each dealt a private number si,So ~
Uniform[0,1,...,N]. A = {Pass,10,14,20,..NO, NW&} is an ordered set. The game pro-
gresses as in Def.[2| Except for the first round, the game ends if either player passes. If k# is the last
bid and s1 + so > N + k, or if kQ is the last bid and s1 + so < N — k, then r = 2871, otherwise
the contract fails (r = —1). For pass out situation (Pass, Pass), r = 0.

The communication game (Def. [T)) can be perfectly solved to reach a joint reward of 1 with arbitrary
binary encoding of s;. However, there exists many local solutions where P1 and P2 agree on a subset
of s1 but have no consensus on the meaning of a new L-bit signal. In this case, a unilateral approach
cannot establish such a consensus. The other two games are harder. In Simple Bidding (Def. [2),
available actions are on the order of log(V), requiring P1 and P2 to efficiently communicate. The



Table 1: Average reward of multiple tabular games after optimizing policies using various approaches. Both
CFR [44] and CFR1k+JPS repeats with 1k different seeds. BAD [16] runs 50 times. The trunk policy network
of BAD uses 2 Fully Connected layers with 80 hidden units. Actor-Critic run 10 times. The super script * means
the method obtains the best known solution in one of its trials. We omit all standard deviations of the mean
values since they are ~ 1072,

Comm (Def. b Mini-Hanabi Simple Bidding (Def. 2SuitBridge (Def.

L=3|L=5|L=6|L="7 [16] N =4|N =8|N=16||N=3|N=4|N =5

CFRI1k [44] [| 0.89 | 0.85 | 0.85 0.85 9.11% 2.18% [ 4.96™ | 10.47 1.017 [ 1.627 | 2.60
CFR1k+JPS |[[1.00% [1.00" | 1.00* | 1.00™ 9.50" 2.20* | 5.00" |10.56™ || 1.07" | 1.71" | 2.74"
A2C [27] 0.60* | 0.57 | 0.51 0.02 8.20" 2.19 | 4.79 9.97 0.66 1.03 1.71
BAD [16] ||1.00"| 0.88 | 0.50 0.29 9.47* 2.23" | 4.99" 9.81 0.53 | 0.98 1.31
Best Known || 1.00 1.00 1.00 1.00 10 225 5.06 10.75 1.13 1.84 2.89
#States 633 | 34785 2702732129793 53 241 1985 16129 4081 | 25576 | 147421
#Infosets 129 | 2049 | 8193 | 32769 45 61 249 1009 1021 5116 | 24571

Mini-Bridge (Def. [3) mimics the bidding phase of Contract Bridge: since bids can only increase, both
players need to strike a balance between reaching highest possible contract (for highest rewards) and
avoiding overbids that lead to negative rewards. In this situation, forming a convention requires a
joint policy improvement for both players.

For SimpleBidding (N = 16), MiniBridge (N = 4, 5), we run Alg.[I] with a search depth D = 3.
For other games, we use maximal depth, i.e., from the starting infosets to the terminals. Note this
does not involve all infosets, since at each depth only one active infoset exists. JPS never worsens the
policy so we use its last solution. For A2C and BAD, we take the best model over 100 epoch (each
epoch contains 1000 minibatch updates). Both A2C and BAD use a network to learn the policy, while
CFR and JPS are tabular approaches. To avoid convergence issue, we report CFR performance after
purifying CFR’s resulting policy. The raw CFR performance before purification is slightly lower.

As shown in TbL. [T} JPS consistently improves existing solutions in multiple games, in particular for
complicated IGs (e.g. 2-Suit Mini-Bridge). See Appendix C for a good solution found by JPS in
2-suited Bridge. BAD [16] does well for simple games but lags behind in more complicated IGs.

We also tried different combinations between JPS and other solvers. Except for Comm (Def. |1)) that
JPS always gets 1.0, uniform random-+JPS converges to local minima that CFR is immune to, and
under-performs CFR1k+JPS. Combining JPS with more CFR iterations (CFR10k) doesn’t improve
performance. Compared to CFR1k+JPS, BAD+JPS is worse (10.47 vs 10.56 for N = 16) in Simple
Bidding but berter (1.12/1.71/2.77 vs 1.07/1.71/2.74 for N = 3/4/5) in 2-Suit Mini-Bridge. Note
that this is quite surprising since the original solutions obtained from BAD are not great but JPS can
boost them substantially. We leave these interesting interplays between methods for future study.

Correctness of Theorem (1| and runtime speed. Experiments show that the game value difference

27 — 47 from Theoremalways coincides with naive computation, with much faster speed. We have
compared JPS with brute-force search. For example, for each iteration in Simple Bidding (Def. ), for
N = 8, JPS takes ~ 1s while brute-force takes ~ 4s (4x); for N = 16 and d = 3, JPS takes ~ 20s
while brute-force takes ~ 260s (13x). For communication game (Def. [T)), JPS enjoys a speedup of 3x
for L = 4. For 2-Suit Mini-Bridge of N = 4, it achieves up to 30x.

7 Application to Contract Bridge Bidding

In this section, we apply the online version of JPS (Sec.[5.2) to the bidding phase of Contract Bridge
(a4-player game, 2 in each team), to improve collaboration between teammates from a strong baseline
model. Note that we insert JPS in the general self-play framework to improve collaboration between
teammates and thus from JPS’s point of view, it is still a fully collaborative IG with fixed opponents.
Unlike [43] that only models 2-player collaborative bidding, our baseline and final model are for full
Bridge Bidding. Note that since Bridge is not a pure collaborative games and we apply an online
version of JPS, the guarantees of Theorem. [2]is lost, while empirically it performs well.

A Crash Course of Bridge Bidding. The bidding phase of Contract Bridge is like Mini-Bridge
(Def. [3)) but with a much larger state space (each player now holds a hand with 13 cards from 4
suits). Unlike Mini-Bridge, a player has both her teammate and competitors, making it more than
a full-collaborative IG. Therefore, multiple trade-offs needs to be considered. Human handcrafted
conventions to signal private hands, called bidding systems. For example, opening bid 20 used to
signal a very strong hand with hearts historically, but now signals a weak hand with long hearts. Its
current usage blocks opponents from getting their best contract, which happens more frequently than
its previous usage (to build a strong heart contract). Please see Appendix A for more details.



Evaluation Metric. We adopt duplicate bridge tournament format: each board (hands of all 4
players) is played twice, where a specific team sits North-South in one game (called open table), and
East-West in another (called close table). The final reward is the difference of the results of two tables.
This reduces the impact of card dealing randomness and can better evaluate the strength of an agent.

We use IMPs (International Matching Point) per board, or IMPs/b, to measure the strength difference
between two Bridge bidding agents. See Appendix A for detailed definition. Intuitively, IMPs/b is
the normalized score difference between open and close table in duplicate Bridge, ranging from —24
to +24. In Compute Bridge, a margin of +0.1 IMPs/b is considered significant [32]]. In a Bridge
tournament, a forfeit in a game counts as —3 IMPs/b. The difference between a top professional team
and an advanced amateur team is about 1.5 IMPs/b.

Reward. We focus on the bidding part of the bridge game and replace the playing phase with Double
Dummy Solver (DDS) [19], which computes the maximum tricks each team can get in playing, if
all actions are optimal given full information. While this is not how humans plays and in some
situations the maximum tricks can only be achieved with full-information, DDS is shown to be a
good approximate to human expert plays [32]. Therefore, after bidding we skip the playing phase
and directly compute IMPs/b from the two tables, each evaluated by DDS, as the only sparse reward.

Note that Commercial software like Wbridge5, however, are not optimized to play under the DDS
setting, and we acknowledge that the comparison with Wbridge5 is slightly unfair. We leave end-to-
end evaluation including the playing phase as future work.

Dataset. We generate a training set of 2.5 million hands, drawn from uniform distribution on
permutations of 52 cards. We pre-compute their DDS results. The evaluation dataset contains 50k
such hands. Both datasets will be open sourced for the community and future work.

Baselines. We use baselinel6 [43], baselinel9 [32] and baseline [18]] as our baselines,
all are neural network based methods. See Appendix B for details of each baseline.

7.1 Network and Training

‘We use the same network architecture as baseline, which is also similar to baselinel9. As
show in Fig. [2] the network consists of an initial fully connected layer, then 4 fully connected layer
with skip connections added every 2 layers to get a latent representation. We use 200 neurons at each
hidden layer, so it is much smaller (about 1/70 parameter size of baselinel9).

Main training curve

3.0

Residual FC Block (RFC)

2.5 A=A
/\/_/_/’\_/\J

/

2.0 1

,,,,,,,,,,,,,,,

1.5

IMPs/b

1.04

0.5
L 4 —— batchsize 512
@ 0.04 batchsize 1024

@ value —— batchsize 2048
—0.54

0 200 400 600 800 1000 1200
Thousand of batches

Figure 2: Left: Network Architecture. Supervision from partner’s hand is unused in the main results, and is
used in the ablation studies. Right: Smoothed training curves for different batchsizes.

Input Representation. For network input, we use the same encoding as baseline. This includes
13 private cards, bidding sequence so far and other signals like vulnerability and legal actions. Please
check Appendix [Dfor details. The encoding is general without much domain-specific information.
In contrast, baselinel9 presents a novel bidding history representation using positions in the
maximal possible bidding sequence, which is highly specific to Contract Bridge.

7.2 A Strong Baseline Model

We train a strong baseline model for 4-player Bridge Bidding with A2C [27]] with a replay buffer,
importance ratio clipping and self-play. During training we run 2000 games in parallel, use batch size
of 1024, an entropy ratio of 0.01 and with no discount factor. See Appendix E for details.

Fig. [2] shows example training curves against baselinel6. We significantly outperform
baselinelé6 by a huge margin of +2.99 IMPs/b. This is partially because baselinel6 cannot
adapt well to competitive bidding setting. Also it can also only handle a fixed length of bids. We
have performed an extensive ablation study to find the best combination of common tricks used in



DRL. Surprisingly, some of them believed to be effective in games, e.g., explicit belief modeling,
have little impact for Bridge bidding, demonstrating that unilateral improvement of agent’s policy is
not sufficient. See Appendix F for a detailed ablation study.

Table 2: Fine-tuning RL pre-trained model with search applied on 1% games or moves unless otherwise stated.
Performance in IMPs/b. 10 baselines are other independently trained actor-critic baselines.
| vs. baseline | vs. 10 baselines

non-search 0.20 0.27 £ 0.13
l-search 0.46 0.37 £ 0.11
JPS (1%) 0.71 0.47 £0.11
JPS (5%) 0.70 0.66 £+ 0.11
JPS (10%) 0.44 0.39 +0.11

7.3 JPSBid: Improving strong baseline models with JPS

We then use JPS to further improve the strong baseline model. Similar to Sec. [6] JPS uses a search
depth of D = 3: the current player’s (P1) turn, the opponent’s turn and the partner’s (P2) turn. We
only jointly update the policy of P1 and P2, assuming the opponent plays the current policy o. After
the P1’s turn, we rollout 5 times to sample opponent’s actions under o. After P2’s turn, we rollout
5 times following o to get an estimate of v” (h). Therefore, for each initial state hy, we run 5 x 5
rollouts for each combination of policy candidates of P1 and P2. Only a small fraction (e.g., 5%) of
the games stopped at some game state and run the search procedure above. Other games just follow
the current policy o to generate trajectories, which are sent to the replay buffer to stabilize training.
A game thread works on one of the two modes decided by rolling a dice.

We also try a baseline 1-search which only improve P1’s policy (i.e., D = 1). And non-search
baseline is just to reload the baseline model and continue A2C training.

From the training, we pick the best model according to its IMPs/b against the baseline, and compare
with 10 other baseline models independently trained with A2C with different random seeds. They
give comparable performance against baselinelé.

Tbl. E] shows a clear difference among non-search, 1-search and JPS, in particular in their
transfer performance against independent baselines. JPS yields much better performance (40.66
IMPs/b against 10 independent baselines). We can observe that 1-search is slightly better than
non-search. With JPS, the performance gains significantly.

Percentage of search. Interestingly, performing search in too many games is not only computa-
tionally expensive, but also leads to model overfitting, since the trajectories in the replay buffer are
infrequently updated. We found that 5% search performs best against independent baselines.

Against WBridgeS. We train our bot with JPS for 14 days and play 1000 games between our bot
and WBridge$5, a software winning multiple world champion in 2005, 2007, 2008 and 2016. The
1000 games are separately generated, independent of training and evaluation set. We outperform by a
margin of +0.63 IMPs/b with a standard error of 0.22 IMPs/b. This translates to 99.8% probability
of winning in a standard match. This also surpasses the previous SoTAs baseline[l8] (40.41
IMPs/b evaluated on 64 games only), and baselinel9 (+0.25 IMPs/b). Details in Appendix H.

Note that we are fully aware of the potential unfairness of comparing with WBridge5 only at Bridge
bidding phase. This includes that (1) WBridge5 conforms to human convention but JPS can be
creative, (2) WBridge5 optimizes for the results of real Bridge playing rather than double-dummy
scores (DDS) that assumes full information during playing, which is obviously very different from
how humans play the game. In this paper, to verify our bot, we choose to evaluate against WBridges,
which is an independent baseline tested extensively with both Al and human players. A formal
address of these issues requires substantial works and is left for future work.

Visualzation of Learned models. Our learned model is visualized to demonstrate its interesting
behaviors (e.g., an aggressive opening table). We leave detailed discussion in the Appendix I.

8 Conclusion and Future Work

In this work, we propose JPS, a general optimization technique to jointly optimize policy for
collaborative agents in imperfect information game (IG) efficiently. On simple collaborative games,
tabular JPS improves existing approaches by a decent margin. Applying online JPS in competitive
Bridge Bidding yields SoTA agent, outperforming previous works by a large margin (4-0.63 IMPs/b)
with a 70x smaller model under Double-Dummy evaluation. Future works include applying JPS to
other collaborative IGs with various advanced search techniques and studying sub-optimal equilibria.



9 Broader Impact

This work has the following potential positive impact in the society:

e JPS proposes a general formulation and can be applied to multi-agent pure collaborative
games (or team collaboration compnents in multi-agent games) beyond the simple games
and Contract Bridge we demonstrate in the paper;

e JPS can potentially encourage more efficient collaboration between agents and between
agents and humans. It might suggest novel coordination patterns, helping jump out of
existing (but sub-optimal) social convention.

We do not foresee negative societal consequences from JPS.
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