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Abstract

The success of deep learning, a brain-inspired form of AI, has sparked interest
in understanding how the brain could similarly learn across multiple layers of
neurons. However, the majority of biologically-plausible learning algorithms
have not yet reached the performance of backpropagation (BP), nor are they built
on strong theoretical foundations. Here, we analyze target propagation (TP),
a popular but not yet fully understood alternative to BP, from the standpoint
of mathematical optimization. Our theory shows that TP is closely related to
Gauss-Newton optimization and thus substantially differs from BP. Furthermore,
our analysis reveals a fundamental limitation of difference target propagation
(DTP), a well-known variant of TP, in the realistic scenario of non-invertible
neural networks. We provide a first solution to this problem through a novel
reconstruction loss that improves feedback weight training, while simultaneously
introducing architectural flexibility by allowing for direct feedback connections
from the output to each hidden layer. Our theory is corroborated by experimental
results that show significant improvements in performance and in the alignment of
forward weight updates with loss gradients, compared to DTP.

1 Introduction

Backpropagation (BP) (Rumelhart et al., 1986; Linnainmaa, 1970; Werbos, 1982) has emerged as the
gold standard for training deep neural networks (LeCun et al., 2015) but long-standing criticism on
whether it can be used to explain learning in the brain across multiple layers of neurons has prevailed
(Crick, 1989). First, BP requires exact weight symmetry of forward and backward pathways, also
known as the weight transport problem, which is not compatible with the current evidence from
experimental neuroscience studies (Grossberg, 1987). Second, it requires the transmission of signed
error signals (Lillicrap et al., 2020). This raises the question whether (i) weight transport and (ii)
signed error transmission are necessary for training multilayered neural networks.

Recent work (Lillicrap et al., 2016; Nøkland, 2016) showed that random feedback connections are
sufficient to propagate errors and that feedback does not need to adhere to the layer-wise structure of
the forward pathway, thereby indicating that weight transport is not strictly necessary for training
multilayered neural networks. However, follow-up work (Bartunov et al., 2018; Launay et al., 2019;
Moskovitz et al., 2018; Crafton et al., 2019) indicated that random feedback weights are not sufficient
for more complex problems and require adjustments to better approximate the symmetric layer-wise
connectivity of BP (Akrout et al., 2019; Kunin et al., 2020; Liao et al., 2016; Xiao et al., 2018;
Guerguiev et al., 2020), although encouraging recent results suggest that the symmetric connectivity
constraint from BP might be surmountable (Lansdell et al., 2020).

Target propagation (TP) represents a fundamentally different stream of research into alternatives
for BP, as it propagates target activations (not errors) to the hidden layers of the network and then
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updates the weights of each layer to move closer to the target activation (Bengio, 2014; Lee et al.,
2015; Bengio et al., 2015; Ororbia and Mali, 2019; Manchev and Spratling, 2020; LeCun, 1986). TP
thereby alleviates the two main criticisms on the biological plausibility of BP. Another complementary
line of research investigates how learning rules could be implemented in biological micro-circuits
(Sacramento et al., 2018; Guerguiev et al., 2017; Lillicrap et al., 2020) and relies on the core principles
of TP. While TP as presented in Bengio (2014) and Lee et al. (2015) is appealing for bridging the
gap between deep learning and neuroscience, its optimization properties are not yet fully understood,
neither does it scale to more complex problems (Bartunov et al., 2018).

Figure 1: Schematic
illustration of the
TP framework.

Here, we present a novel theoretical framework for TP and its well-known
variant difference target propagation (DTP; Lee et al. (2015)) that describes its
optimization characteristics and limitations. More specifically, we (i) identify
TP in the setting of invertible networks as a hybrid method between approx-
imate Gauss-Newton optimization and gradient descent. (ii) We show that,
consistent with its limited performance on challenging problems, DTP suf-
fers from inefficient parameter updates for non-invertible networks. (iii) To
overcome this limitation, we propose a novel reconstruction loss for DTP, that
restores the hybrid between Gauss-Newton optimization and gradient descent
and (iv) we provide theoretical insights into the optimization characteristics
of this hybrid method. (v) We introduce a DTP variant with direct feedback
connections from the output to the hidden layers. (vi) Finally, we provide
experimental results showing that our new DTP variants improve the ability
to propagate useful feedback signals and thus learning performance.

2 Background and Notation

We briefly review TP (Lee et al., 2015; Bengio, 2014) and Gauss-Newton optimization (GN). See Fig.
1 for a schematic of TP and the supplementary materials (SM) for more information on GN.

Target propagation. We consider a feedforward fully connected network with forward mappings:

hi = fi(hi−1) = si(Wihi−1) = si(ai), i = 1, ..., L, (1)

with hi the vector with post-activation values of layer i, ai the pre-activation values, si a smooth
nonlinear activation function, Wi the layer weights, fi a shorthand notation and h0 the network input.
Based on the output hL of the network and the label l of the training sample, a loss L(l,hL) is
computed. While BP backpropagates the gradients of this loss function, TP computes an output target
and backpropagates this target. The output target ĥL is defined as the output activation tweaked in
the negative gradient direction:

ĥL = hL − η̂eL , hL − η̂
( ∂L
∂hL

)T
, (2)

with η̂ the output target stepsize. Note that with η̂ = 0.5 and an L2 loss, we have ĥL = l. ĥL is
backpropagated to produce hidden layer targets ĥi:

ĥi = gi(ĥi+1) = ti(Qiĥi+1), i = L− 1, ..., 1. (3)

with gi an approximate inverse of fi+1, Qi the feedback weights and ti a smooth nonlinear activation
function. One can also choose other parameterizations for gi. Based on ĥi, local layer losses
Li(ĥi,hi) = ‖ĥi −hi‖22 are defined. The forward weights Wi are then updated by taking a gradient
descent step on this local loss, assuming that ĥi stays constant. Finally, to train the feedback
parameters Qi, fi+1 and gi are seen as a shallow auto-encoder pair. Qi can then be trained by a
gradient step on a reconstruction loss:

Lrec
i

(
gi
(
fi+1(hi)

)
,hi

)
=
∥∥gi
(
fi+1(hi)

)
− hi

∥∥2

2
. (4)

Lee et al. (2015) argue for injecting additive noise in hi for the reconstruction loss, such that the
backward mapping is also learned in a region around the training points.

Gauss-Newton optimization. The Gauss-Newton (GN) algorithm (Gauss, 1809) is an iterative
approximate second-order optimization method that is used for non-linear least-squares regression
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problems. The GN update for the model parameters β is given by:

∆β = −
(
JTJ + λI

)−1
JTeL = −JT

(
JJT + λI

)−1
eL, (5)

with J the Jacobian of the model outputs w.r.t β, eL the output errors (considering an L2 loss) and λ
a Tikhonov damping constant (Tikhonov, 1943; Levenberg, 1944). For λ −→ 0, the update simplifies
to ∆β = −J†e, with J† the Moore-Penrose pseudo inverse of J (Moore, 1920; Penrose, 1955).

3 Theoretical Results

To understand how TP can optimize a loss function, we need to know what kind of update the
propagated targets represent. Here, we lay down a theoretical framework for TP, showing that the
targets represent an update computed with an approximate Gauss-Newton optimization method for
invertible networks and we improve DTP to propagate these Gauss-Newton targets in non-invertible
networks. Furthermore, we show how these GN targets optimize a global loss function.

3.1 TP for invertible networks computes GN targets

Invertible networks represent the ideal case for TP, as TP relies on using approximate inverses to
propagate targets through the network. We formalize invertible feed-forward networks as follows:
Condition 1 (Invertible networks). The feed-forward neural network has forward mappings hi =
fi(hi−1) = si(Wihi−1), i = 1, ..., L where si can be any differentiable, monotonically increasing
and invertible element-wise function with domain and image equal to R and where Wi can be any
invertible matrix. The feedback functions for propagating the targets are the inverse of the forward
mapping functions: gi(ĥi+1) = f−1

i+1(ĥi+1) = W−1
i+1s

−1
i+1(ĥi+1).

The target update ∆hi , ĥi − hi represents how the hidden layer activations should be changed
to decrease the output loss and plays a similar role to the backpropagation error ei , ∂L/∂hi. As
shown by Lee et al. (2015), a first-order Taylor expansion of this target update reveals how the output
error gets propagated to the hidden layers, which we restate in Lemma 1 (full proof in SM).
Lemma 1. Assuming Condition 1 holds and the output target stepsize η̂ is small compared to
‖hL‖2/‖eL‖2, the target update ∆hi , ĥi − hi can be approximated by

∆hi , ĥi − hi = −η̂
[
L−1∏

k=i

J−1
fk+1

]
eL +O(η̂2) = −η̂J−1

f̄i,L
eL +O(η̂2), (6)

with eL = (∂L/∂hL)T evaluated at hL, Jfk+1
= ∂fk+1(hk)/∂hk evaluated at hk and Jf̄i,L =

∂fL(..(fi+1(hi)))/∂hi evaluated at hi.

If this target update is compared with the BP error ei =
∏L−1
k=i J

T
fk+1

eL, we see that the transpose
operation is replaced by an inverse operation. Gauss-Newton optimization (GN) uses a pseudo-inverse
of the Jacobian of the output with respect to the parameters (eq. 5), which hints towards a relation
between TP and GN. The following theorem makes this relationship explicit (full proof in SM).
Theorem 2. Consider an invertible network specified in Condition 1. Further, assume a mini-batch
size of 1 and an L2 output loss function. Under these conditions and in the limit of η̂ −→ 0, TP uses
Gauss-Newton optimization with a block-diagonal approximation of the Gauss-Newton curvature
matrix, with block sizes equal to the layer sizes, to compute the local layer targets ĥi.

Theorem 2 thus shows that TP can be interpreted as a hybrid method between Gauss-Newton
optimization and gradient descent. First, an approximation of GN is used to compute the hidden layer
targets, after which gradient descent on the local losses Li = ‖ĥi − hi‖22 is used for updating the
forward parameters.

3.2 DTP for non-invertible networks does not compute GN targets

In general, deep networks are not invertible due to varying layer sizes and non-invertible activation
functions. For non-invertible networks, gi is not the exact inverse of fi+1 but tries to approximate it
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instead. This approximation causes reconstruction errors to interfere with the target updates ∆hi, as
can be seen in its first order Taylor approximation.

∆hi , ĥi − hi = −Jgi∆hi+1 + gi(hi+1)− hi +O(‖∆hi+1‖22) (7)

The second and third term in the right-hand side represent the reconstruction error, as this error would
be zero if gi is the perfect inverse of fi+1. Due to the interference of these reconstruction errors with
the target updates, vanilla TP fails to propagate useful learning signals backwards for non-invertible
networks. The Difference Target Propagation (DTP) method (Lee et al., 2015) solves this issue by
subtracting the reconstruction error from the propagated targets: ĥi = gi(ĥi+1)−

(
gi(hi+1)− hi

)
,

known as the difference correction. Similar to Lemma 1, we obtain an approximation of the DTP
target updates.
Lemma 3. Assuming the output target step size η̂ is small compared to ‖hL‖2/‖eL‖2, the target
update ∆hi , ĥi − hi of the DTP method can be approximated by

∆hi , ĥi − hi = −η̂
[
L−1∏

k=i

Jgk

]
eL +O(η̂2), (8)

with Jgk = ∂gk(hk+1)/∂hk+1 evaluated at hk+1.

For propagating GN targets,
∏L−1
k=i Jgk needs to be equal to J†

f̄i,L
, with f̄i,L the forward mapping

from layer i to the output. However, two issues prevent this from happening in DTP. First, the
layer-wise reconstruction loss (eq. 4) for training the parameters of gi, combined with the nonlinear
parameterization of gi and fi+1 (eq. 3 and 1), does not ensure that Jgi = J†fi+1

(see SM). Second,

even if Jgi = J†fi+1
for all layers, it would still in general not be the case that

∏L−1
k=i Jgk = J†

f̄i,L
, as

J†
f̄i,L

cannot be factorized as
∏L
k=i+1 J

†
fk

in general (Campbell and Meyer, 2009). From these two
issues, we see that DTP does not propagate real GN targets to its hidden layers by default and in
section 3.4 we show that this leads to inefficient parameter updates. However, by introducing a new
reconstruction loss used for training the feedback functions gi, we can ensure that the DTP method
propagates approximate GN targets.

3.3 Propagating Gauss-Newton targets in non-invertible networks

Here, we present a novel difference reconstruction loss (DRL) that trains the feedback parameters to
propagate GN targets.

Difference reconstruction loss. First, we introduce shorthand notations for how targets get propa-
gated through the network in DTP. The computation of ĥi based on the target in the next layer can be
written as

ĥi = gdiff
i (ĥi+1,hi+1,hi) , gi(ĥi+1) +

(
hi − gi

(
fi+1(hi)

))
. (9)

The sequence of computations for ĥi based on the output target can be defined recursively as
ĥi = ḡdiff

L,i(ĥL,hL,hi) , gdiff
i

(
ḡdiff
L,i+1(ĥL,hL,hi+1),hi+1,hi

)
, with ḡdiff

L,L−1 = gdiff
L−1. Fur-

ther, gi(ĥi+1) can be defined as a function of the output target as gi(ĥi+1) = ḡL,i(ĥL) ,
gi
(
ḡdiff
L,i+1(ĥL,hL,hi+1)

)
. Finally, consider f̄i,L as the forward mapping from layer i to the output.

With this shorthand notation, DRL can be defined compactly as

Lrec,diff
i =

1

σ2

B∑

b=1

E
ε1∼N (0,1)

[
‖ḡdiff
L,i

(
f̄i,L(h

(b)
i + σε1),h

(b)
L ,h

(b)
i

)
− (h

(b)
i + σε1)‖22

]

+ E
ε2∼N (0,1)

[
λ‖ḡdiff

L,i(h
(b)
L + σε2,h

(b)
L ,h

(b)
i )− h(b)

i ‖22
]
, (10)

with B the minibatch size and σ the noise standard deviation. See Figure S1 for a schematic of DRL.
The parameters of gi are updated by gradient descent on Lrec,diff

i . Lrec,diff
i is also dependent on other

feedback mapping functions gj>i, however, their parameters are not updated with Lrec,diff
i , but with

the corresponding Lrec,diff
j instead.
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DRL is based on three intuitions. First, we send a noise-corrupted sample h(b)
i +σε in a reconstruction

loop through the output layer, instead of only through the next layer. This is needed because J†
f̄i,L

,
which needs to be approximated for propagating GN targets, is not factorizable over the layers.
Second, we use the same difference correction as in DTP, to ensure that the expectation can be
taken over white noise, while Jf̄i,L is still evaluated at the real training representations h(b)

i . Third,
we introduce a regularization term that plays a similar role to Tikhonov damping in GN (see eq.
5). DRL uses the same feedback path ḡdiff

L,i

(
f̄i,L(hi + σε1),hL,hi

)
as for propagating the target

signals ḡdiff
L,i

(
ĥL,hL,hi

)
in the training phase for the forward weights, with a noise-corrupted sample

f̄i,L(hi + σε1) instead of the output target ĥL. In the following theorem, we show that our DRL
trains the feedback mappings gi in a correct way for propagating approximate GN targets (full proof
in SM).
Theorem 4. The difference reconstruction loss for layer i, with σ driven in limit to zero, is equal to

lim
σ−→0

Lrec,diff
i =

B∑

b=1

E
ε1∼N (0,1)

[
‖J (b)
ḡL,i

J
(b)

f̄i,L
ε1 − ε1‖22

]
+ E
ε2∼N (0,1)

[
λ‖J (b)

ḡL,i
ε2‖22

]
, (11)

with J (b)
ḡL,i

=
∏L−1
k=i J

(b)
gk the Jacobian of feedback mapping function ḡL,i evaluated at h(b)

k , k =

i + 1, .., L, and J (b)

f̄i,L
the Jacobian of the forward mapping function f̄i,L evaluated at h(b)

i . The

minimum of limσ−→0 Lrec,diff
i is reached if for each batch sample holds that

J
(b)
ḡL,i

=

L−1∏

k=i

J (b)
gk

= J
(b)T

f̄i,L

(
J

(b)

f̄i,L
J

(b)T

f̄i,L
+ λI

)−1
. (12)

When the regularization parameter λ is driven in limit to zero, this results in J (b)
ḡL,i

= J
(b)†
f̄i,L

.

Theorem 4 shows that by minimizing the difference reconstruction loss for training the feedback
mappings gi, we get closer to propagating GN targets as ĥi. In equation (12), we see that the
regularization term introduces Tikhonov damping (see eq. 5). This damping interpolates between the
pseudo-inverse and the transpose of Jf̄i,L , so for large λ, GN targets resemble gradient targets. For
practical reasons, we approximate the expectations with a single sample during training and replace
the regularization term by weight decay on the feedback parameters, as this has a similar effect on
restricting the magnitude of ‖J (b)

ḡL,i
‖2F (see SM). In practice, the absolute minimum of the difference

reconstruction loss will not be reached, as J (b)
ḡL,i

, for different samples b, will depend on the same

limited amount of parameters of gi. Hence, a parameter setting will be sought that brings J (b)
ḡL,i

as

close as possible to J (b)†
f̄i,L

for all batch samples b, but they will in general not be equal for each b.

Direct difference target propagation. The theory behind DRL motivates direct connections from the
output towards the hidden layers for propagating targets. The idea for widening the reconstruction loop
from layer i to the output layer arose from the fact that the pseudo-inverse of Jf̄i,L cannot be factorized
over layer-wise pseudo-inverses of Jfk>i

. As the training of feedback paths does not benefit from
adhering to the layer-wise structure, we can push this idea further by introducing Direct Difference
Target Propagation (DDTP) as a new DTP variant. In DDTP, the network has direct feedback mapping
functions gi(ĥL) from the output to hidden layer i. Various parametrizations of gi are possible, as
shown in Fig. 3. In the notation of the previous section, ḡdiff

L,i(ĥL,hL,hi) = gdiff
i (ĥL,hL,hi) and

ḡL,i(ĥL) = gi(ĥL). With this notation, the difference reconstruction loss can be used out of the box
to train the direct feedback mappings gi.

3.4 Optimisation properties of Gauss-Newton targets

In the previous sections, we showed how DTP can train its feedback connections to propagate GN
targets to the hidden layers. In this section, we investigate how the resulting hybrid method between
Gauss-Newton and gradient descent is used to optimize the actual weight parameters of a neural
network (all full proofs can be found in the SM). We consider the ideal case of perfect GN targets,
called the Gauss-Newton Target method (GNT), as formalised by the condition below.
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Condition 2 (Gauss-Newton Target method). The network is trained by GN targets: each hidden
layer target is computed by

∆h
(b)
i , ĥ(b)

i − h(b)
i = −η̂J (b)†

f̄i,L
e

(b)
L , (13)

after which the network parameters of each layer i are updated by a gradient descent step on its
corresponding local mini-batch loss Li =

∑
b ‖∆h

(b)
i ‖22, while considering ĥi fixed.

We begin by investigating deep linear networks trained with GNT. As shown in Theorem 5, the GNT
method has a characteristic behaviour for linear contracting networks. (i) Its parameter updates push
the output activation along the negative gradient direction in the output space and (ii) its parameter
updates are minimum-norm (i.e. the most efficient) in doing so.

Theorem 5. Consider a contracting linear multilayer network (n1 ≥ n2 ≥ .. ≥ nL) trained by GNT
according to Condition 2. For a mini-batch size of 1, the parameter updates ∆Wi are minimum-
norm updates under the constraint that h(m+1)

L = h
(m)
L − c(m)e

(m)
L and when ∆Wi is considered

independent from ∆Wj 6=i, with c(m) a positive scalar and m indicating the iteration.

DTP DDTP-linear 
 (ours)
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0.50

0.75

||
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Figure 2: The average ratio be-
tween the norm of the components
of ∆W2 that lie in the nullspace
of ∂f̄0,L(h0)/∂∆W2 and the norm
of ∆W2. The nullspace compo-
nents cannot influence the output
and are thus useless. A nonlinear 2-
hidden-layer network was used on a
synthetic regression dataset, trained
with DTP (blue) and DDTP-linear
(orange, see section 4). Error bars
are the standard deviation.

Two important corollaries follow from Theorem 5. First, we
show that DTP on contracting linear networks also pushes the
output activation along the negative gradient direction, however,
its parameter updates are not minimum-norm, due to layer-wise
training of the feedback weights. Hence, a substantial part of
the DTP parameter updates does not have any effect on the net-
work output, leading to inefficient parameter updates (see Fig.
2). This result helps to explain why DTP does not scale to more
complex problems. Second, we show for linear networks, that
GNT updates are aligned with the Gauss-Newton updates on
the network parameters, for a minibatch size of 1. This follows
from the minimum-norm properties of GN in an overparameter-
ized setting (corollaries in SM). We stress that the alignment of
the GNT updates with the GN parameter updates only holds for
a minibatch size of 1. Averaging GNT parameter updates over
a minibatch is not the same as computing the GN parameter
updates on a minibatch (see SM). Usually, GN optimization for
deep learning is done on large mini-batches (Botev et al., 2017;
Martens and Grosse, 2015). However, recent theoretical results
prove convergence of GN in an overparameterized setting with
small minibatches (Cai et al., 2019; Zhang et al., 2019), resem-
bling GNT on linear networks. In the following theorem, we
show that a linear network trained with GNT indeed converges
to the global minimum.

Theorem 6. Consider a linear multilayer network of arbitrary architecture, trained with GNT
according to Condition 2 and with arbitrary batch size. The resulting parameter updates lie within
90 degrees of the corresponding loss gradients. Moreover, for an infinitesimal small learning rate,
the network converges to the global minimum.

For nonlinear networks, the minimum-norm interpretation of ∆Wi does not hold exactly. However,
the target updates ∆hi of GNT are still minimum-norm for pushing the output along the negative
gradient direction in the output space. Hence, the GN-part of the hybrid GNT method is minimum-
norm, but the gradient descent part not anymore. In practice, the interpretation of Theorem 5
approximately holds for nonlinear networks (see SM). Further, GNT on nonlinear networks does not
converge to a true local minimum of the loss function. However, our experimental results indicate
that the DTP variants with approximate GN targets succeed in decreasing the output loss sufficiently,
even for nonlinear networks (section 4). To help explain these results, we show that the GNT updates
partially align with the loss gradient updates for networks with large hidden layers and a small output
layer, as is the case in many network architectures for classification and regression tasks. Indeed,
the properties of Jf̄i,L are in general similar to those of a random matrix (Arora et al., 2015) and
for zero-mean random matrices in Rm×n with n� m, a scalar multiple of its transpose is a good

6



approximation of its pseudo-inverse. Intuitively, this is easy to understand, as J† = JT (JJT )−1 and
JJT is close to a scalar multiple of the identity matrix in this case (theorem in SM).

To conclude our theory, we showed that the layerwise training of the feedback parameters in DTP
leads to inefficient forward parameter updates, and can be resolved by using the new DRL, which
also allows for direct feedback connections. Further, we showed that TP and DTP, when combined
with DRL, differ substantially from both BP and GN and can be best interpreted as a hybrid method
between GN and gradient descent, which produces approximate minimum-norm parameter updates.

4 Experiments

We evaluate the new DTP variants on a set of standard image classification datasets: MNIST (LeCun,
1998), Fashion-MNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky et al., 2014).1 We used fully
connected networks with tanh nonlinearities, with a softmax output layer and cross-entropy loss,
optimized by Adam (Kingma and Ba, 2014) (see SM for how our theory can be adapted to the
cross-entropy loss). For the hyperparameter searches, we used a validation set of 5000 samples from
the training set for all datasets. We report the test errors corresponding to the epoch with the best
validation errors (experimental details in SM). We used targets to train all layers in DTP and its
variants, in contrast to Lee et al. (2015), who trained the last hidden layer with BP.

Figure 3: Structure of DDTP-linear (left) and
DDTP-RHL (right).

We experimentally evaluate the following new DTP
variants (algorithms available in SM). (i) For DTP-
DRL (DTP with DRL) we use the same layerwise
feedback architecture as in the original DTP method
(see Fig. 1), but the feedback parameters are trained
with DRL (eq. 10). (ii) We consider two DDTP vari-
ants, both trained with DRL. DDTP-linear has direct
linear connections as shown in Fig. 3. In DDTP-
RHL (DDTP with a Random Hidden Layer), the
output target is projected by a random fixed matrix R
to a wide hidden feedback layer: ĥfb = tanh(RĥL).
From this hidden feedback layer, direct (trained) con-
nections are made to the hidden layers of the network:
gi(ĥL) = tanh(Qiĥfb) (see Fig. 3). (iii) To decouple the contributions of DRL with other factors,
we did four controls. We compare our methods with DTP and with direct feedback alignment (DFA)
(Nøkland, 2016) as a reference for methods with direct feedback connections. For DDTP-control,
we train a DDTP-linear architecture with a reconstruction loss that incorporates a loop through the
output layer, but does not use the difference correction that is present in DRL. In DTP (pre-trained),
we pre-train the feedback weights of DTP in the same manner as we do for our new DTP variants: 6
epochs before starting the training of the forward weights and one epoch of pure feedback training
between each epoch of training both forward and feedback weights.

Table 1: Test errors corresponding to the epoch with the best validation error over a training of 100
epochs (5x256 fully connected (FC) hidden layers for MNIST and Fashion-MNIST, 3xFC1024 for
CIFAR10). Mean ± SD for 10 random seeds. The best test errors (except BP) are displayed in bold.

MNIST Frozen-MNIST Fashion-MNIST CIFAR10

BP 1.98± 0.14% 4.39± 0.13% 10.74± 0.16% 45.60± 0.50%

DDTP-linear 2.04± 0.08% 6.42± 0.17% 11.11± 0.35% 50.36± 0.26%
DDTP-RHL 2.10± 0.14% 5.11± 0.19% 11.53± 0.31% 51.94± 0.49%

DTPDRL 2.21± 0.09% 6.10± 0.17% 11.22± 0.20% 50.80± 0.43%
DDTP-control 2.51± 0.08% 9.70± 0.31% 11.71± 0.28% 51.75± 0.43%

DTP 2.39± 0.19% 10.64± 0.53% 11.49± 0.23% 51.74± 0.30%
DTP (pre-trained) 2.26± 0.18% 9.31± 0.40% 11.52± 0.31% 52.20± 0.50%

DFA 2.17± 0.14% / 11.26± 0.25% 51.28± 0.41%

1PyTorch implementation of all methods is available on github.com/meulemansalex/theoretical_
framework_for_target_propagation
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Table 1 displays the test errors for all experiments. DDTP-linear systematically outperforms both the
original DTP method and the controls on all datasets. The better performance of DTPDRL compared
to DTP shows that the DRL loss is indeed an improvement on the layer-wise reconstruction loss.
Fig. 4 reveals a significant difference between the methods in the alignment of the updates with
both the loss gradients and ideal GNT updates. Clearly, our methods are better capable of sending
aligned teaching signals backwards through the network, despite that all performances lie close
together. For further investigating whether the various methods are able to propagate useful learning
signals, we designed the Frozen-MNIST experiment. In this experiment, all the forward parameters
are frozen, except for those of the first hidden layer. All feedback parameters are still trained. To
reach a good test performance, the network must be able to send useful teaching signals backwards
deep into the network. Our results confirm that with DRL, the DTP variants are better capable of
backpropagating useful teaching signals due to their better alignment with both the gradient and GNT
updates. This experiment is not compatible with DFA, as this method relies on the alignment of all
forward parameters with the fixed feedback parameters. We observed that DDTP-RHL, which has
significantly more feedback parameters compared to DDTP-linear and DTPDRL, produces the best
feedback signals in the frozen MNIST task, but is challenging to train on more complex tasks when
the forward weights are not frozen.

Figure 4: Angles between the weight updates ∆W5 of the fifth (last) hidden layer with (a) the loss
gradient directions and (b) the GNT weight updates according to Condition 2 on Fashion-MNIST. A
window-average of the angles is plotted, together with the window-standard-deviation.

For disentangling optimization capabilities and implicit regularization mechanisms that could both
influence the test performance, we performed a second line of experiments focused on minimizing the
training loss.2 The results in Table 2 show that the DRL loss leads to significantly better optimization
capabilities, compared to DTP and the controls. Interestingly, DDTP-linear achieves a lower training
loss after 100 epochs compared to BP on MNIST and Fashion-MNIST, which might indicate that
GNT can lead to acceleration on those simple datasets.

Table 2: Training loss after 100 epochs. Mean ± SD for 10 random seeds. The best training losses
(except BP) are displayed in bold.

MNIST Frozen-MNIST Fashion-MNIST CIFAR10

BP 2.87±4.11 · 10−8 0.191±0.019 6.46±0.25 · 10−5 1.01±0.57 · 10−7

DDTP-linear 1.99±1.90 · 10−9 0.349±0.029 1.03±0.15 · 10−5 1.77±0.06 · 10−6
DDTP-RHL 2.29±0.56 · 10−7 0.289±0.014 3.51±0.80 · 10−3 4.26±3.61 · 10−2

DTPDRL 3.43±2.57 · 10−9 0.317±0.016 1.36±0.48 · 10−3 2.13±0.83 · 10−6

DDTP-control 4.74±9.51 · 10−6 0.995±0.049 3.88±2.63 · 10−3 6.14±0.92 · 10−5

DTP 1.28±1.04 · 10−7 1.184±0.072 4.07±0.42 · 10−2 9.81±6.42 · 10−5

DTP (pre-trained) 5.72±5.91 · 10−4 0.928±0.002 2.73±0.67 · 10−2 6.77±1.89 · 10−5

DFA 1.57±2.10 · 10−6 / 1.98±0.24 · 10−2 2.05±1.3 · 10−5

2We used new hyperparameter settings for all methods, optimized for minimizing the training loss.
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As Theorem 4 applies to general feed-forward mappings, we can also use the GNT framework for
convolutional neural networks (CNNs). As a proof-of-concept, we trained a small CNN on CIFAR10
with the methods that have direct feedback connections. Table 3 shows promising results, indicating
that our theory can also be used in the more practical setting of CNNs, as DDTP-linear performs
comparably to BP for this small CNN. For comparing with DTP and DTPDRL, careful design of the
feedback pathways is needed, which is outside of the scope of this theoretical work.

Table 3: Test errors corresponding to the epoch with the best validation error over a training of
100 epochs on CIFAR10 with a small CNN with tanh nonlinearities (Conv5x5x32; Maxpool3x3;
Conv5x5x64; Maxpool3x3; FC512; FC10). Mean ± SD for 10 seeds. The best test error (except BP)
is displayed in bold.

BP DDTP-linear DDTP-control DFA

24.38± 0.29% 23.99± 0.31% 28.69± 0.87% 30.00± 0.74%

5 Discussion

In a seminal series of papers, LeCun introduced the TP framework and proposed a method to determine
targets which is formally equivalent to BP (LeCun, 1986; LeCun et al., 1988). Thirty years later,
Bengio (2014) suggested to propagate targets using shallow autoencoders, which could be trained
without BP. Our theory establishes this form of TP, when extended to DTP and DRL, as a proper
credit assignment algorithm, while uncovering fundamental differences to BP. In particular, we have
shown that autoencoding TP is best seen as a hybrid between GN and gradient descent. Intriguingly,
this suggests a potential link between TP and feedback alignment, a biologically plausible alternative
to BP, which has also been related to GN under certain conditions (Lillicrap et al., 2016).

For the optimization of non-invertible neural networks, however, the connection to GN is lost in DTP.
Therefore, we introduced a new reconstruction loss, DRL, which involves averaging over stochastic
activity perturbations. This novel loss function not only reestablishes the link to GN, but also suggests
a new family of algorithms which directly propagates targets from the network output to each hidden
layer. Interestingly, numerous anatomical studies of the mammalian neocortex consistently reported
such direct feedback connections in the brain (Ungerleider et al., 2008; Rockland and Van Hoesen,
1994). Our approach is similar in spirit to perturbative algorithms (Lansdell et al., 2020; Wayne, 2013;
Le Cun et al., 1989), with the important difference that we recover GN targets instead of activation
gradients.

In practice, the propagated targets for DRL methods are not exactly equal to GNT because of
limited feedback parameterization capacity, limited training iterations for the feedback path and the
approximation of λ by weight decay. Figures 4 and S4-S6 demonstrate that our methods approximate
GNT well. However, for upstream layers, future studies are required for further improvement, e.g.
by investigating better feedback parameterizations or by using dynamical inversion (Podlaski and
Machens, 2020). A better alignment between targets and GNT in upstream layers will likely improve
the performance on more complex tasks. We note that while GN optimization enjoys desirable
properties, it is presently unclear if GN targets can be more effective than gradients in neural network
optimization. Future work is required to determine if DRL methods can close the gap to BP in
large-scale problems, such as those considered by Bartunov et al. (2018).

DRL requires distinct phases to learn. In particular, it needs a separate noisy phase for each hidden
layer, while the other layers are not corrupted by noise, similar to Lee et al. (2015), Akrout et al.
(2019) and Kunin et al. (2020). Although there is mounting evidence for stochastic computation
in cortex (e.g., London et al., 2010), coordinated alternations in noise levels are likely difficult to
orchestrate in the brain. In this respect DRL is less biologically-plausible than standard DTP. Thus,
DRL is best seen as a theoretical upper bound for training feedback weights to propagate GN targets,
which can serve as a basis for future more biologically plausible feedback weight training methods.

To conclude, we have shown that it is possible to do credit assignment in a neural network – i.e.,
determine how each synaptic strength influences the output (Hinton et al., 1984) – with TP, using only
information that is local to each neuron, in a way that is fundamentally different from conventional
BP. Our new direct feedback learning algorithm reinforces the belief that it is possible to optimize
neural circuits without requiring the precise, layerwise symmetric feedback structure imposed by BP.
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Broader impact

Since the nature of our work is mostly theoretical with no immediate practical applications, we do
not anticipate any direct societal impact. However, on the long-term, our work can have an impact on
related research communities such as neuroscience or deep learning, which can have both positive
and negative societal impact, depending on how these fields develop. For example, we show that
the TP framework, when using a new reconstruction loss, is a viable credit assignment method
for feedforward networks that fundamentally differs from the standard training method known as
BP. Furthermore, TP only uses information which is local to each neuron and mitigates the weight
transport and signed error transmission problem, the two major criticisms of BP. This renders TP
appealing for neuroscientists that investigate how credit assignment is organized in the brain (Lillicrap
et al., 2020; Richards et al., 2019) and how neural circuits (dys)function in health and disease. From
a machine learning perspective, the TP framework has inspired new training methods for recurrent
neural networks (RNNs) (Manchev and Spratling, 2020; Ororbia et al., 2020; DePasquale et al., 2018;
Abbott et al., 2016), which is beneficial because the conventional backpropagation-through-time
method (Werbos, 1988; Robinson and Fallside, 1987; Mozer, 1995) for training RNNs still suffers
from significant drawbacks, such as vanishing and exploding gradients (Hochreiter, 1991; Hochreiter
and Schmidhuber, 1997). Here, our work provides a new angle for the field to investigate the
theoretical underpinnings of credit assignment in RNNs based on TP.
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