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Abstract

Batch normalization dramatically increases the largest trainable depth of residual
networks, and this benefit has been crucial to the empirical success of deep residual
networks on a wide range of benchmarks. We show that this key benefit arises be-
cause, at initialization, batch normalization downscales the residual branch relative
to the skip connection, by a normalizing factor on the order of the square root of
the network depth. This ensures that, early in training, the function computed by
normalized residual blocks in deep networks is close to the identity function (on
average). We use this insight to develop a simple initialization scheme that can
train deep residual networks without normalization. We also provide a detailed em-
pirical study of residual networks, which clarifies that, although batch normalized
networks can be trained with larger learning rates, this effect is only beneficial in
specific compute regimes, and has minimal benefits when the batch size is small.

1 Introduction

The combination of skip connections [1–3] and batch normalization [4] dramatically increases the
largest trainable depth of neural networks. Although the origin of this effect is poorly understood, it
has led to a rapid improvement in the performance of deep networks on popular benchmarks [5, 6].
Following the introduction of layer normalization [7] and the transformer architecture [8, 9], almost
all state-of-the-art networks currently contain both skip connections and normalization layers.

Our contributions. This paper provides a simple explanation for why batch normalized deep residual
networks are easily trainable. We prove that batch normalization downscales the hidden activations on
the residual branch by a factor on the order of the square root of the network depth (at initialization).
Therefore, as the depth of a residual network is increased, the residual blocks are increasingly
dominated by the skip connection, which drives the functions computed by residual blocks closer to
the identity, preserving signal propagation and ensuring well-behaved gradients [10–15].

If our theory is correct, it should be possible to train deep residual networks without normalization,
simply by downscaling the residual branch. Therefore, to verify our analysis, we introduce a one-line
code change (“SkipInit”) which imposes this property at initialization, and we confirm that this
alternative scheme can train one thousand layer deep residual networks without normalization.

In addition, we provide a detailed empirical study of residual networks at a wide range of batch sizes.
This study demonstrates that, although batch normalization does enable us to train residual networks
with larger learning rates, we only benefit from using large learning rates in practice if the batch size
is also large. When the batch size is small, both normalized and unnormalized networks have similar
optimal learning rates (which are typically much smaller than the largest stable learning rates) and
yet normalized networks still achieve significantly higher test accuracies and lower training losses.
These experiments demonstrate that, in residual networks, increasing the largest stable learning rate
is not the primary benefit of batch normalization, contrary to the claims made in prior work [16, 17].
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Paper layout. In section 2, we prove that residual blocks containing identity skip connections and
normalization layers are biased towards the identity function in deep networks (at initialization). To
confirm that this property explains why deep normalized residual networks are trainable, we propose
a simple alternative to normalization (“SkipInit”) that shares the same property at initialization, and
we provide an empirical study of normalized residual networks and SkipInit at a range of network
depths. In section 3, we study the performance of residual networks at a range of batch sizes, in order
to clarify when normalized networks benefit from large learning rates. We study the regularization
benefits of batch normalization in section 4 and we compare the performance of batch normalization,
SkipInit and Fixup [18] on ImageNet in section 5. We discuss related work in section 6.

2 Why are deep normalized residual networks trainable?

2.1 Theoretical analysis at initialization
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Figure 1: A) A residual block with batch normal-
ization. It is common practice to include two con-
volutions on the residual branch; we show one
convolution for simplicity. B) SkipInit replaces
batch normalization by a single learnable scalar ↵.
We set ↵ = 0 (or a small constant) at initialization.

Residual networks (ResNets) [2, 3] contain a
sequence of residual blocks, which are com-
posed of a “residual branch” comprising a num-
ber of convolutions, normalization layers and
non-linearities, as well as a “skip connection”,
which is usually just the identity (See figure
1). While introducing skip connections short-
ens the effective depth of the network, on their
own they only increase the trainable depth by
roughly a factor of two [15]. Normalized resid-
ual networks, on the other hand, can be trained
for depths significantly deeper than twice the
depth of their non-residual counterparts [3, 18].

To understand this effect, we analyze the vari-
ance of hidden activations at initialization. For
clarity, we focus here on the variance of a single training example, but we discuss the variance across
batches of training examples (which share the same random weights) in appendix C. Let x`

i denote
the i-th component of the input to the `-th residual block, where x

1 denotes the input to the model
with E(x1

i ) = 0 and Var(x1
i ) = 1 for each independent component i. Let f ` denote the function

computed by the residual branch of the `-th residual block, x+
i = max(xi, 0) denote the output

of the ReLU, and B denote the batch normalization operation (for completeness, we define batch
normalization formally in appendix A). For simplicity, we assume that there is a single linear layer on
each residual branch, such that for normalized networks, f `(x`) = W

`B(x`)+, and for unnormalized
networks f `(x`) = W

`
x
`+. We also assume that each component of W ` is independently sampled

from N (0, 2/fan-in) (He Initialization) [19].1 Thus, given x
`, the mean of the i-th coordinate of the

output of a residual branch E
�
f
`
i (x

`)|x`
�
= 0. Since x

`+1 = x
` + f

`(x`), this implies E
�
x
`
i

�
= 0

for all `. The covariance between the residual branch and the skip connection Cov(f `
i (x

`), x`
i) = 0,

and thus the variance of the hidden activations, Var(x`+1
i ) = Var(x`

i) + Var(f `
i (x

`)). We conclude:

Unnormalized networks: If the residual branch is unnormalized, the variance of the residual
branch, Var(f `

i (x
`)) =

Pfan-in
j Var(W `

ij) · E((x`+
j )2) = 2 · E((x`+

i )2) = Var(x`
i). This has

two implications. First, the variance of the hidden activations explode exponentially with depth,
Var(x`+1

i ) = 2 · Var(x`
i) = 2`. One can prevent this explosion by introducing a factor of (1/

p
2) at

the end of each residual block, such that x`+1 = (x` + f
`(x`))/

p
2. Second, since Var(f `

i (x
`)) =

Var(x`
i), the residual branch and the skip connection contribute equally to the output of the residual

block. This ensures that the function computed by the residual block is far from the identity function.

Normalized networks: If the residual branch is normalized, the variance of the output of the
residual branch Var(f `

i (x
`)) =

Pfan-in
j Var(W `

ij) · E((B(x`)+j )
2) = Var(B(x`)i) ⇡ 1.2 Thus, the

variance of the input to the `-th residual block, Var(x`
i) ⇡ Var(x`�1

i )+1, which implies Var(x`
i) ⇡ `.

1fan-in denotes the number of incoming network connections to the layer.
2The approximation is tight when the batch size for computing the batch statistics is large.
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Figure 2: We empirically evaluate the dependence of the variance of the hidden activations on the
depth of the residual block at initialization (See appendix B for details). In (a), we consider a fully
connected ResNet with linear activations without any normalization, evaluated on random Gaussian
inputs. In (b), we consider the same ResNet but with one normalization layer on each residual branch.
The squared BatchNorm moving mean is close to zero (not shown). In (c), we consider a batch
normalized convolutional residual network with ReLU activations, evaluated on CIFAR-10.

Surprisingly, the growth in the variance of the hidden activations is beneficial, because if Var(x`
i) ⇡ `,

then the batch normalization operation B must suppress the variance of the `-th residual branch by a
factor of ` (hidden activations are suppressed by

p
`). Consequently, the residual branch contributes

only a 1/(`+ 1) fraction of the variance in the output of the `-th residual block. This ensures that, at
initialization, the outputs of most residual blocks in a deep normalized ResNet are dominated by the
skip connection, which biases the function computed by the residual block towards the identity.

The depth of a typical residual block is proportional to the total number of residual blocks d, which
implies that batch normalization downscales residual branches by a factor on the order of

p
d.

Although this is weaker than the factor of d proposed in [12], we find empirically in section 2.3 that
it is sufficiently strong to train deep residual networks with 1000 layers. We emphasize that while our
analysis only explicitly considers the propagation of the signal on the forward pass, residual blocks
dominated by the skip path on the forward pass will also preserve signal propagation on the backward
pass. This is because, when the forward signal on the `-th residual branch is downscaled by a factor
↵, the backward propagated signal through that branch will also be downscaled by a factor ↵ [20].

To verify our analysis, we evaluate the variance of the hidden activations, as well as the batch
normalization statistics, of three residual networks at initialization in figure 2. We define the networks
in appendix B. In figure 2(a), we consider a fully connected linear unnormalized residual network,
where we find that the variance on the skip path of the `-th residual block matches the variance of
the residual branch and is equal to 2`�1, as predicted by our analysis. In figure 2(b), we consider a
fully connected linear normalized residual network, where we find that the variance on the skip path
of the `-th residual block is approximately equal to `, while the variance at the end of each residual
branch is approximately 1. The batch normalization moving variance on the `-th residual block is
also approximately equal to `, confirming that batch normalization downscales the residual branch by
a factor of

p
` as predicted. In figure 2(c), we consider a normalized convolutional residual network

with ReLU activations evaluated on CIFAR-10. The variance on the skip path remains proportional
to the depth of the residual block, with a coefficient slightly below 1 (likely due to zero padding at
the image boundary). The batch normalization moving variance is also proportional to depth, but
slightly smaller than the variance across channels on the skip path. We show in appendix C that this
occurs because ReLU activations introduce correlations between different examples in the mini-batch.
These correlations also cause the square of the batch normalization moving mean to grow with depth.

2.2 SkipInit; an initialization scheme to verify our analysis

We claim above that batch normalization enables us to train deep residual networks, because (in
expectation) it downscales the residual branch at initialization by a normalizing factor on the order of
the square root of the network depth. To provide further evidence for this claim, we now propose a
simple initialization scheme that can train deep residual networks without normalization, “SkipInit”:

SkipInit: Include a learnable scalar multiplier at the end of each residual branch, initialized to ↵.

After normalization is removed, it should be possible to implement SkipInit as a one line code change.
In section 2.3, we show that we can train deep residual networks, so long as ↵ is initialized at a value
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Table 1: Batch normalization enables us to train deep residual networks. We can recover this benefit
without normalization if we introduce a scalar multiplier ↵ on the end of the residual branch and
initialize ↵ = (1/

p
d) or smaller (where d is the number of residual blocks). In practice, we advocate

initializing ↵ = 0. We provide optimal test accuracies and optimal learning rates with error bars. Note
that we do not provide results in cases where the test accuracy was frozen at random initialization
throughout training for all learning rates in the range 2�10 to 22 (i.e., in cases where training failed).

Batch Normalization

Depth Test accuracy Learning rate

16 93.5± 0.1 2�1 (2�1 to 2�1)
100 94.7± 0.1 2�1 (2�2 to 2�0)
1000 94.6± 0.1 2�2 (2�3 to 2�0)

SkipInit (↵ = 1/
p
d)

Depth Test accuracy Learning rate

16 93.0± 0.1 2�2 (2�2 to 2�1)
100 94.2± 0.1 2�1 (2�2 to 2�1)
1000 94.2± 0.0 2�1 (2�2 to 2�1)

SkipInit (↵ = 0)

Depth Test accuracy Learning rate

16 93.3± 0.1 2�2 (2�2 to 2�2)
100 94.2± 0.1 2�2 (2�2 to 2�2)
1000 94.3± 0.2 2�2 (2�3 to 2�1)

SkipInit (↵ = 1)

Depth Test accuracy Learning rate

16 93.0± 0.1 2�2 (2�2 to 2�1)
100 � �

1000 � �

Divide residual block by
p
2

Depth Test accuracy Learning rate

16 92.4± 0.1 2�2 (2�2 to 2�1)
100 88.9± 0.4 2�5 (2�5 to 2�5)

1000 � �

SkipInit without L2 (↵ = 0)

Depth Test accuracy Learning rate

16 89.8± 0.2 2�3 (2�3 to 2�3)
100 91.7± 0.2 2�2 (2�2 to 2�2)

1000 92.1± 0.1 2�2 (2�2 to 2�2)

of (1/
p
d) or smaller, where d denotes the total number of residual blocks (see table 1). Notice that

this observation agrees exactly with our analysis of deep normalized residual networks in section 2.1.
In practice, we recommend setting ↵ = 0, so that the residual block represents the identity function
at initialization. This choice is also simpler to apply, since it ensures the initialization scheme is
independent of network depth. We note that SkipInit is designed for residual networks that contain an
identity skip connection such as the ResNet-V2 [3] or Wide-ResNet architectures [21]. We discuss
how to extend SkipInit to the original ResNet-V1 [2] formulation of residual networks in appendix F.

2.3 An empirical study of residual networks at a wide range of network depths

We empirically verify the claims made above by studying the minimal components required to train
deep residual networks. In table 1, we report the mean test accuracy of an n-2 Wide-ResNet [21],
trained on CIFAR-10 for 200 epochs at batch size 64 at a range of depths n between 16 and 1000
layers. At each depth, we train the network 7 times for a range of learning rates on a logarithmic
grid, and we measure the mean and standard deviation of the test accuracy for the best 5 runs (this
procedure ensures that our results are not corrupted by outliers or failed runs). The optimal test
accuracy is the mean performance at the learning rate whose mean test accuracy was highest, and
we always verify that the optimal learning rates are not at the boundary of our grid search. Here and
throughout this paper, we use SGD with heavy ball momentum, and fix the momentum coefficient
m = 0.9. Although we tune the learning rate on the test set, we emphasize that our goal is not
to achieve state of the art results. Our goal is to compare the performance of different training
procedures, and we apply the same experimental protocol in each case. We hold the learning rate
constant for 100 epochs, before dropping the learning rate by a factor of 2 every 10 epochs. This
simple schedule achieves higher test accuracies than the original 3 drops schedule proposed in [2]. We
apply data augmentation including per-image standardization, padding, random crops and left-right
flips. We use L2 regularization with a coefficient of 5⇥ 10�4, and we initialize convolutional layers
using He initialization [19]. We provide the corresponding optimal training losses in appendix D.

As expected, batch normalized Wide-ResNets are trainable for a wide range of depths, and the optimal
learning rate is only weakly dependent on the depth. We can recover this effect without normalization
by incorporating SkipInit and initializing ↵ = (1/

p
d) or smaller, where d denotes the number of

residual blocks. This provides strong evidence to support our claim that batch normalization enables
us to train deep residual networks by biasing residual blocks towards the skip path at initialization.
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(a) (b)

(c) (for test accuracy) (d) (for training loss)

Figure 3: In (a), we achieve higher test accuracies with batch normalization than without batch
normalization, and we are also able to train efficiently at much larger batch sizes. SkipInit substantially
reduces the gap in performance for small/moderate batch sizes, but it still under-performs batch
normalization when the batch size is large. In (b), SkipInit achieves smaller training losses than batch
normalization for batch sizes b . 1024. We provide the test accuracy at the learning rate for which
the test accuracy was maximized, and the training loss at the learning rate for which the training loss
was minimized. To help interpret these results, we also provide the optimal learning rates in figures
(c) and (d). When the batch size is small, all three methods have similar optimal learning rates (which
are much smaller than the maximum stable learning rate for each method), but batch normalization
and SkipInit are able to scale to larger learning rates when the batch size is large.

Just like normalized networks, the optimal learning rate with SkipInit is almost independent of the
network depth. SkipInit slightly under-performs batch normalization on the test set at all depths,
although we show in appendix D that it achieves similar training losses to normalized networks.

For completeness, we verify in table 1 that one cannot train deep residual networks with SkipInit if
↵ = 1. We also show that for unnormalized residual networks, it is not sufficient merely to ensure
the activations do not explode on the forward pass (which can be achieved by multiplying the output
of each residual block by (1/

p
2)). This confirms that ensuring stable forward propagation of the

signal is not sufficient for trainability. Additionally, we noticed that, at initialization, the loss in deep
networks is dominated by the L2 regularization term, causing the weights to shrink rapidly early
in training. To clarify whether this effect is necessary, we evaluated SkipInit (↵ = 0) without L2
regularization, and find that L2 regularization is not necessary for trainability. This demonstrates
that we can train deep residual networks without normalization and without reducing the scale of
the weights at initialization, solely by downscaling the hidden activations on the residual branch. To
further test the theory that downscaling the residual branch is the key benefit of batch normalization
in deep ResNets, we tried several other variations of batch-normalized ResNets, which we present
in appendix D. We find that variants of batch-normalized ResNets which do not downscale the
residual branch relative to the skip path are not trainable for large depths (e.g. networks that place
normalization layers on the skip path). We provide additional results on CIFAR-100 in appendix E.

3 When can normalized networks benefit from large learning rates?

In two widely read papers, Santurkar et al. [16] and Bjorck et al. [17] argued that the primary benefit
of batch normalization is that it improves the conditioning of the loss landscape, which allows us
to train stably with larger learning rates. However, this claim seems incompatible with a number of
recent papers studying optimization in deep learning [22–29]. These papers argue that if we train for
a fixed number of epochs (as is common in practice), then when the batch size is small, the optimal
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learning rate is significantly smaller than the largest stable learning rate, since it is constrained by
the noise in the gradient estimate. In this small batch regime, the optimal learning rate is usually
proportional to the batch size [29–31]. Meanwhile the conditioning of the loss sets the maximum
stable learning rate [26–29], and this controls how large we can make the batch size before the
performance of the model begins to degrade under a fixed epoch budget. If this perspective is correct,
we would expect large stable learning rates to be beneficial only when the batch size is also large. In
this section, we clarify the role of large learning rates in normalized networks by studying residual
networks with and without batch normalization at a wide range of batch sizes.

In figure 3, we provide results for a 16-4 Wide-ResNet, trained on CIFAR-10 for 200 epochs at a
wide range of batch sizes and learning rates. We follow the same experimental protocol described in
section 2.3, however we average over the best 12 out of 15 runs. To enable us to consider extremely
large batch sizes on a single GPU, we evaluate the batch statistics over a “ghost batch size” of 64,
before accumulating gradients to form larger batches, as is standard practice [32]. We therefore are
unable to consider batch sizes below 64 with batch normalization. Note that we repeat this experiment
in the small batch limit in section 4, where we evaluate the batch statistics over the full training batch.

Unsurprisingly, the performance with batch normalization is better than the performance without
batch normalization on both the test set and the training set at all batch sizes.3 However, both with and
without batch normalization, the optimal test accuracy is independent of batch size in the small batch
limit, before beginning to decrease when the batch size exceeds some critical threshold.4 Crucially,
this threshold is significantly larger when batch normalization is used, which demonstrates that one
can efficiently scale training to larger batch sizes in normalized networks. SkipInit reduces the gap in
test accuracy between normalized and unnormalized networks, and it achieves smaller training losses
than batch normalization when the batch size is small (b . 1024). However similar to unnormalized
networks, it still performs worse than normalized networks when the batch size is very large.

To explain why normalized networks can scale training to larger batch sizes, we provide the optimal
learning rates that maximize the test accuracy and minimize the training loss in figures 3(c) and 3(d).
When the batch size is small, the optimal learning rates for all three methods are proportional to
the batch size and are similar to each other. Crucially, the optimal learning rates are much smaller
than the largest stable learning rate for each method. On the other hand, when the batch size is
large, the optimal learning rates are independent of batch size [26, 27], and normalized networks use
larger learning rates. Intuitively, this transition occurs when we reach the maximum stable learning
rate, above which training diverges [28]. Our results confirm that batch normalized networks have a
larger maximum stable learning rate than SkipInit networks, which have a larger maximum stable
learning rate than unnormalized networks. This explains why batch normalized networks were able to
efficiently scale training to larger batch sizes. Crucially however, our experiments confirm that batch
normalized networks do not benefit from the use of large learning rates when the batch size is small.

Furthermore, under a fixed epoch budget, the highest test accuracies for all three methods are always
achieved in the small batch limit with small learning rates, and the test accuracy never increases
when the batch size rises. We therefore conclude that large learning rates are not the primary benefit
of batch normalization in residual networks, contradicting the claims of earlier work [16, 17]. The
primary benefit of batch normalization is that it biases the residual blocks in deep residual networks
towards the identity function, thus enabling us to train significantly deeper networks. To emphasize
this claim, we show in the next section that the gap in test accuracy between batch normalization and
SkipInit in the small batch limit can be further reduced with additional regularization. We provide
additional results sweeping the batch size on a 28-10 Wide-ResNet on CIFAR-100 in appendix E.

4 On the regularization benefit of batch normalization

It is widely known that batch normalization can have a regularizing effect [32]. Most authors believe
that this benefit arises from the noise that arises when the batch statistics are estimated on a subset
of the full training set [33]. In this section, we study this regularization benefit at a range of batch
sizes. Unlike the previous section (which used a “ghost batch size” of 64 [32]), in this section we will

3Note that we plot the training loss excluding the L2 regularization term in figure 3. Normalized networks
often achieve smaller L2 losses because the network function is independent of the scale of the weights.

4As the batch size grows, the number of parameter updates decreases since the number of training epochs is
fixed. We note that the performance might not degrade with batch size under a constant step budget [25].
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Figure 4: To study the regularization benefits of batch normalization, we evaluate the batch statistics
over the full batch, allowing us to consider any batch size b � 1. The training loss falls as the batch
size increases, but the test accuracy is maximized for an intermediate batch size, b ⇡ 64. Regularized
SkipInit outperforms batch normalization on the test set for small batch sizes.

evaluate the batch statistics of normalized networks over the entire mini-batch. We introduced SkipInit
in section 2.2, which ensures that very deep unnormalized ResNets are trainable. To attempt to
recover the additional regularization benefits of batch normalization, we now introduce “Regularized
SkipInit”. This scheme includes SkipInit (↵ = 0), but also introduces biases to all convolutions and
applies a single Dropout layer [34] before the softmax (We use drop probability 0.6 in this section).

In figure 4, we provide the performance of our 16-4 Wide-ResNet at a range of batch sizes in the
small batch limit (note that batch normalization reduces to instance normalization when the batch
size b = 1). We provide the corresponding optimal learning rates in appendix D. The test accuracy of
batch normalized networks initially improves as the batch size rises, before decaying for batch sizes
b & 64. Meanwhile, the training loss increases as the batch size rises from 1 to 2, but then decreases
consistently as the batch size rises further. This confirms that the uncertainty in the estimate of the
batch statistics does have a generalization benefit if properly tuned (This is also why we chose a ghost
batch size of 64 in section 3). The performance of SkipInit and Regularized SkipInit are independent
of batch size in the small batch limit, and Regularized SkipInit achieves higher test accuracies than
batch normalization when the batch size is very small. Note that we introduced Dropout [34] to show
that extra regularization may be necessary to close the performance gap between normalized and
SkipInit networks, but more sophisticated regularizers would likely achieve higher test accuracies.
We provide additional results studying this regularization effect on CIFAR-100 in appendix E.

5 A comparison on ImageNet

In this section, we compare the performance of batch normalization and SkipInit on ImageNet. For
completeness, we also compare to the recently proposed Fixup initialization [18]. Since SkipInit
is designed for residual networks with an identity skip connection, we consider the ResNet50-V2
architecture [3]. We provide additional experiments on ResNet50-V1 [2] in appendix F. We use
the original architectures and match the performance reported by [35] (we do not apply the popular
modifications to these architectures described in [22]). We train for 90 epochs, and when batch
normalization is used we set the ghost batch size to 256. The learning rate is linearly increased from
0 to the specified value over the first 5 epochs of training [22], and then held constant for 40 epochs,
before decaying it by a factor of 2 every 5 epochs. As before, we tune the learning rate at each
batch size on a logarithmic grid. We provide the optimal validation accuracies in table 2. We found
that adding biases to the convolutional layers led to a small boost in accuracy for SkipInit, and we
therefore included biases in all SkipInit runs. SkipInit and Fixup match the performance of batch
normalization at the standard batch size of 256, however both SkipInit and Fixup perform worse than
batch normalization when the batch size is very large. Both SkipInit and Fixup achieve higher test
accuracies than batch normalization with extra regularization (Dropout) for small batch sizes. We
include code for our Tensorflow [36] implementation of ResNet50-V2 with SkipInit in appendix G.

6 Related work

In recent years, almost all state-of-the-art models have involved applying some kind of normalization
scheme [4, 7, 37–39] in combination with skip connections [1–3, 8, 9]. Although some authors have
succeeded in training very deep networks without normalization layers or skip connections [14, 40],
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Table 2: When training ResNet50-V2 on ImageNet, SkipInit and Fixup are competitive with batch
normalization for small batch sizes, while batch normalization performs best when the batch size is
large. SkipInit and Fixup both achieve higher validation accuracies than batch normalization with
extra regularization. We train for 90 epochs and perform a grid search to identify the optimal learning
rate which maximizes the top-1 validation accuracy. We perform a single run at each learning rate
and report top-1 and top-5 accuracy scores. We use a drop probability of 0.2 when Dropout is used.

Batch size

Test accuracy: 256 1024 4096
Batch normalization 75.0 / 92.2 74.9 / 92.1 74.9 / 91.9

Fixup 74.8 / 91.8 74.6 / 91.7 73.0 / 90.6
SkipInit + Biases 74.9 / 91.9 74.6 / 91.8 70.8 / 89.2
Fixup + Dropout 75.8 / 92.5 75.6 / 92.5 74.8 / 91.8

Regularized SkipInit 75.6 / 92.4 75.5 / 92.5 72.7 / 90.7

these papers required careful orthogonal initialization schemes that are not compatible with ReLU
activation functions. Balduzzi et al. [11] and Yang et al. [13] argued that ResNets with identity skip
connections and batch normalization layers on the residual branch preserve correlations between
different minibatches in deep networks, and Balduzzi et al. [11] suggested that this effect can be
mimicked by initializing deep networks close to linear functions. However, even deep linear networks
are difficult to train with Gaussian weights [12, 15, 40], which suggests that imposing linearity at
initialization is not sufficient. Veit et al. [10] observed empirically that normalized residual networks
are typically dominated by short paths, however they did not identify the cause of this effect. Some
authors have studied initialization schemes which multiply the output of the residual branch by a
fixed scalar (smaller than 1), without establishing a link to normalization methods [11, 12, 41–44].

Santurkar et al. [16] and Bjorck et al. [17] argued that batch normalization improves the conditioning
of the loss landscape, which enables us to train with larger learning rates and converge in fewer
parameter updates. Arora et al. [45] argued that batch normalization reduces the importance of tuning
the learning rate, while Li and Arora [46] showed that models trained using batch normalization can
converge even if the learning rate increases exponentially during training. A similar analysis also
appears in [47], while Luo et al. [33] analyzed the regularization benefits of batch normalization.

Zhang et al. [18] proposed Fixup initialization, and confirmed that it can train both deep residual
networks and deep transformers without normalization layers. Fixup contains four components:

1. The classification layer and final convolution of each residual branch are initialized to zero.

2. The initial weights of the remaining convolutions are scaled down by d
�1/(2m�2), where d

denotes the number of residual branches and m is the number of convolutions per branch.
3. A scalar multiplier is introduced at the end of each residual branch, intialized to one.
4. Scalar biases are introduced before every layer in the network, initialized to zero.

The authors do not relate these components to the influence of the batch normalization layers on the
residual branch, or seek to explain why deep normalized ResNets are trainable. They argue that the
second component of Fixup is essential, however our experiments in section 2.3 demonstrate that this
component is not necessary to train deep residual networks at typical batch sizes. In practice, we
have found that either component 1 or component 2 of Fixup on its own is sufficient in ResNet-V2
networks, since both components downscale the hidden activations on the residual branch (fulfilling
the same role as SkipInit). We found in section 5 that SkipInit and Fixup have similar performance
for small batch sizes but that Fixup slightly outperforms SkipInit when the batch size is large.

7 Discussion

Our work demonstrates that batch normalization has three main benefits. In order of importance,

1. Batch normalization can train deep residual networks (section 2).
2. Batch normalization increases the maximum stable learning rate (section 3).
3. Batch normalization has a regularizing effect (section 4).
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This work explains benefit 1, by observing that batch normalization biases residual blocks towards
the identity function at initialization. This ensures that deep residual networks have well-behaved
gradients, enabling efficient training [10–15]. Furthermore, our argument naturally extends to other
normalization variants and model architectures, including layer normalization [7] and “pre-norm”
transformers [9] (where the normalization layers are on the residual branch). A single normalization
layer per residual branch is sufficient, and normalization layers should not be placed on the skip path
(as in the original transformer [8]). We can recover benefit 1 without normalization by introducing a
learnable scalar multiplier on the residual branch initialized to zero. This simple change can train
deep ResNets without normalization, and often enhances the performance of shallow ResNets.

The conditioning benefit (benefit 2) is not necessary when one trains with small batch sizes, but it
remains beneficial when one wishes to train with large batch sizes. Since large batch sizes can be
computed in parallel across multiple devices [22], this could make normalization necessary in time-
critical situations, for instance if a production model is retrained frequently in response to changing
user preferences. Also, since batch normalization has a regularizing effect (benefit 3), it may be
necessary in some architectures if one wishes to achieve the highest possible test accuracy. Note
however that one can sometimes exceed the test accuracy of normalized networks by introducing
alternate regularizers (see section 5 or [18]). We therefore believe future work should focus on
identifying an alternative to batch normalization that recovers its conditioning benefits.

We would like to comment briefly on the similarity between SkipInit for residual networks, and
Orthogonal initialization of vanilla fully connected tanh networks [40]. Orthogonal initialization is
currently the only initialization scheme capable of training deep networks without skip connections.
It initializes the weights of each layer as an orthogonal matrix, such that the activations after a
linear layer are a rotation (or reflection) of the activations before the layer. Meanwhile, the tanh
non-linearity is approximately equal to the identity for small activations over a region of scale 1
around the origin. Intuitively, if the incoming activations are mean centered with scale 1, they will
pass through the non-linearity almost unchanged. Since rotations compose, the approximate action of
the entire network at initialization is to rotate (or reflect) the input. Like residual blocks with SkipInit,
the influence of a fully connected layer with orthogonal weights will therefore be close to the identity
in function space. However ReLUs are not compatible with orthogonal initialization, since they are
not linear about the origin, which has limited the use of orthogonal initialization in practice.

To conclude. Batch normalization biases the residual blocks of deep residual networks towards the
identity function (at initialization). This ensures that the network has well behaved-gradients, and it is
therefore a major factor behind the excellent empirical performance of normalized residual networks
in practice. We show that one can recover this benefit in unnormalized residual networks with a
one line code change to the architecture (“SkipInit”). In addition, we clarify that, although batch
normalized networks can be trained with larger learning rates than unnormalized networks, this is
only useful for large batch sizes and does not have practical benefits when the batch size is small.

Broader impact

This work seeks to develop fundamental understanding by identifying the benefits batch normalization
brings when training residual networks. We do not foresee any specific negative consequences of this
work, although we hope that fundamental understanding may help drive future progress in the field.
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