
9 Supplement Overview
This document contains supplementary material for “Dialog without Dialog Data: Learning Visual
Dialog Agents from VQA Data”. The main paper excludes some details which we provide here.
Section 10 describes the Q-bot proposed in the main paper in more detail, including algorithms that
show how it executes one round of dialog. Section 11 describes the human studies we use to evaluate
our model and reports those results in detail. Section 12 reports the ablations we use to evaluate
the effects of different aspects of the proposed Q-bot. Section 13 reports how various models we
consider perform at different rounds of dialog. Finally, Section 14 explores in more depth how our
work relates to other relevant work in the literature.

10 Architecture Details
This section describes our architecture in more detail. Algorithm 1 summarizes our complete QBot()
implementation and subsequent algorithms define the subroutines used inside QBot() along with
the encoder we use for variational pre-training. The planner module is described in Algorithm 3,
the predictor is described in Algorithm 2, and the speaker is described in Algorithm 4. Algorithm 5
describes the encoder used for the ELBO loss.

Note that the number of bounding boxes per image is B, the number of images in a pool is P , and
the max question length is T .

There is a minor notation difference between this section and the main paper. In this section there
is an additional hidden state h̄r that parallels hr and is used only inside the planner. While hr is
the hidden state of an LSTM, h̄r is computed in the same way except it uses a different output gate
(see line 11 of Algorithm 3). This is essentially a second LSTM output that allows the context coder
query to forget dialog history information irrelevant to the current round, and allowing hr to focus on
representing the entire dialog state.

Algorithm 1: Question Bot
1 Function QBot(I, hr�1, h̄r�1, q0, a0, . . . , qr�1, ar�1)

Input: I, hr�1, h̄r�1, q0, a0, . . . , qr�1, ar�1

Output: qr, hr, h̄r, yr
2 yr Predictor(I, hr�1, q0, a0, . . . , qr�1, ar�1)
3 hr, h̄r, zr Planner(I, qr�1, ar�1, hr�1, h̄r�1)
4 qr Speaker(zr)
5 return qr, hr, h̄r, yr

Algorithm 2: Predictor
1 Function Predictor(I, hr�1, q0, a0, . . . , qr�1, ar�1)

Input: I (Ibp 2 R2048), hr�1, q0, a0, . . . , qr�1, ar�1

Output: yr
2 Attention(Q,K, V) = Softmax (g3(g1(Q)� g2(K)))V
3 fr�1 [Eq(qr�1), Ea(ar�1)] /* fact */
4 F [f0, . . . , fr�1]

/* Attention over rounds */
5 eF Attention(hr�1, F, F)
6 Qy [hr�1, eF]

/* Attention over bounding boxes */
7 eI Attention(Qy,x,x) 2 RP⇥2048

8 eI g1(eI)
9 Qp g2(Qy)

10 ly g3(Qp � eI)
11 yr argmax Softmax (ly)
12 return yr

13

Algorithm 3: Planner
1 Function Planner(I, qr�1, ar�1, hr�1, h̄r�1)

Input: I (Ipb 2 R2048), qr�1, ar�1, hr�1, h̄r�1

Output: hr, h̄r, zr
/* Context Coder */

2 eq Eq(qr�1)
3 ea Ea(ar�1)
4 ec f5([h̄r�1, eq, ea])
5 ↵p Softmax (f2(g(ec)� f1(I

p
b)))

6 �p
b Softmax (f4(g(ec)� f3(I

p
b)))

7 v̂r�1
PP

p=1

PB
b=1 ↵p�

p
b I

p
b

8 xcontext
r�1 [v̂r�1, eq, ea]

/* Dialog RNN */
9 hr, cr �(xcontext

r�1 , hr�1)
10 hr Dropout(hr)
11 h̄r �(WT

1 xcontext
r�1 +WT

2 hr�1)� tanh(cr)
12 h̄r Dropout(h̄r)

/* Question Policy */
13 ln,k LogSoftmax (W z

nhr)k 8k 2 {1, . . . ,K} 8n 2 {1, . . . , N}
14 zrn GumbelSoftmax(ln) 8n 2 {1, . . . , N}
15 hr hr +ReLU

�
W ll

�

16 return hr, h̄r, zr

In the planner Algorithm 3 at lines 5 and 6 g, f1, f3 are all two layer MLPs with ReLU output and
weight norm. Both f2 and f4 are linear transformations with weight norm applied (no activation
function). f5 is a linear transformation without weight norm purely for dimensionality reduction. To
compute h̄r we also add new linear weights W1 and W2 as for a standard LSTM output gate.

Note that for the planner there is an additional residual connection at line 16 which augments the
hidden state. This allows gradients to flow through the question policy parameters W z at line 13
when we fine-tune for task performance without fully supervised dialogs.

In Algorithm 2 g1, g2 are both 2-layer ReLU nets with weight norm. Also g3 is a 2-layer net with
ReLU and Dropout on the hidden activation and weight norm on both layers.

Algorithm 4: Speaker
1 Function Speaker(z)

Input: z
Output: qr+1

2 ez
PN�1

n=0 Ez
n(zn)

3 qr+1 �(ez)
4 return qr+1

In Algorithm 4 � is an LSTM decoder.

11 Human Evaluation
As summarized in Section 4.5 of the main paper, we also evaluate our models by asking if humans
can understand Q-bot’s language. Specifically, we use workers (turkers) on Amazon Mechanical
Turk to evaluate the relevance, fluency, and task performance of our models. Fig. 5, Fig. 6 and Fig. 7
show the interface to evaluate question relevance, question fluency and interactive task performance
respectively.

14

Algorithm 5: Encoder
1 Function Encoder(I, qr)

Input: I(Ibp 2 R2048), qr
Output: z (sample or distribution parameters)
/* Context Coder */

2 eq Eq(qr)
3 ↵p Softmax (f2(g(eq)� f1(I

p
b)))

4 �p
b Softmax (f4(g(eq)� f3(I

p
b)))

5 v̂
PP

p=1

PB
b=1 ↵p�

p
b I

p
b

6 h WT
z v̂

7 ln,k LogSoftmax (W z
nh)k 8k 2 {1, . . . ,K} 8n 2 {1, . . . , N}

8 zn GumbelSoftmax(ln) 8n 2 {1, . . . , N}
9 return z

Figure 5: Human study instructions for question relevancy.

12 Model Ablations
We investigate the impact of our modelling choices from Section 3.2 of the main paper. In Tab. 2 we
report the mean of all four automated metrics averaged over pool sizes, pool sampling strategies, and
datasets.3Next we explain how we vary each of these model dimensions

3This includes 10 settings: {random 2, 4, 9 pools }⇥ {VQA, AWA, CUB} and 2 contrats pools on VQA

15

Figure 6: Human study instructions for question fluency.

Figure 7: Interactive task performance MTurk interface.

– Our 128 4-way Concrete variables zr1 , . . . , z
r
128 require 512 logits (Discrete). Thus we com-

pare to the standard Gaussian random variable common throughout VAEs with 512 dimensions
(Continuous).

– In both discrete and continuous cases we train with an ELBO loss (ELBO), so we compare to a
maximum likelihood only model (MLE) that uses an identity function as in the default option for
the Question Policy (see Section 2.3.1 of the main paper). The MLE model essentially removes
the KL term (2nd term of Eq. 7 of the main paper) and ignores the encoder during pre-training.

– We consider checkpoints after each step of our training curriculum: Stage 1, Stage 2.A, and Stage
2.B. For some approaches we skip Stage 2.A and go straight to fine-tuning everything except the
speaker as in Stage 2.B. This is denoted by Stage 2.

16

z Structure Loss Curriculum Speaker Accuracy Perplexity Relevance Diversity

1 Discrete ELBO Stage 2.B Fixed 0.81 2.57 0.89 0.86
2 Discrete ELBO Stage 2 Fine-tuned 0.82 2.54 0.85 0.59
3 Discrete ELBO Stage 2 Parallel 0.78 2.60 0.88 0.73
4 Discrete ELBO Stage 1 Fixed 0.72 2.60 0.91 0.48
5 Discrete ELBO Stage 2.A Fixed 0.80 2.59 0.89 0.81
6 Discrete ELBO Stage 2 Fixed 0.80 2.53 0.85 0.62
7 Continuous ELBO Stage 2.B Fixed 0.75 2.45 0.66 0.23
8 Continuous MLE Stage 2.B Fixed 0.78 4.27 0.83 4.33

Table 2: Various ablations of our training curriculum.

– We consider 3 variations on how the speaker is fine-tuned. The first is our proposed approach of
fixing the speaker (Fixed). The next fine-tunes the speaker (Fine-tuned). To evaluate the impact
of fine-tuning we also consider a version of the speaker which can not learn to ask better questions
by using a parallel version of the same model (Parallel). This last version will be described more
below.

Discrete Outperforms Continuous zr. By comparing our model in row 1 of Tab. 2 to row 7 we see
that our discrete model outperforms the corresponding continuous model in terms of task performance
(higher Accuracy) and about matches it in interpretability (similar Perplexity and higher Relevance).
This may be a result of discreteness constraining the optimization problem to prevent overfitting and
is consistent with previous work that used a discrete latent variable to model dialog [16].

Stage 2.B Less Important than Stage 2.A Comparing rows 4, 5, and 1 of Tab. 2, we can see that
each additional step, Stage 2.A (row 4 -> 5) and Stage 2.B (row 5 -> 1), increases task performance
and stays about the same in terms of interpretability. However, most gains in task performance happen
between Stage 1 and Stage 2. This indicates that improvements in task performance are mainly from
learning to incorporate information over multiple rounds of dialog.

Better Predictions, Slightly Better Questions To further investigate whether Q-bot is asking better
questions or just understanding dialog context for prediction better we considered a Parallel speaker
model. This model loaded two copies of Q-bot, A and B both starting at the model resulting from
Stage 1. Copy A was fine-tuned for task performance, but every zr it generated was ignored and
replaced with the zr generated by copy B, which was not updated at all. The result was that copy A
of the model could not incorporate dialog context into its questions any better than the Stage 1 model,
so all it could do was track the dialog better for prediction purposes. By comparing the performance
of copy A (row 3 of Tab. 2) to our model (row 1) we can see a 3 point different in accuracy, so the
question content of our model has improved after fine-tuning, but not by a lot. Again, this indicates
most improvements are from dialog tracking for prediction (row 3 accuracy is much higher than row
4 accuracy).

Fine-tuned Speaker During both Stage 2.A and Stage 2.B we fix the Speaker module because it
is intended to capture low level language details and we do not want it to change its understanding
of English. Row 2 of Tab. 2 does not fix the Speaker during Stage 2 fine-tuning. Instead, it uses
each softmax at each step of the LSTM decoder to parameterize one Concrete variable [17] per word.
This allows gradients to flow through the decoder during fine-tuning, allowing the model to tune
low-level signals. This is similar to previous approaches which either used this technique [40] or
REINFORCE [2] This model is competitive with DwD in terms of task performance. However, when
we inspect its output we see somewhat less understandable language.

Variational Prior Helps Interpretability We found the most important factor for maintaining
interpretability to be the ELBO loss we applied during pre-training. Comparing the continuous
Gaussian variable (row 7) to a similar hidden state (row 8) trained without the KL prior term we see
drastically different perplexity and diversity. In the main paper these metrics dropped when a model
had drifted from English (e.g., for Typical Transfer). This suggests the model without the ELBO in
row 8 has experienced similar language drift.

13 Performance by Round
Experiments in the main paper considered dialog performance after the first round (top of Table
1) and at the final round of dialog (either 5 or 9). This does not give much sense for how dialog

17

performance increases over rounds of dialog, so we report QBot()’s guessing game performance at
each round of dialog in Fig. 8. For all fine-tuned models performance goes up over multiple rounds
of dialog, though some models benefit more than others. Stage 1 models decrease in performance
after round 1 because it is too far from the training data such models have been exposed to.

Figure 8: Task performance (guessing game accuracy) over rounds of dialog. Performance increases
over rounds for all models except the Stage 1 models.

14 Related Work
We used a visual reference game to study question generation, improving the quality of generated
language using concepts related to latent action spaces. This interest is mainly inspired by problems
encountered when using models comparable to the Zero-shot Transfer baseline. In [3] a dataset is
collected with question supervision then fine-tuning is used in an attempt to increase task performance,
but the resulting utterances are not intelligible. Similarly, [2] takes a very careful approach to fine-
tuning for task performance but finds that language also diverges, becoming difficult for humans to
understand.

Visual Question Generation. Other approaches like [27] and [28] also aim to ask questions with
limited question supervision. They give Q-bot access to an oracle to which it can ask any question
and get a good answer back. This feedback allows these models to ask questions that are more useful

18

for teaching A-bot [27] or generating scene graphs [28], but they require a domain specific oracle and
do not take any measures to encourage interpretability. We are also interested in generalizing with
limited supervision, using a standard VQAv2 [6] trained A-bot as a flawed oracle, but we focus on
maintaining interpretability of generated questions and not just their usefulness.

Latent Action Spaces. Of particular interest to us is a line of work that uses represents dialogs using
latent action spaces [29, 30, 31, 32, 33, 31, 34, 35, 36, 37]. Recent work uses these representations to
discover intelligible language [29] and to perform zero-shot dialog generation [30], though neither
works consider visually grounded language as in our approach. Most relevant is [16], which focuses
on the difference between word level feedback and latent action level feedback. Like us, they use a
variationally constrained latent action space (like our z) to generate dialogs and find that by providing
feedback to the latent actions instead of the generated words (as opposed to the approaches in [2]
and [3]) they achieve better dialog performance. Our variational prior is similar to the Full ELBO
considered in [16], but we consider generalization from non-dialog data and generalization to new
modalities.

Reference Games. The task we use to study question generation follows a body of work that uses
reference games to study language and its interaction with other modalities [38]. Our particular task
is most similar to those in [5] and [25]. In particular, [5] collects a dataset for goal oriented visual
dialog using a similar image reference game and [25] uses a similar guessing game we use to evaluate
how well humans can interact with A-bot.

19

	Introduction
	Dialog Based Image Guessing Game
	Game Definition
	Modelling A-bot
	Modelling Q-bot

	Dialog without Dialog
	Stage 1: Language Pre-training
	Stage 2: Transferring to Dialog

	Experiments
	Baselines
	Qualitative Results
	Automated Evaluation
	Human Studies
	Model Ablations

	Related Work
	Conclusion
	Acknowledgements
	Broader Impact
	Supplement Overview
	Architecture Details
	Human Evaluation
	Model Ablations
	Performance by Round
	Related Work

