
We thank the reviewers for their constructive and valuable comments. The resulting revisions and additional experiments1

significantly strengthened the paper. In the following three sections we summarise and address all major concerns in2

detail. All other comments will be addressed as well, but not discussed here due to space limitations.3

Biological Plausibility. Several reviewers raised concerns whether DDTP and DRL are still biologically plausible4

(rev. comments 2.iii, 3.1, 3.2, 4.5). (i) The purpose of our work was not to validate TP and its variants to be bio-5

plausible. Instead, we aimed to mathematically analyze the principles of TP/DTP optimization, to uncover strengths6

and weaknesses and to establish a theoretical framework that allows us and other researchers to address the latter. For7

example, we linked TP to GN and GD and showed that layer-wise DTP training of feedback paths leads to inefficient8

parameter updates. Next, we provided a theory-derived solution to address this (DRL). Even if such an improved TP9

variant turns out to be less bio-plausible we think this is still highly valuable information as it sets new grounds for10

future discussions in the field. (ii) Regarding the direct or skip feedback connections used in DDTP, we clarify that11

numerous anatomical studies of the mammalian neocortex consistently reported such direct feedback connections in12

the brain. In primate visual cortex, both V4 and area MT back-project to V1 (Ungerleider et al., Cereb. Cortex 18,13

2007; Rockland & Van Hoesen, Cereb. Cortex. 4, 1994). We therefore argue in the revised paper that the flexibility to14

allow for direct feedback is a major advance in bio-plausibility, compared to methods that only allow strict layer-wise15

feedback. (iii) DRL requires coordinated noise level alteration to separate reconstruction loops in time which might be16

biologically questionable. Coordination in time has been used for several major bio-plausible learning methods (Akrout17

et al., NeurIPS 2019; Kunin et al., ICML 2020) and it is still an open question whether the brain could implement18

this. Currently, there are several promising paths towards overcoming this need for coordination in time. A first option19

would be to design a noisy estimator for the DRL derivative where all layers can be noisy simultaneously, similar to20

Lansdell et al. (ICLR 2020), making use of the correlation between the noise perturbation of layer i and the relevant21

noise perturbation on the target originating from reconstruction loop i. This would directly address reviewer comment22

3.1 on how layer i can filter out the target perturbation that originates from its reconstruction loop. A second option23

would be to not learn the feedback weights explicitly through a reconstruction loss, but to use a dynamical control24

system for the inversion (Podlaski & Machens, arXiv, 2020) and adapt it such that it approximates GNT. While both25

options are interesting they require further examination and testing which would go beyond the scope of this work.26

Table 1: Training loss of last epoch for
Fashion-MNIST (mean ± SD for n = 5 seeds).

.BP (6.46± 0.25) · 10−5

DDTP-linear (1.03± 0.15) · 10−5

DTPDRL (1.36± 0.48) · 10−3

DDTP-RHL (3.51± 0.80) · 10−3

DDTP-control (3.88± 2.63) · 10−3

DTP (4.07± 0.42) · 10−2

DTP (pre-trained) (2.73± 0.67) · 10−2

DFA (1.98± 0.24) · 10−2

New Experimental Results. Based on suggestions by reviewer 3 we27

performed new experiments to benchmark the ability of the new TP vari-28

ants to minimize the training loss. Table 1 shows the new performance29

results on Fashion-MNIST (other datasets will also be included in the30

paper) which reveal that the optimization performance of DDTP-linear31

is strikingly similar to BP while the DTP/DFA methods are inferior by32

at least one order of magnitude. Complementing the frozen-MNIST33

experiments in the paper, these new results show that DRL methods34

substantially improve optimization by feeding back more useful training35

signals deep into the network, as predicted by our theory. Furthermore,36

the new results indicate that DDTP-linear (for simple tasks) converges37

to fixed points of similar depth as BP, even though it does not converge38

to true local minima of the loss function (rev. comment 1.1).39

From Theory to Practice. All reviewers suggested a more elaborate discussion on how our theoretical insights translate40

into a practical/experimental setting (rev. comments 1.1, 2.ii, 3.4, 4.2, 4.4). (i) We now discuss in greater detail how41

the propagated targets for DRL methods are not exactly equal to GNT because of the limited capacity of the feedback42

parameterization, limited training iterations for the feedback path and the approximation of λ by weight decay and other43

approximations (see also lines 179-184; 672-721). We discuss as well Figure 2, showing that experimental methods still44

remove the inefficiencies of DTP, and Figures 4 and S3-S5, demonstrating that our methods well approximate GNT.45

However, for upstream layers, future studies are required for further improvement, e.g. by investigating better feedback46

parameterizations or by using dynamical inversion (Podlaski & Machens, arXiv, 2020). A better alignment between47

targets and GNT in upstream layers will likely improve the performance on more complex tasks such as CIFAR. (ii) We48

elaborate that λ is approximated by weight decay and is negligible in practice due to the observed implicit damping49

(lines 1204-1232, rev. comment 1.4 and 4.3). (iii) We now discuss in the paper that although mini-batches of 1 are50

rarely used on GPUs, they are highly relevant for neuromorphic engineering and bio-plausible networks that use online51

learning. (iv) Finally, we detail that Theorem 4 applies to general forward mappings and that nothing prevents the GNT52

framework from being applied to CNNs and other feed-forward architectures. As a proof-of-concept, we now include a53

small CNN (Conv5x5x32; Maxpool3x3; Conv5x5x64; Maxpool3x3; FC512; FC10) on CIFAR10 with DDTP-linear and54

DFA with FC feedback. We achieved promising results: test error of 24.38±0.29% (BP), 23.99±0.31% (DDTP-linear)55

and 30.00± 0.74% (DFA), indicating that our theory also applies to CNNs. For comparing with DTP and DTPDRL,56

careful design of the feedback pathways is needed, which is outside of the scope of this theoretical work.57


