
A Appendix

A.1 Algorithm Configuration Results

In this section, we present the algorithm configuration results similar to the one in Section 5.1.

k
t 1 2 3

2 13.61± 0.82 14.19± 0.89 14.42± 0.88
3 6.06± 0.47 6.17± 0.42 6.65± 0.45
4 3.09± 0.30 3.14± 0.27 3.61± 0.31
5 1.84± 0.18 2.13± 0.20 2.08± 0.23

Table 7: Parameter sweep results for (k, t) of an MVC dataset for Erdős-Rényi random graphs with
1000 vertices. Numbers represent improvement ratios ∆/t for one decomposition, averaged over 5
random seeds.

k
t 1 2 3

2 69.05± 2.92 71.87± 2.98 74.14± 3.03
3 29.99± 2.07 28.59± 1.80 30.05± 1.81
4 14.28± 1.04 16.13± 1.13 15.33± 1.19
5 7.79± 0.77 7.57± 0.72 7.69± 0.69

Table 8: Parameter sweep results for (k, t) of the MVC dataset for Barabási-Albert random graphs
with 1000 vertices.

k
t 1 2 3

2 2155.60± 22.79 1258.79± 13.65 925.05± 12.50
3 2700.33± 20.91 1767.37± 10.86 1310.96± 6.25
4 4454.65± 46.05 4489.60± 49.44 4466.36± 47.20
5 5414.01± 29,76 5325.95± 31.07 5404.87± 30.16

Table 9: Parameter sweep results for (k, t) of the MAXCUT dataset for Erdős-Rényi random graphs
with 500 vertices.

k
t 1 2 3

2 1961.42± 24.54 1043.89± 12.28 1030.60± 2.41
3 2698.46± 36.44 1887.29± 51.40 1581.43± 55.98
4 6565.54± 47.36 6454.62± 46.80 6669.28± 47.91
5 6400.38± 23.94 6478.23± 19.33 6465.03± 22.54

Table 10: Parameter sweep results for (k, t) of the MAXCUT dataset for Barabási-Albert random
graphs with 500 vertices.

k
t 1 2 3

2 65360.28± 799.26 37554.81± 263.48 27864.92± 179.93
3 61064.41± 519.66 36816.46± 236.11 26633.11± 178.71
4 56190.18± 530.23 34647.30± 233.18 25547.98± 176.94
5 54571.21± 344.89 33554.38± 224.77 24238.73± 165.66

Table 11: Parameter sweep results for (k, t) of the CATS dataset for the regions distribution with
2000 items and 4000 bids.

A.2 Visualization

A natural question is what property a good decomposition has. Here we provide one interpretation
for the risk-aware path planning. We use a slightly smaller instance with 20 obstacles for a clearer
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k
t 1 2 3

2 54358.95± 1268.30 31397.88± 364.19 21878.70± 234.63
3 50046.53± 586.72 29375.81± 336.84 20711.09± 242.39
4 46449.07± 555.02 27920.03± 315.03 20431.02± 226.95
5 42190.19± 480.57 27004.79± 315.24 19882.16± 211.44

Table 12: Parameter sweep results for (k, t) of the CATS dataset for the arbitrary distribution with
2000 items and 4000 bids.

k
t 1 2 3

2 0.37± 0.18 0.39± 0.07 0.36± 0.05
3 0.41± 0.07 0.43± 0.07 0.43± 0.07
4 0.37± 0.06 0.40± 0.06 0.33± 0.05
5 0.33± 0.04 0.32± 0.05 0.31± 0.05

Table 13: Parameter sweep results for (k, t) of the risk-aware path planning for 30 obstacles.

(a) Iteration 2 (b) Iteration 3 (c) Iteration 4 (d) Iteration 5

Figure 4: Visualizing predicted decompositions in a risk-aware path planning problem, with 4 con-
secutive solutions after 3 iterations of LNS. Each blue square is an obstacle and each cross is a
waypoint. The obstacles in red and waypoints in dark blue are the most frequent ones in the subsets
that lead to high local improvement.

view. Binary variables in an ILP formulation of this problem model relationships between obstacles
and waypoints. Thus we can interpret the neighborhood formed by a subset of binary variables as
attention over specific relationships among some obstacles and waypoints.

Figure 4 captures 4 consecutive iterations of LNS with large solution improvements. Each sub-
figure contains information about the locations of obstacles (light blue squares) and the waypoint
locations after the current iteration of LNS. We highlight a subset of 5 obstalces (red circles) and 5
waypoints (dark blue squares) that appear most frequently in the first neighborhood of the current
decomposition. Qualitatively, the top 5 obstacles define some important junctions for waypoint
updates. For waypoint updates, the highlighted ones tend to have large changes between iterations.
Thus, a good decomposition focuses on important decision regions and allows for large updates in
these regions.

A.3 Model Architecture

We first apply PCA to reduce the adjacency matrix obtained in Section 4.3. Then a fully-connected
neural network is used to perform the classification task. Table 14 lists the specifications. For MVC
problems, for instance, we first apply PCA to reduce the adjacency matrix to 99 dimensions. Then
the current solution assignments for each vertex is appended as described in Section 4.3, resulting
in a 100-dimensional feature representation for each vertex. Next, it is passed through a hidden
layer of 300 units with ReLU activations followed by a 2-class Softmax activations (since the model
performs classifications). The number of classes is decided via the hyperparameter search for k as
described in Section 5.1 and A.1.
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PCA dimensions Neural Network Architecture Activation Functions
MVC 99 (100, 300, 2) (ReLU, Softmax)

MAXCUT 299 (300, 100, 5) (ReLU, Softmax)
CATS 2000 99 (100, 300, 100, 2) (ReLU, ReLU, Softmax)
CATS 4000 399 (400, 300, 2) (ReLU, Softmax)

Path Planning 499 (500, 100, 3) (ReLU, Softmax)
Table 14: Model architectures for all the experiments.

A.4 Domain Heuristics

MVC. We compare with a 2-OPT heuristic based on local-ratio approximation [6].

MAXCUT We compare with 3 heuristics. The first is the greedy algorithm that iteratively moves
vertices from one cut set to the other based on whether such a movement can increase the total edge
weights. The second, proposed in [10], is based on a rank-two relaxation of an SDP. The third is
from [14].

CATS We consider 2 heuristics. The first is greedy: at each step, we accept the highest bid among
the remaining bids, remove its desired items and eliminate other bids that desire any of the removed
items. The second is based on LP rounding: we first solve the LP relaxation of the ILP formulation
of a combinatorial auction problem, and then we move from the bid having the largest fractional
value in the LP solution down and remove items/bids in the same manner.
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