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A Proofs and extra information on theoretical results

In this section, we show all the theorems and proofs, and provide extra information and discussion if
appropriate.

A.1 Proofs section 3.1

Condition S1 (Invertible networks). The feed-forward neural network has forward mappings h; =
filhi—1) = s;(Wih;—1), i = 1, ..., L where s; can be any differentiable, monotonically increasing
and invertible element-wise function with domain and image equal to R and where W; can be any
invertible matrix. The feedback functions for propagating the targets are the inverse of the forward
mapping functions: g;(hit1) = fijrll(hiJr]_) = Wiillsi;ll (Rit1)

Lemma S1 (Lemma 1 in main manuscript). Assuming Condition S1 holds and the output target

stepsize 1) is small compared to |hy||2/|leL||2, the target update Ah; £ h;— h; can be approximated
by

L—1
A . 1
Ah; = h; —h; = _W[H Jfk+1
k=1

e +O0*) = —iJ;" er +O(7), (14)

with e, = (0L/0hr)" evaluated at hy, Jy,,, = O fry1(hi)/Ohy, evaluated at hy; and i =
Ofr(.-(fix1(h;)))/Oh; evaluated at h;.



Proof. (Proof rephrased from Lee et al. (2015).) We prove this lemma by a series of first-order Taylor

expansions and using the inverse function theorem. We start with a Taylor approximation for hi_1
around hy_1.

hr—1=gr-i(hr) = gr_1(hr —fer) 15)
=gr-1(hr) — 0y, _, e + O(H?) (16)
=hi 1 —0J; er + O (17)

with J, the Jacobian of g; with respect to h; 1, evaluated at h;;, and Jy, the Jacobian of f; with
respect to h;_1, evaluated at h;_;. For the last step, we used that g; is the perfect inverse of f; 1
and the inverse function theorem. If we continue doing Taylor expansions for each layer, we reach a

general expression for h;:

L-1
fuzhi—ﬁ[HJfk; er + O (18)

k=i

The Jacobian Jy, , of the total forward mapping fi.r from layer i to L is given by:

it+1
Ji = 1] 7#- (19)
k=L
As all Jy, are square and invertible (following from Condition S1), its inverse is given by
L—1
-1 _ -1
I =11 750 (20)
k=i
Using the definition Ah; £ h; — h; concludes the proof. O

For proving Theorem 2 of the paper, we need to introduce first a lemma.

Lemma S2. Consider a feed-forward neural network with as forward mapping function h; =
filhi—1) = s;(W;h;—1), i = 1,..., L where s; can be any differentiable element-wise function.
Furthermore, assume a mini-batch size of 1 and a Lo output loss function. Under these conditions,
the Gauss-Newton optimization step for the layer activations, with a block-diagonal approximation
of the Gauss-Newton curvature matrix with blocks equal to the layer sizes, is given by:

Ah;=—Jley, i=1,..,L—1, (21)

with J; = ad};f evaluated at h;, J;r its Moore-Penrose pseudo-inverse (Moore, 1920; Penrose, 1955)

and ey = hLL— l the output error, with l the output label.

Proof. The output loss function £ for a minibatch size of 1 can be written as:

1
£=3llecls (22)
oL
s 7 _ _
er = (9hL hL l, (23)

with hj, the output layer activation and I the output label. As an experiment of thought, imagine
that the parameters of our network are the layer activations h;, ¢ = 1, ..., L, concatenated in the total
activation vector h, instead of the weights W;. The weights can be seen as fixed values for now. If we
want to update the activation values h according to the Gauss-Newton method we get the following
Gauss-Newton curvature matrix (which serves as an approximation of the Hessian of the output loss
with respect to h):

G=J%J (24)

with J the Jacobian of hj with respect to h. J can be structured in blocks along the column
dimension:
Ohp,

Block;(J) = J; = G =Ll (25)



Consequently, GG can also be structured in blocks of the form:

Block; ;(G) = JiTJj, i,j=1,...,L (26)
In the field of Gauss-Newton optimization for deep learning, it is common to approximate G by a
block-diagonal matrix G (Martens and Grosse, 2015; Botev et al., 2017; Chen et al., 1990), as Martens
and Grosse (2015) show that the GN Hessian matrix is block diagonal dominant for feed-forward
neural networks. G then consists of the following diagonal blocks:

Block; (G) = J ' Ji, i=1,..,L (27)

(2

while all off-diagonal blocks are zero. Now the following linear system has to be solved to compute
the activations update Ah:

GAh=—JTe;, (28)

As G is block-diagonal, this system factorizes naturally in L linear systems of the form
JXJiAh; = —Jler, i=1,..,L (29)
& Ahy=—Jley, i=1,..L (30)
If JiT J; is not invertible, the Moore-Penrose pseudo-inverse gives the solution Ah; with the smallest
norm, which is the most common choice in practice. O

Theorem S3 (Theorem 2 in main manuscript). Consider an invertible network specified in Condition
S1. Further, assume a mini-batch size of 1 and an Lo output loss function. Under these conditions
and in the limit of n — 0, TP uses Gauss-Newton optimization with a block-diagonal approximation
of the Gauss-Newton curvature matrix, with block sizes equal to the layer sizes, to compute the local

layer targets h.

Proof Sketch.  Our proof relies on the following insights. First, if the Gauss-Newton method is used
to compute a smgle target update Ah; (while considering h; as the parameters to optimize) this

results in Ah; = J LeL Second, due to the invertible network setting, the pseudo-inverse is equal

to the real inverse and can be factorized over the layer Jacobians resembling Lemma S1. Finally,
when all the target updates Ah;, i = 1, .., L are computed at once with GN, the block-diagonal
approximation of the total curvature matrix ensures that each target update is computed independently
from the others, such that the above interpretation still holds.

Proof. Under the conditions assumed in this theorem, the Gauss-Newton optimization step for the
layer activations, with a block-diagonal approximation of the Gauss-Newton Hessian matrix with
blocks equal to the layer sizes, is given by (a result of Lemma S2):

Ah,LGN :—JJeL, 7::17...,.[/71, (31)

with J; = Ohy,/Oh;. Under Condition S1, J; is square and invertible, hence the pseudo inverse JZT is
equal to the real inverse Ji_l. As aresult of Lemma S1, the TP target update AhiTP is given by

ALY = —jJ e + O@P), i=1,..,L—1, (32)
We see that AhiTP is approximately equal to AhiGN with stepsize 7 with an error of O(7)?). In the
limit of /) — 0 this error goes to zero, thereby proving the theorem. This proof is inspired by the work

of Lillicrap et al. (2016), who discovered that feedback alignment for one-hidden layer networks is
closely related to Gauss-Newton optimization.

O

A.2 Proofs and extra information for section 3.2

Lemma S4 (Lemma 3 in main manuscrlpt) Assumzng the output target step size 1) is small compared
10 ||hy|2/||e |2, the target update Ah; £ h; — h; of the DTP method can be approximated by

Ah; 2 h; — Z—U[H

with Jg, = 0gi(Ri+1)/Ohg41 evaluated at hy4q.

er +O(7?), (33)




Proof. In DTP, the target for layer ¢ is computed as sz = gi(ﬁi+1) + h; — gi(h;y1). A first-order
Taylor approximation for hy,_; around hy,_; gives

hr 1 =g 1(hr) +hi1—gr_1(hz) (34)
=gr-1(hr —fer)+hr1 —gr-1(hz) (35)
=gr-1(hr) —0Jy, e +O@H?) +hr_1 — gr—1(hz) (36)
=hp 1 —0Jg,_,eL+O®) (37)

with Jy, the Jacobian of g; with respect to h; ;. A further series of first-order Taylor expansions
until layer ¢ gives:

L—1
hi=h; — n[ I 7. |ec + 0% (38)
k=i
Using the definition Ah; £ sz — h; concludes the proof. ]

Why doesn’t DTP propagate GN targets? As shown in Lemma S2, for propagating GN targets,
the target updates should be equal to:

ARSN = JT er (39)

with J7, ~the Jacobian of the forward mapping from layer 1 to the output, evaluated at the batch

sample h;. In DTP, the feedback pathways g; are trained on the following layer-wise reconstruction
loss (Lee et al., 2015):

6 (i (B +00) — () + e (40)

B
rec __
£ =Y j]
b=1

with B the minibatch size, € white standard Gaussian noise and o the standard deviation of the noise.
For clarity, let us assume that we have linear feedforward mappings f;(h;—1) = W;h,;_1 and linear
feedback mappings ¢;(h;+1) = Q;h;11. Furthermore, we assume a batch-setting (i.e. the mini-batch
size B is equal to the total batch size). Then the GN target updates are given by:

i+1 T
ARSN = fJ}i’LeL = { 1T Wk} er 1)
k=L
Further, the minimum of (40) for (); has a closed form solution.
Qf (Wi Wl ,) =I,Wl, (42)

with T'; = Z{il(hgb) + Ue)(hgb) + o€)?, which can be interpreted as a covariance matrix. For
contracting networks (diminishing layer sizes) Wi+1FiWZ£1 is usually invertible, leading to
. -1
Qf =IiWl, (Wi TiWl) (43)
When o is big relative to the norm of h; (Lee et al. (2015) and Bartunov et al. (2018) take o in the

same order of magnitude as ||h;||2), (hl(»b) + o€) can be approximately seen as white noise and I'; is
thus close to a scalar multiple of the identity matrix. For I'; = cI and in contracting networks, );
converges to

Q: = Wijjkl (Wi+1WZ£1) - VV1+1 (44)
Following Lemma S4, the DTP target updates are given by (the approximation is exact in the linear
case):

ARPTY = H WieL (45)
k=i+1

Despite the resemblance of (41) and (45), Ah? TP is not equal to the Gauss-Newton target update
ARSEN | because in general, [HZTL Wk] cannot be factorized as Hf: i1 W,I . The pseudo-inverse

of a product of matrices (AB)' can only be factorized as BT A if one or more of the following
conditions hold (Campbell and Meyer, 2009):



e A has orthonormal columns

B has orthonormal rows

e B = A* (B is the conjugate transpose of A)
e A has all columns linearly independent and B has all rows linearly independent

In general, the weight matrices do not satisfy any of these conditions for a neural network with
arbitrary architecture. In section A.4 we show that AhiD TP Jeads to inefficient forward parameter

updates. In the nonlinear case, it is in general not true that the Jacobian .J g) of the feedback mappings
will be a good approximation of .J ](cfiTl , pushing Ath TP even further away from AhiG N

A.3 Proofs and extra information for section 3.3
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Figure S1: Schematic of the reconstruction loss used in DTP and our new Difference Reconstruction
Loss (DRL). The reconstruction loop is outlined in red. R indicates a regularization term, for which
weight decay on the feedback parameters is used in practice. Note that we visualized the practical
format of DRL, where the expectation is replaced by a single sample. If more samples are wished,
the procedure is repeated n times with the same batch sample but different independent samples of €
and the loss is averaged in the end.

Theorem S5 (Theorem 4 in main manuscript). The difference reconstruction loss for layer i, with o
driven in limit to zero, is equal to

B
o precdiff _ ®) 70 2} [ (b) }
Tim £ EGN@(M) [||JgL_iinvLe1 alij+  E Il (46)

with J5, (b ) = k i Jé ) the Jacobian of feedback mapping function gy, ; evaluated at h , k=

14+ 1,.. L, and J(,) the Jacobian of the forward mapping function fLL evaluated at hl(b). The

rec,diff .

minimum of hmg_>0 L; is reached if for each batch sample holds that

g = HJ“’ JOTTD 0T+ 1) (47)

f

When the regularization parameter X is driven in limit to zero, this results in Jé? = JJ(:)LT.



Proof. The proof consists of two main parts. First, we show how L;“’d"ff looks like in the limit of
o — 0. Second, we investigate the minimum of E;ec’d”f_

For proving the first part, we do the following first-order Taylor expansions.

fir () +oer) = by + oI e+ O(c?) (48)

g (Fin(h? +oe), hy) b)) = g (Fin(h + ael)) — g + B (49)
=oJi,) T e+ R +0(c?) (50)

G (Y + oer, Y W) = gui(h + oe2) — gri(h) + B (51

= O’J(b) €2+ hEb) + O(0?) (52)

with J5 (b ) = f;l Jg (b) the Jacobian of feedback mapping function gz, ; with respect to hp, evaluated

at h,(cb , k =i+1,..,L, and J (b) the Jacobian of the forward mapping function f 1, evaluated at

hgb). Filling these Taylor approx1mat10ns into the definition of L™ and taking the limit of o — 0
concludes the first part of the proof.

B

: rec diff __ (b) 7 2 (b) ]
crlglo £ bz; 61~N |:||JQL i 1T € 2| + N(o 1 [ 15, €2ll3 (33)
£r'ec,diff

We see that E;ec’diff is a sum of positive terms. The absolute minimum of can thus be reached if

J(Cib)

for each batch sample b, .J, éil),)i is independent from and when we minimize each positive term

separately. When §r, ; is parameterized by a finite amount of parameters, J, g—g L)i is not independent

(c#b)

from J3,”.”" and we will discuss the implications of this assumption below this proof. Each positive

term in lim,—sq /fec'd‘ff is given by

lim Erec Jiff, (b) — |: J(_b) o :| |:>\ J(b) :| 54
01_>0 A e ~N(0,1) || JrL,i fiL €1 61” ./\/(0 1 H gL-LEQ” ( )
for which we introduce the following shorthand notation:
li r_ec,diff,(b) _ [ _ } E |: 2}
Jm £; B WeTre ez + B Al sell; (55)

Next, we seek an expression for its gradient with respect to J,;. For that, we rewrite equation (55)
with traces and use the fact that €; are white noise.

. rec,diff, (b
,}ﬁno L (®) :elkaf:(O,l) {Tr (6161 )+ Tr (J, erlelTJf JT) —2Tr (Jngele{)} + .
L Eo ATr (Jyezed I7) | (56)
=Tr (1) + Tr (JgJyJf J)) — 2T (JgJg) + A Tr (JgJ)) (57)
The gradient with respect to .J, is given by
. Jiff, (0)\ T T

Va, (lim £7°9) = 27, (JpJf + M) — 2J; (58)

Requiring that the gradient is zero gives the following optimality condition for J:
Jo(JeJf + M) = Jf (59)
T = JF(JpdF 4 1) (60)

(JyJ} 4 AI) is always invertible, as J;.J{ is positive semi-definite and \ is strictly positive. Taking
the limit of A — 0, this results in
.t
Jim g = ] 61)

This last step follows from the definition of the Moore-Penrose pseudo-inverse (Campbell and Meyer,
2009) and can be easily seen by taking the singular value decomposition of .J¢



The minimum of DRL in a parameterized setting. Theorem S5 showed the absolute minimum
of the difference reconstruction loss and proved that it is reached when for each batch sample holds
that

(]L . H J(b) J(b J(f’) J(b)T —l—)\l) 1 (62)

However, Theorem S5 did not cover whether this absolute minimum will be reached by an actual
parameterized feedback path g;. Two things prevent the feedback paths from reaching the exact
absolute minimum of DRL.

First, J. éL) R

Hence, J (b ) , cannot be treated independently from J5, (

for different samples b, will depend on the same limited amount of parameters of g;.

#b) and a parameter setting will be sought that

brings J , as close as possible to J (b )T for all batch sarnples b, but they will in general not be equal

for each b. The more parameters g; has, the more capacity it has to approximate different J_ch),i for
different batch samples and hence the lower DRL it will reach after convergence.

Second, in contracting networks (diminishing layer sizes), a second issue occurs. Since the network

is contracting, different samples of h( ) can map to the same output and h,(o)l Hence, different JJ(;{’)L

will correspond to the same Jg(lz) ,as Jg, (b ) ~is solely evaluated at h;gi. Therefore, it is impossible

for Jy, (b) to approximate J](;v )LT for all b. ThlS is especially troubling for direct feedback connections,

as then Jj (b )7 is solely evaluated at the output value, which is often of much lower dimension than
the hldden layers. We can alleviate this issue by drawing inspiration from the synthetlc gradient

framework ((Jaderberg et al., 2017)). When we provide h; as an extra input to gz(h L,h;), the
(direct) feedback connections can use this extra information to compute the hidden layer target
or to reconstruct the corrupted hidden layer activation h; + o€, thereby making it possible to let
all J ®) correspond to a different J; (b)
method from the experimental sectlon to incorporate these recurrent feedback connections. This
new DDTP-RHL(rec) method is shown in figure S2. In the DDTP-RHL method without recurrent
feedback connections, the feedback path g; is parameterized as

gi(hr) = tanh (Ql tanh(RhL)) (63)

. As a concrete example, we can adjust the DDTP-RHL

If we add the recurrent feedback connections, this results in
9%¢(hr, h;) = tanh (Q; tanh(Rhr) + S;h;) (64)
More specific, for propagating targets this would result in
9= (hr, h;) = tanh (Q; tanh(Rhy) + S;h;) (65)
In the context of the DRL, this results in
9 (Fi..(hi + 0€), h;) = tanh (Qi tanh (R, 1, (hi + 0€)) + Sihi) (66)

Note that the non-corrupted sample h; is used in the recurrent feedback connection.

Approximating Tikhonov regularization by weight decay. The difference reconstruction loss
(DRL) introduces a Tikhonov regularization term by corrupting the output activation with white noise
and propagating this output backward:

i (b b) b) b
Ri= 022 B IR +oer, b RY) — m); ©7)

However, from a practical side, we would like to remove the need for a second noise source €5
on the output, as this introduces the need for an extra separate phase for training the feedback
parameters, because €5 may not interfere with €;. Hence, we show that this regularization term can



Wi T Q%
GElapags =~ 1
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Figure S2: Schematic of the DDTP-RHL method with recurrent feedback connections.

be approximated by simple weight decay on the feedback parameters, removing the need for an extra
phase. From Theorem S5 follows that, for ¢ — 0, this regularizer term can be written as

lim R; = Z 172 112

with ||.|| » the Frobenius norm. If g; is parameterized as ¢;(Q;h; 1), and using the fact the Frobenius
norm is submultiplicative (following from the Cauchy-Schwarz inequality), we can define the
following upperbound for R;.

(68)

B _
Jim R; Z: [[ DY Q1% (69)
B L-1
SZH Ik (70)
b=1 k=1
L-1
H ;|| Q% 1)

with Db the diagonal matrix with the derivatives of ¢;, evaluated at Q7hZ | and n; the size of layer
1. For the last step, we used the assumption that the derivative of ¢; lies in the interval [0; 1], which
is true for the conventional non-linearities used in deep learning. Applying weight decay results in
adding the following regularizer term to the DRL:

L—1
=> Q% (72)
k=1

Hence, we see that weight decay penalizes the same terms ||Qy||% appearing in the upper bound of
R.. The product is replaced by a sum, so the interactions between ||Qy||% will be different for R™4,
however, a similar regularizing effect can be expected, as it puts pressure on the same norms ||Q|/%.
Note that for linear direct feedback connections (corresponding to DDTP-linear in the experiments),

gL ; = @;, hence R; can be replaced exactly by RW,

Interpretation of DRL in a noisy environment. The difference reconstruction loss is based on a
noise-corrupted sample that is propagated forward to the network output and afterwards backpropa-
gated to layer ¢ again, with a reconstruction correction based on the non-corrupted layer activations
h;. As example, consider the DRL for layer L — 1 (without the regularization term for simplicity, as
we approximate it in practice by weight decay).

B
recdift 1 = (b) (®) (®)
i DN [lgz-1(fehr’0) + B — goa ) = R )IE] 73)



with hy,_1 = hp_1 + oe. Hence, the difference reconstruction loss needs both the non-corrupted
activations hy,_1 and hy,, and the corrupted activations hy,_1 and fr,(hr_1). At first sight, it seems
dubious whether a biological neuron could keep track of its noise-corrupted and non-corrupted
activation at the same time. However, for small o, the non-corrupted activations are approximately
equal to the time average of the noise-corrupted activations. For hy,_; it follows directly from the
fact that € is white noise.

E [hy_ —h,_ 74
e~N(0,1)[ -1+ o€] L1 (74)

For small o, we can do a first-order Taylor approximation for f;, (il L—1)-

[fo(hi—1)]= E [fr(hi—1)+oJse+O(0?)] =hy (75)

E =
e~N(0,1) e~N(0,1)

Hence, the time averages can be used for the reconstruction correction term hy,_1 — gr,—1(hz), such
that the neurons only need to represent the noise-corrupted activations, if there exists a mechanism
to keep track of the time average of its activations. Similar arguments hold for L% of the other
layers of the network. Similar to Lee et al. (2015), Akrout et al. (2019) and Kunin et al. (2020), a
single layer i needs to be noise-corrupted with additive white noise, while all other layers cannot
have additive noise of their own, for training the feedback parameters of layer ¢. Lee et al. (2015)
Akrout et al. (2019) and Kunin et al. (2020) allow for training the feedback parameters of half of the
network layers simultaneously, while keeping the other layers noise-free, which is less restrictive,
but still needs the same fundamental mechanism to keep certain layers noise-free. This is a serious
biological constraint, and future research should aim to adjust our difference reconstruction loss such
that it can operate in an environment where all layers are noisy at the same time, while keeping its
favorable properties.

Feedback weight updates. From the biological perspective, it is interesting to know which feed-
back parameter updates result from the difference reconstruction loss. We consider the difference
reconstruction loss with weight decay as regularizer, as this is the version we use in the practical
implementation of the methods. Furthermore we use a single noise sample € to approximate the expec-
tation, as is also done in our practical implementation. For simplicity, we consider the DDTP-linear
method, which has direct linear feedback connections ();. In this case, the difference reconstruction
loss for a minibatch size of 1 is defined as

rec,di 1 r 7 r 7 >
Lieedil = 2 Qifir(hi) = Qifip(hi) + hi — hill3 + Qi % (76)
with h; = h; + ce. The resulting parameter update is given by
8 Eljec,diff ~tb 5 5
AQi=—5 g = ki B~ (b~ k) (e ~he)" —mAQ: (D)

~ _ ~ ~ b _ ~ _ ~
with hy = fi .(hi), h; = Qifi r(h;) and hﬁb = Q;fi r(h;). We see that the parameter update
is fully local to the individual neurons of each layer. The parameter consists of three differences
- ~fb
between a noisy activation (e.g. h;) and a time-average or base activation (e.g. h;). ht;b and h; could
represent the activations of a separate feedback neuron or a segregated dendritic compartment of the

considered neuron (Sacramento et al., 2018; Guerguiev et al., 2017). le and h; could represent the
activation of the considered neuron, or the activation of a segregated dendritic compartment of the

considered neuron. Finally, hy and hy represent the pre-synaptic activation of the feedback weights
Q;- Similar interpretations holds for other parameterizations of the feedback functions g;.

A.4 Proofs and extra information for section 3.4

Condition S2 (Gauss-Newton Target method). The network is trained by GN targets: each hidden
layer target is computed by

(b)

AR &Ry~ = =i Tel, (78)

after which the network parameters of each layer i are updated by a gradient descent step on its
corresponding local mini-batch loss L; =", HAhEb) |2, while considering h; fixed.



Theorem S6 (Theorem 5 in main manuscript). Consider a contracting linear multilayer network

(n1 > ne > .. > nr) trained by GNT according to Condition S2. For a mini-batch size of

1, the parameter updates AW, are minimum-norm updates under the constraint that h(mﬂ) =

hém) - (m)eém) and when AW is considered independent from AW ;_;, with ¢(™) a positive scalar

and m indicating the iteration.

Proof. Let J; = 6hi+1/8hi and ji = Jr_1...J;, then AW, = _U(JL—l o Ji)TeLh;T_l =
—njj er, h,Z-T_l. In a linear network the GNT method produces the following dynamic:

PO =37 G0V, + AW f=z Wihy” ﬁZJAWhm) )
i=1 i=1

L
T 7 m m m m m m 2
=him T]ZJiJje(L Tp{mIT (™) — plm) _ el >Z ‘ h§,{H2 (80)
i i=1

Letting ¢(™) = nZL ! ‘ (m)H we get
R = Rl el @81)

To show that this update represents the minimum weight choice we solve the following optimization
problem:

L
arg min AW; 2 (82)
gmin S
st RimTY = plm) ) glm) (83)

If AW; is considered independent of AW;_; the above minimization problem can be split in L
optimization problems:

argmin AW (84)

AW;
st (Wi + AWHR™) = Jwplm) — omelm (85)
— JAaw;p!™ = —cl™elm™) (86)

K2

AW; is independent of AW, is similar to the block-diagonal approximation of the Gauss-Newton
curvature matrix in Theorem S3. For ease of notation, we drop the iteration superscripts. We can now
write the Lagrangian

with (™) = Zf:_ll ™ since we are working with a linear network. Note that the assumption that

£ = |AW;5+ AT (J AWkt +ciey) (87)

As this is a convex optimization problem, the optimal solution can be found by taking the derivatives
of the Lagrangian (resulting in the Karush-Kuhn-Tucker conditions).

1 -
aalf/ =2AW; + JFART | =0 = AW} = —§JZT Ah] (88)
oL . 1. .
87)\ = JiAWihi—l +ciep = —§JiJZ-T)\ ||hl_1||§ +cer = 0 (89)
« 2C,’ s oAy
:7||h’ IHZ(JZ-JZT) ler, (90)
=112

Combining the two conditions

* C;

Ci A
Wr=——  JT( ) e hl | = —— " jle hl | = —— T AWENT (91)
il 1hia 1Bl

We see that AWSNT s a positive scalar multiple of the minimum-norm update AW*, thereby
concluding the proof. O
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DTP has inefficient updates. In Theorem S6, we showed that GNT updates on linear networks
push the output activation in the negative gradient direction and can be considered minimum-norm
in doing so. In Corollary S6.1 below, we show that vanilla DTP updates also push the output
activation in the negative gradient direction, but are not minimum-norm. This is due to the fact
that AW TP has components in the null-space of dh 1, /OW;. These null-space components do not
contribute to any change in the output of the network and can thus be considered useless. Furthermore,
these components will most likely interfere with the parameter updates of other training samples,
thereby impairing the training process. The origin of these null-space components lies in the fact
that the feedback parameters are trained by layer-wise reconstruction losses. Hence, under the right

conditions, each target update AhiD TP is minimum-norm in pushing the activation h;41 of the layer

on top towards its target ﬁi+1 (which is reflected in Q] = WL_l under the layer-wise reconstruction
loss, as discussed in section A.2). However, this layer-wise minimum-norm characteristic does not

translate to being minimum-norm for pushing the output towards its target. Indeed, a target update
AhD TP that is minimum-norm for pushing h;; towards hz+1 is not in general minimum-norm for
pushing h, towards A, because [H;J:L Wk]T is in general not factorizable as Hfm 11 W,I . This
result helps explaining why DTP cannot scale to more difficult datasets (Bartunov et al., 2018). The
GNT updates in contrast, have no components in the null-space of Ohy,/ (?Wi. For Corollary S6.1,
we assumed that white noise is used for the layer-wise reconstruction losses. This assumption is
approximately true in practical use-cases of DTP training (Lee et al., 2015; Bartunov et al., 2018), as
the authors corrupt the layer activations h; with white noise with a standard deviation in the same
order of magnitude as the layer activations, for computing the reconstruction loss.

Corollary S6.1. Consider a contracting linear multilayer network trained by DTP where white noise
is used to train the feedback parameters. For a mini-batch size of 1, the resulting forward parameter
update pushes the current output activation along the negative gradient direction e;, = OL/0hy, in
the output space.

h(m+1) h(m) (m)e(Lm"‘l)7 (92)

WPTP||p > ||AWENT || g for all layers i, with
AWENT the parameter updates resulting from the GNT method as described in Condition S2.

Proof. Call AWENT = (Jp_y... Jip1)te™ R and AWDTP =gl e Rl

the updates prescribed by GNT and DTP respectively, with J; £ Oh; /ahl = Wis1 (see
section A.2 for a derivation of the DTP update for linear networks with white noise for feed-
back parameter training). The fact that DTP pushes the output activation along the negative
gradient direction corresponding to equation (92) can be proved analogously to Theorem S6, as

(Jp—1. - Jix1)(Jp—1 ... JiH)Jr = (Jp-1-.. Ji+1)(JJ+1 o Jz_l) = [ for contracting networks.
For the second part of the proof, consider AWiGN Te =g, + gn and AWiD TPy = t, + t,, with
|||, = 1 an arbitrary vector, where the vectors described by the index r and n are the projections

onto the image and kernel of (Jy,_ ... J;;1) respectively. Since im(A") = im(AT) = ker(A)+
we have that g,, = 0. Since the network is contracting

(Jp—1- Jig)gr = (Jp_1 .. Jig ) AWENT 2 = (Jp 1 T AWPTP g 93)
=(Jp—1- Jig1)(tr +tn) = (Jo—1... Jiy1)ts (94)

For equation (93) we used the fact that (Jp_y...Ji1)(Joo1...Jiz1)f =
(Jp—1--. Ji+1)(JZ+1 J£ 1) = I for contracting networks. By definition, both g, and ¢,
are not in the kernel of (Jz,_1 ... J;+1), hence g, = t,.. Finally by orthogonality of ¢,. and t,,
2 2 2 2 2 2
[tr 4+ tully = It )5 + [Enlls = llgrllz + 25 = llgrll (95)

and therefore
AW > AW (96)
The theorem follows by the equivalence of matrix norms.
O

11



Minimum-norm properties of Gauss-Newton in an over-parameterized setting. In Theorem
S6, we showed that the GNT method can be interpreted as finding the minimum-norm update AW;
under the constraint that the output activation should move in the negative gradient direction in
the output space, as a result of the update. This result is closely connected to the properties of
Gauss-Newton optimization in an over-parameterized setting. The Gauss-Newton parameter update
for a nonlinear model parameterized by 3 is given by

AB=—Jley, (97)

with J the Jacobian of the model outputs for each batch sample with respect to 3 and e, the vector
containing the output error for each batch sample. As reviewed in section C, this update can be
seen as a linear least-squares regression with J as the design matrix and ey, as the target values.
However, this interpretation is only valid for under-parameterized models (fewer model parameters
compared to the number of entries in er,), which is the usual setting for doing Gauss-Newton
optimization. Theorem S6, however, operates in an over-parameterized setting, as we have many
more layer weights W; than output errors e, for a minibatch size of 1 in contracting networks. In
this case, there are many possible parameter updates A3 that exactly reduce the error ey, to zero
for the linearized model in the current mini-batch. A sensible way to resolve this indefiniteness is
to take the minimum-norm update A3 that exactly reduces the error ey, to zero in the linearized
model and this is exactly what the pseudo-inverse J1 does. The Gauss-Newton iteration (eq. 97)
in an over-parameterized setting can thus be interpreted as a minimum-norm update, which is a
fundamentally different interpretation compared to the under-parameterized setting. Gauss-Newton
optimization is usually not used in this over-parameterized setting, however, recent research has
started with investigating the theoretical properties of GN for over-parameterized networks (Cai et al.,
2019; Zhang et al., 2019). The minimum-norm interpretation of GN suggests that the GNT method
on linear networks is closely related to GN optimization for the network parameters. Corollary S6.2
makes this relationship explicit.

Corollary S6.2. Consider a contracting linear multilayer network trained by GN targets according
to Condition S2. For a mini-batch size of 1 and an L2 loss function, the resulting parameter updates
AWZ.GN T are a positive scalar multiple of the parameter updates AWZ-GN resulting from the GN
optimization method with a block-diagonal approximation of the Gauss-Newton curvature matrix,
with block sizes equal to the layer weights sizes.

Proof. In order to avoid tensors in the proof, we use a vectorized form of W, Wi, which is a vector
containing the concatenated rows of W;. Furthermore, let us define H, 1T as:

R o ... of
T
a2 |° (98)
: - of
of ... o A!

Then it holds that W;h;_1 = H lT_ 1 Wl Finally, let us define ﬁ 1.(h;) as the forward mapping from h;

to hy,. Analogue to Lemma S2, the Gauss-Newton steps for W;, with a block-diagonal approximation
of the GN curvature matrix and a mini-batch size of 1 are given by:

AWiGN:_J:LL gL =101 (99)

with JhL,Vf/i £ 5‘hL/8W2—. For linear networks, JhL’Wi is equal to

Ty 0, = Tnp ni Hi (100)
with Jp, n, £ Ohr/Oh;. As o H” | has orthonormal rows, J;: _can be factorized as
= LVVi
follows (Campbell and Meyer, 2009):
T = (L)L (01

In order to investigate (H; ;) " we take a look at the singular value decomposition (SVD) of HY .

HY  =UxvT (102)
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U and V are both square orthogonal matrices and ¥ contains the singular values. As the SVD is
unique and H} | has orthogonal rows, we can find the singular value decomposition intuitively by

normalizing the rows of Hl ;.

U=1 (103)
V:[Mﬂi_l : fx] (104)
2= lhisfal o (105)

with V an orthonormal basis orthogonal to the column space of H;_. Hence, the block-diagonal GN
updates for W; can be written as

1

=GN i
AWE = g i e, =1L (106
1
GN _ i T ; —
MW = e T erh Ty, =L (o7

For linear networks, the GNT update for W; is given by
AWENT = —nipJf erhl y, i=1,.,L—1 (108)

with 7; the learning rate of layer i and 7) the output step size. We see that AW N7 is a positive scalar

multiple of AW, thereby concluding the proof. O

Minimum-norm interpretation of error backpropagation. Gradient descent (the optimization
method behind error backpropagation) has also a minimum-norm interpretation, however, with a
different constraint compared to the GNT method, as shown in Proposition S7. Gradient descent uses
minimum-norm updates, with as a sole purpose to decrease the loss, whereas GNT uses minimum-
norm updates in order to move the output in a specific direction indicated by the output target. In
the current implementations of TP and its variants, this output direction is specified as the negative
gradient direction in output space, but one could also specify other directions if that would be
favourable for the considered application.

Proposition S7. The gradient descent update is the solution to the following minimum-norm opti-
mization problem.

L
. . 2
clg% argvr&m ;:1 |AW; || % (109)

st Lt = pim _ (110)
with L™ the loss at iteration m and ¢ a positive scalar.

Proof. First, let us define WZ as the vector with the concatenated rows of W, and W the concatenated
vector of all W;. Then, the Lagrangian of this constrained optimization problem can be written as:

12
L= HAWH2+/\(L<’"+1> L 4 (111)
A first-order Taylor expansion of L("+1) around L(™) gives:
oL . - -
LD — pm) 4 ﬁAW + O(||AW||2) (112)

We will assume that O(||AW||2) vanishes in the limit of ¢ — 0 relative to the first-order Taylor
expansion and ¢, and check this assumption in the end of the proof. Hence, the Lagrangian can be

approximated as
L2 L -
EzHAWH AL AT 4 ) (113)
2 ow
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As this is a convex optimization problem, the optimal solution can be found by solving the following
set of equations.

oL oL , -

== ZZA = 114
™o W+c=0 (114)

T
or _ = 2AW + )\a—L (115)

OAW ow
This set of equations has as solutions

"t

- LT
o __¢ 9 (117)

el

We see that the minimum-norm solution for AW is the gradient descent update with stepsize
c/||§—VLf/||§ Further, O(||AW||3) ~ O(c?), thus O(]|AW|3) vanishes in the limit of ¢ — 0 relative
to the first-order Taylor expansion and ¢, thereby concluding the proof. O

GN optimization for minibatches bigger than 1. In Corollary S6.2 we showed that the GNT
method is equal to a block-diagonal approximation of GN for a minibatch size equal to 1. We
emphasize, however, that this relation only holds for minibatch sizes equal to 1 and does not
generalize to larger minibatches. The Gauss-Newton iteration with a minibatch size of B and a
block-diagonal approximation is given by

B B
AWEN = 1i GO A1 J0Te (118)
fi [ e ar] T[S0 0rey)
G 2 jOT 70) (119)

with G the Gauss-Newton curvature matrix, J (®) £ 9, L/ BV_[}i evaluated on mini-batch sample b and
A a damping parameter. For linear networks, the GNT parameter updates with a minibatch size of B
can be written as:

B
-1
B
= [J<b>16g>)] (121)

o
Il

1

We see that for B = 1, these expressions overlap, but for B > 1 they are not equal anymore, because
the order of the sum and inverse operation is switched. GNT can thus be best interpreted in the
framework of minimum-norm parameter updates, even if bigger batch-sizes are used, whereas GN
optimization has a different interpretation for bigger minibatch sizes.

Linear networks trained with GNT converge to the global minimum. Even though the GNT
method does not correspond with the GN method for bigger mini-batch sizes, we can still show that
GNT on linear networks converges to the global minimum. Theorem S8 proves this for arbitrary
batch sizes and an infinitesimally small learning rate. Note that a batch setting instead of a minibatch
setting is used (i.e. one minibatch that is equal to the total training batch).

Theorem S8 (Theorem 6 in main manuscript). Consider a linear multilayer network of arbitrary
architecture, trained with GNT according to Condition S2 and with arbitrary batch size. The resulting
parameter updates lie within 90 degrees of the corresponding loss gradients. Moreover, for an
infinitesimal small learning rate, the network converges to the global minimum.
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Proof. Consider a batch of size B with inputs {héb)}lgbg g and errors {e(Lb)}lgbg g,andlet 4; £
Zle [e(Lb)hl(-b)T}. Given the linear setting, J; is independent of the presented input for each batch, so

B

AWSENT = Z[(']L—l e Ji-‘rl)Teg))hz(‘b)T] = (Jo-1--- Ji1) 4 (122)
b=1
B

AWEP =Ny ) TR = (T )T A; (123)
b=1

To compute the angle between the updates we take the Frobenius inner product
(AWPP AWENTY = Tr(AT (T 1. Ji) (Tt .. Jig1)TAY) (124)
=Tr(AAT(Jpo1 . Jig) (Tt ... Jig1)T) = Tr(BY) (125)

In the last equality a change of basis has been performed with the SVD basis of
(Jp—1..-Jix1)(Jp—1...Jiz1)" (which is PSD). B is A; AT under the new basis while ¥ is a
diagonal matrix with non-negative entries. A; A7 is positive semi-definite and remains so even after
a change of basis, so it always has non-negative diagonal entries. Clearly then 77 (BX) > 0 and
therefore

(AWEP AWENTY L > 0 (126)

The angle between the updates hence remains within 90 degrees.
To show that the procedures converge to the same critical point, we prove that
AWEP =0 —= AWEFNT = (127)
This follows from the fact that ker(MT) = ker(MT) for any matrix M, since
AWPFP =0 — im(A;) Cker((Jp_1...Jiz1)T) (128)
= im(4;) Cker((Jp—1...Jix1)T) = AWFNT =0 (129)

Finally, for small enough step size we can compare the gradient flow of both GNT and backpropaga-
tion, in particular

sp Wi TN )
T == i) > leni] (130)
b=1
oW,
NI = (T i) S len)] (131)

b=1

Given that backpropagation is guaranteed to always descend the gradient assuming an infinitesimal
stepsize, GNT will always reduce the loss under the same assumption, as the directions are always
within 90 degrees. As the equilibrium is unique for backpropagation (convex objective) and it is the
same as GNT, the two procedures will both converge to the global minimum. O

Minimum-norm target update interpretation for nonlinear networks. The direct connection
between GNT and GN optimization on the parameters for a minibatch size of 1 does not hold exactly
for nonlinear networks. This is due to the nonlinear dependence of h; on W in the local layer loss

L; = ||h; — h;||2. For nonlinear networks, the GNT parameter update for a minibatch size of 1
results in
AWENT — _nH, D;Jley, (132)

with D; = Oh;/da; evaluated at a; = W;h;_1, J; = Ohy/0h;, and W, and H;_, as defined
in Corollary S6.2. With the same reasoning as in Corollary S6.2, the GN parameter update for a
minibatch size of 1 is given by

1

|hi1]l3

Hi 1 (J;D:) e (133)
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Figure S3: The direction of the change in
output activation, resulting from GNT up-

{ date (blue) and BP update (red), plotted
together with the loss contours. A nonlin-

B GNT ear 2-hidden-layer network with two output

mm BP neurons (y; and y2) was used on a synthetic

regression dataset.

Y1

We see that WiGN 7" is not equal anymore to WLG N Hence, for an exact interpretation of GNT on
nonlinear networks, we should return to the hybrid view. First, the GNT method uses Gauss-Newton
optimization to compute its hidden layer targets, after which it does gradient descent on the local loss

L; = ||h; — h;]||3 to update the network parameters. As the Gauss-Newton optimization for the targets
operates in an over-parameterized regime in contracting networks, the GNT target updates should be
interpreted as minimum-norm target updates, with as constraint to push the output activation towards
its target, similar to Theorem S6. The network parameters are then updated by gradient descent on £;
to push the layer activation closer to its minimum-norm target. The parameter updates can thus not
exactly be interpreted in a minimum-norm sense, but intuitively, the same effect is pursued through
the minimum-norm targets. Furthermore, Fig. S3 indicates that for nonlinear networks, the GNT
parameter updates push the output activation approximately along the negative gradient direction,
similar to Theorem Sé6.

Minimum-norm target updates under various norms. We established an interpretation of GNT,
connecting it to finding minimum-norm target updates that push the output activation towards its
target. Besides the possibility to vary the direction specified by the output target, one can also use
different norms for defining the 'minimum-norm’ targets. For the difference reconstruction loss, we
used the 2-norm, which gives rise to the link with Moore-Penrose pseudo-inverses and Gauss-Newton
optimization. However, the difference reconstruction loss is not restricted to this 2-norm and when
using other norms, this will give rise to minimum-norm target updates under the corresponding norm.
Ororbia and Mali (2019) indicated that other distance measures might be beneficial for defining

local loss functions £i(fzi, h;) in the DTP framework. Using our framework, future research can
now investigate whether using other norms for the difference reconstruction loss results in better
performance.

Does there exist an energy function for GNT? In the previous paragraphs, we showed that GNT is
closely related to Gauss-Newton optimization and that it converges for linear networks. For non-linear
networks, we indicated that GNT can best be interpreted as a hybrid method between GN optimization
for finding the targets and gradient descent for updating the parameters. However, it remains an open
question whether general convergence can be proved for the nonlinear case, and if yes, to which
minimum the GNT method converges. The convergence proofs for error-backpropagation all use
the fact that error-backpropagation is a form of gradient descent, and it thus follows the gradient of
a loss function (White, 1989; Tesauro et al., 1989). For being able to follow a similar approach for
a convergence proof, the GNT method should as well follow the gradient of some energy function.
However, in Proposition S9 we show that GNT does not follow the gradient of any function, for which
we followed a similar approach to Lillicrap et al. (2016). The proposition applies for both linear and
non-linear networks. Another path forward towards a general convergence proof for GNT would be to
find an energy function for which the GNT updates are steepest descent updates under a certain norm
(Boyd et al., 2004). The Gauss-Newton parameter updates can be interpreted as steepest descent
updates under the norm induced by G, the Gauss-Newton curvature matrix. Similarly, one could
hope that there exist an energy function and a certain norm for which the GNT updates represent a
steepest descent direction. We hypothesize that such energy function and norm do not exist for batch
sizes bigger than one, because the order of the summation and inverse operation in equation (120) are
reversed compared to equation (118), making it hard to disentangle a norm-inducing matrix and a
gradient on the training batch. However, we have not yet proven this rigorously.
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Proposition S9. The GNT updates as described in Condition S2 do not produce a conservative
dynamical system, hence it does not follow the gradient of any function.

Proof. We will restrict ourselves to the case of one hidden layer, with each layer having only one
unit, to avoid cumbersome notations. This choice does not impact the generality of the statement. Let
ho be the input, h; = wy ho be the state of the hidden layer, and ho = wohq be the output layer. The
error signal is e;, = hg — t, with ¢ being the target. The updates to wy and w; after presentation of
one sample are

U)Q = eth
wy =j " epho
with j = Oha/0Oh1 = wy. If w; and w, follow the gradient of any function, the Hessian of this

function should be symmetric:
Owy  Oun

— = — (134)
8101 ng
This condition is also known as conservative dynamics in dynamical systems. However
Owy  Oephy  Oep 3/11
— = =_—nh = wahoh h 135
o, Buor Don 1+ 8w1 = wahohi +erho (135)
and
oun 6]'716[‘}10 83'*1 1 Oeg, 8j*1 1
- = = — | ho= h hih 136
D10 D1 Di0g er +Jj 9w ) = By erho+j " hihg (136)
1 1
= —726Lh0+7h1h0 (137)
way w2
In general
Owy , Oun
138
8w1 7& 8w2 ( )
and the dynamical system is non-conservative. O

GNT updates align with gradients in contracting networks. Despite the lack of a general con-
vergence proof for the GNT method in the nonlinear case, experimental results indicate that our DTP
variants (which are an approximation of the GNT method) succeed in decreasing the loss sufficiently,
even for nonlinear networks. To help explain this observation, we indicate that the GNT updates
approximately align with the gradient direction in high probability, if the network has large hidden
layers compared to the output layer, which is the case for many classification and regression problems.
We start from the assumption that the properties of J, , are in general similar to those of a random
matrix (Arora et al., 2015). If a zero-mean initialization for the weights is used, we assume that J FiL
is also approximately random and zero-mean. For this case, we prove that a scalar multiple of its
transpose is a good approximation of its pseudo-inverse. Intuitively, this is easy to understand, as
Jt=JT(JJT)"Land JJT is close to a scalar multiple of the identity matrix for zero-mean random
matrices in R™*"™ with n > m:

[JJ7].. Z JZ, ~ no? (139)

JJT Z JinJjn =0, Vi#j (140)

with J; , the element on the i-th row and k-th column of J, and o2 the variance of the random
variables. The GNT update and the gradient (BP) update are given by respectively:

B

AWENT = 3" DM PP R (141)
b
B

AWEE = —n 37 DT e n] (142)

b
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with Ji(b) = Ohy,/Oh; evaluated at training sample b. We see that if Ji(b)T is approximately equal to
Ji(b)T, AWENT will align with AWBP . In Theorem S12, we prove formally that Ji(b)T aligns with

Ji(b)T if it is considered as a zero-mean random matrix with n > m. Before stating the theorem, we
need to introduce some auxiliary concepts and lemmas.

Definition S1. Ler A € R™*™ and f : R™*™ — R™"*™. f(A) is an e —approximate Moore-Penrose
pseudoinverse (or € — pseudoinverse) of A if it satisfies the following conditions:

I JAf(A)A - A|% <e
2. I F(A)AF(A) = (A7 < €
3. Af(A) and f(A)A are Hermitian

These are an € — approximate version of the Penrose conditions.

Lemma S10. A classical result from Paul Lévy prescribes that the n-dimensional unit spheres S™
equipped with their respective uniform probability measures form a normal Lévy family. Therefore
given one x € S™, for any ©' € S™ we have

P(|[(x,x')|| > t) < Cy exp (—Cant?) (143)
where C, Cy are universal constants.
Proof. For a proof refer to Brazitikos et al. (2014). O

Lemma S11. Given a family {x; }1<;<m of m randomly chosen vectors in S™, then for each i

]P’(U(H(a:“:cﬁﬂ >t)) < Cymexp (—Cont?) (144)
J#i
Proof. The proof is a straightforward application of the union bound to Lemma S10. O

Theorem S12. Let A € R™*™ be a matrix with n > m and with rows sampled uniformly from
the unit ball B", scaled appropriately. Moreover let s = max; Z?:1 a?j. Then s~ ' AT is an

€ — pseudoinverse of s~ 1 A with high probability.

Proof. Call B2 s71A. AAT and AT A are Hermitian, hence the corresponding forms with B are
Hermitian as well and they satisfy condition 3 of Definition S1. Consider the row vectors {&; }1<i<m
of A. It is easy to see that

(BBT)Z‘J‘ = s_2<wi,:cj> (145)

The row vectors of B are by construction contained in the unit sphere, so it is possible to apply
Lemma S11. With probability greater than 1 — Cym exp (—Cant?)

2

(BB"B — B);,||” = Z (@i, m)ay — s La (146)
! 2
m
< Z @i, x)ag || + || (s7 (@i, i) — s )ag | (147)
2
2
Cauchy-SSchwarz ti\”r:g_l ZU“ZQJ' + H(5_3<$i7 wi> _ S_l)ain (148)
=1
I
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For ease of notation let ¢; = s™3(x;, ;) — s~ 1. Now

2
n m t — 1 m
IBB"B =B, < >3 | T | Db+ ey (149)
j=114=1 =1
I#i
2
o [ 2(m t\/ 1| &
= ZZ Zalg + 2|lesaij|| ——=— Z%J Czaij)2
Jj=11i=1 l;éz 1767;
(150)

=t?(m — 1)5*GZZZCL%+2$ 3tv/m ZZHQCL”H

=1 j=1 ll;% j=11:=1
Part 1 Part 2
(151)
+ D (i) (152)
j=1i=1
Part 3
We can easily bound both Part 1 and Part 3 using the definition of s, in particular
m m m m
Part 1 = t*(m 570 Z Z Z aj; < t2(m —1)s~° Z Z 2 =t2m(m —1)%s"1  (153)
=1 1i=1 j=1 =1 1i=1
I#i I#i
Part3—z Za <S2Zc (154)
i=1 j=1

We will bound Part 2 using a rougher estimate, in particular (we do not consider the constants here)

m m n m
z% < (z ucz) S o
l

n m

Part 2 ZZ leiasjl|

j=11i=1 j=11i=1

(fj ||c1||>

NOW m m
Part 2 + Part 3 < 25~ 'tm*v/m — 1 Z lleill + s* Z c? < ¢ef2 (158)
i=1 i=1
for )
-2
t < €4 Zl i 2K, (159)

ds7im?vm =130 [loi
Here we assume necessarily that € > 2s% >~ | ¢?. This assumption relies on ¢;, a matrix dependent

measure of the discrepancy in the magnitude of row vectors. It is equal to zero when each row vector
is normalised. We also want Part 1 < €/2, so we need

t<LéK2 (160)
my/m — 1s2
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Let t < min{ K, K>}, putting everything together
T 2 € €
[BB'B = B[, <5+ =c¢ (161)

Note that the bound K is infinite when c;, the row magnitude discrepancy, is zero for all 4. This was

expected, as Part 2 and Part 3 vanish for ¢; = 0, and Part 1 is bounded by K. ||BTBBT - BTHiJ
can be bounded analogously, since the Frobenius norm is invariant to transposition.

We have that with probability greater than 1 — Cymexp (—Conmin { K7, K3 })

1. |BBTB - B|[% < e

2. |BTBBT - BT|[% <«

Ko
nition S1 with probability greater than 1 — 4, so it is an € — pseudoinverse of B. O

2 2
1 1
Finally for n = Q(max (K> , (> } log(Cym/§)) BT satisfies all the conditions of Defi-
1

If we restrict ourselves to matrices whose row vectors have constant magnitude, the proof becomes
much easier, as Part 2 and Part 3 vanish. This assumption is reasonable when working in very high
dimensional spaces, however, we wanted to provide a point of view that is as general as possible.
Further, we tailored the proof towards a uniform distribution of the rows in a scaled version of B",
such that Lemma S11 can be applied directly. However, the weight matrices in neural networks are
often initialized with a uniform random distribution for each element separately, which results in a
uniform distribution of the rows in a scaled hyper-cube, instead of the unit hyper-ball. We envision
that a variation of Theorem S12 can be made for this case, as the hyper-cube is contained in the unit
ball after multiplying the matrix A with 1/s and the angles between the randomly drawn rows will
have also have a distribution concentrated around 90 degrees (on which Lemma S10 is based).

Conclusion theoretical results. Our theoretical analysis of TP shows that TP for invertible net-
works can best be interpreted as a hybrid method between GN and gradient descent. For non-invertible
networks, we showed that DTP leads to inefficient parameter updates, which can be resolved by
using our new difference reconstruction loss that restores the hybrid method between GN and gra-
dient descent. We highlighted that the GN-part of the hybrid method implicitly operates in an
over-parameterized setting, which leads to minimum-norm parameter and target updates and cannot
be compared to GN in an under-parameterized setting. For linear networks, we proved that GNT
(the idealized version of DTP combined with DRL) is an approximation of GN optimization with a
minibatch size of 1 and that the method converges to the global minimum. For nonlinear networks, we
established the minimum-norm target update interpretation and showed that for strongly contracting
networks, the GNT parameter update aligns in high probability with the loss gradients.

B Further details on experimental results

In this section, we provide further details on the experimental results.

B.1 Details on the used methods

Using softmax and cross-entropy loss in the TP framework. For all our experiments, we used a
softmax output layer combined with the cross-entropy loss. In order to incorporate this in the TP
framework, it is best to combine the softmax and cross-entropy loss into one output loss:

B
eombined _ Z 107 o (softmax(hf)n (162)
b=1

with 1) the one-hot vector representing the class label of training sample b and log the element-wise
logarithmic function. Then the network has a linear output layer h, and the output target is computed
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as

. (b) ®) . O [combined
h, =hy — i (163)
on

The feedback weights are then trained with the difference reconstruction loss, assuming a linear
output layer. For this combined loss, the minimum-norm target update interpretation from section
A.4 holds, as this interpretation is independent from the used loss function. The connection with
GN optimization however is based on an Lo output loss, thus does not hold anymore entirely for
Leombined The Gauss-Newton optimization method can be generalized towards other loss functions
by incorporating the Generalized Gauss-Newton framework (Schraudolph, 2002; Martens, 2016).
In appendix D we show theoretically how the target propagation framework can be adapted to
incorporate this generalized Gauss-Newton framework in the computation of its hidden layer targets.

Algorithms of the methods. Algorithms 1, 2, 3, 4 and 5 provide the training details for DTP,
DTPDRL, DDTP, DDTP-rec and DDTP-control respectively. The DDTP-rec method is explained
in section A.3. For all methods, f; is parameterized as f;(h;—1) = tanh(W;h;_; + b;). We chose
the tanh nonlinearity, as this gave the best experimental results for the target propagation methods,
which was also observed in Lee et al. (2015) and Bartunov et al. (2018). Depending on the method,
different parameterizations for g; are used.

e DTP: g;(hit1) = tanh(Q;hiy1 + ¢;)

DTPDRL: g;(h;}1) = tanh(Q;hi11 + c;)

DDTP-linear: g;(hr) = Q;hy, + ¢;

e DDTP-control: g;(hy) = Q;hy + ¢;

DDTP-RHL: g;(h.) = tanh (Q; tanh(Rh + d) + ¢;)

e DDTP-RHL (rec): g;(hp, h;) = tanh (Qi tanh(Rhy + d) + S;h; + ci)

In the DDTP-RHL variants, R and d are a fixed random matrix and vector, which are shared for all
9i-
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Algorithm 1: DTP training iteration on one minibatch

Propagate minibatch activities forwards:
for i in range(1,L) do
L for b in range(1,B) do

| A = £ (h®)

Compute output loss £ on the current minibatch
Compute output targets:

for b in range(1,B) do

hy =h) 28
— L
Propagate target backwards:
for i in range(L-1,1) do

for b in range(1,B) do

~ (b) - (b)
t h;" =gi(h; )+ hz('b) - gi(hgl)

Train the feedback parameters:

for i in range(1, L-1) do

for b in range(1,B) do

L Generate corrupted activity:

A = h® e, €~ N(0,1)

Compute the local reconstruction loss:
- (b) = (b)
L = 5 3 l9i(fiva(hi ) — Ry Il
| Update the parameters of g; with a gradient descent step on L}
Train the forward parameters:
for i in range(1, L) do
Compute the local loss:

- (b) b
Li=35>, Ik — h’z(' )||§

| Update the parameters of f; with a gradient descent step on £;

i
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Algorithm 2: DTPDRL training iteration on one minibatch

Propagate minibatch activities forwards:
for i in range(1,L) do
L for b in range(1,B) do

| A = 52
Compute output loss £ on the current minibatch
Compute output targets:
for b in range(1,B) do
(6)

(b) Aac
hL =h; W

Propagate target backwards:
for i in range(L-1,1) do
for b in range(1,B) do

b
t h; —gz z+1)+h( ) _gz(hgﬁl)

Train the feedback parameters:

for i in range(1, L-1) do

for b in range(1,B) do
Generate corrupted activity:

ﬁf) h? 4 oe, €~ N(0,1)
Propagate the corrupted activity to the output layer:
for k in range(i+1, L) do
(b) (b)
L hk = f i hk 1)

Propagate the corrupted output activity backwards to reconstruct hi:
hre(,(b) h(b)
L L
for k in range(L-1,i) do
rec(b T b b
LA =) + Y — i)
Compute the difference reconstruction loss:
diff,rec rec(b ~(b)
L; = % Zb ||h¢ec( ) - h; H%
| Update the parameters of g; with a gradient descent step on

£?iff,rec + weight decay

Train the forward parameters:
for i in range(1, L) do
Compute the local loss:
®) 2 (b))2
‘C _BZth _hi ”2
| Update the parameters of f; with a gradient descent step on £;
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Algorithm 3: DDTP training iteration on one minibatch

Propagate minibatch activities forwards:
for i in range(1,L) do
L for b in range(1,B) do

| A = £ (h®)

Compute output loss £ on the current minibatch
Compute output targets:

for b in range(1,B) do

(b)

(b _ 50
hL =hp - h(f)
Propagate target backwards:
for i in range(L-1,1) do
for b in range(1,B) do
7 (b) 2 (b) b b

LR = gihy)) +h” - i)
Train the feedback parameters:
for i in range(1, L-1) do
for b in range(1,B) do
Generate corrupted activity:
A = h® e, e~ N(0,1)
Propagate the corrupted activity to the output layer:
for k in range(i+] L) do

(b)

t hk =fi hk 1)
Propagate the conupted output activity backwards to reconstruct hi:
C?)mpute the dlfference reconstruction loss:

iff,re rec(b (b)
it = 530, W — )3
| Update the parameters of g; w1th a gradient descent step on
Train the forward parameters:
for i in range(1, L) do
Compute the local loss:
» (b) b

i:BZth _h’z(')”% ) )

| Update the parameters of f; with a gradient descent step on £;

L3free 4 weight decay
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Algorithm 4: DDTP (rec) training iteration on one minibatch

Propagate minibatch activities forwards:
for i in range(1,L) do
L for b in range(1,B) do

| A = £ (h®)

Compute output loss £ on the current minibatch
Compute output targets:

for b in range(1,B) do

(b)

(b _ 50
hL =hy - h(f)
Propagate target backwards:
for i in range(L-1,1) do
for b in range(1,B) do
7 (b) 2 (b) b b

L h; " =gi(hy ,h;) +hz(- ) —gi(h(L),hi)
Train the feedback parameters:
for i in range(1, L-1) do
for b in range(1,B) do
Generate corrupted activity:
A = h® e, e~ N(0,1)
Propagate the corrupted activity to the output layer:
for k in range(i+] L) do

(b)

t hk =fi hk 1)
Propagate the conupted output activity backwards to reconstruct hi:
LY = iRy R+ R — g (n) )
Compute the difference reconstruction loss:

iff,re rec(b (b)
it = 530, W — )3
| Update the parameters of g; w1th a gradient descent step on
Train the forward parameters:
for i in range(1, L) do
Compute the local loss:
» (b) b

i:BZth _h’z(')”% ) )

| Update the parameters of f; with a gradient descent step on £;

L3free 4 weight decay
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Algorithm S: DDTP-control training iteration on one minibatch

Propagate minibatch activities forwards:
for i in range(1,L) do
for b in range(1,B) do

L Y = fihi?)

C?)mpute output loss £ on the current minibatch
Compute output targets:
for b in range(1,B) do

(b) b R
hy, =hY - o
Propagate target backwards:
for i in range(L-1,1) do
for b in range(] B) do

| =)+ Y~ gi(n)
Train the feedback parameters:
for i in range(1, L-1) do
for b in range(1,B) do
Generate corrupted activity:

A = foe, e~ N(0,1)
Propagate the corrupted activity to the output layer:
for k in range(i+1, L) do
(b) (b)
| Ry = fih)

Propagate the corrupted output activity backwards to reconstruct h; (without the
difference correction):

b = (b)
| Y = gi(hy))
Compute the reconstruction loss:
=~ (b

£ = 45, B — b3
| Update the parameters of g; with a gradient descent step on L + weight decay
Train the forward parameters:
for i in range(1, L) do
Compute the local loss:

h(b) h(b) 2
L=, 18" - n 3 |
| Update the parameters of f; with a gradient descent step on £;
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CNN implementation. The convolutional blocks consist of a sequence of a convolutional layer, a
tanh activation function and a maxpool layer. For the TP variants, the feedback pathways propagate
a target h; for the activations h; of the maxpool layer. The filter weights of the convolutional layer
are then updated with a gradient step on ||f; — h||2, in line with the above algorithms. For DFA, the
feedback connections randomly project the output error to an error for the maxpool layer, after which
automatic differentiation is used to compute the update for the filter weights.

Training details. For all target propagation variants, we trained both the forward and feedback
parameters on each minibatch. Note that Lee et al. (2015) alternated between training the feedback
weights for one epoch while keeping the forward weights fixed and training the forward weights
for one epoch while keeping the feedback weights fixed. The difference between this alternating
approach and the normal approach of training all parameters was investigated in Bartunov et al.
(2018). As in our methods, the feedback paths should approximate the pseudo inverse of the forward
paths (which is continuously changing), we chose the normal approach. Furthermore, to improve the
training of the feedback paths, we pre-train the feedback parameters for some epochs before the start
of the training and we insert one or more epochs for training only the feedback parameters, between
each epoch of training both forward and feedback parameters:

e MNIST: 6 epochs of pretraining and 1 epoch of pure feedback training between each epoch
of training both forward and feedback parameters

o Fashion-MNIST: 6 epochs of pretraining and 1 epoch of pure feedback training between
each epoch of training both forward and feedback parameters

e MNIST-frozen: 10 epochs of pretraining and 0 epochs of pure feedback training between
each epoch of training both forward and feedback parameters

e CIFAR10: 10 epochs of pretraining and 2 epoch of pure feedback training between each
epoch of training both forward and feedback parameters

e CIFARI10 with CNNs: 10 epochs of pretraining and 1 epoch of pure feedback training
between each epoch of training both forward and feedback parameters

These periods of pure feedback training could be interpreted as a sleeping-phase of the network. For
the DDTP-RHL method, we observed that the feedback parameters needed extra time for training,
as the feedback weights are of much bigger dimension than the forward weights. Therefore, we
investigated the DDTP-RHL methods with extra feedback training (indicated by DDTP-RHL (extra
FB) and DDTP-RHL(rec. and extra FB) in the experiments):

e MNIST: 10 epochs of pretraining and 4 epochs of pure feedback training between each
epoch of training both forward and feedback parameters

e Fashion-MNIST: 10 epochs of pretraining and 4 epochs of pure feedback training between
each epoch of training both forward and feedback parameters

e MNIST-frozen: 10 epochs of pretraining and 4 epochs of pure feedback training between
each epoch of training both forward and feedback parameters

e CIFAR10: 10 epochs of pretraining and 4 epochs of pure feedback training between each
epoch of training both forward and feedback parameters

We use a separate ADAM optimizer (Kingma and Ba, 2014) for training the forward and feedback
parameters respectively.

Architecture details. We use fully connected (FC) layers for all datasets and architectures corre-
sponding to Bartunov et al. (2018).

e MNIST: 5 FC hidden layers of 256 neurons + 1 softmax layer of 10 neurons (+ one random
hidden feedback layer of 1024 neurons for the DDTP-RHL variants)

e Fashion-MNIST: 5 FC hidden layers of 256 neurons + 1 softmax layer of 10 neurons (+ one
random hidden feedback layer of 1024 neurons for the DDTP-RHL variants)

e MNIST-frozen: 5 FC hidden layers of 256 neurons + 1 softmax layer of 10 neurons (+ one
random hidden feedback layer of 1024 neurons for the DDTP-RHL variants)

27



e CIFARI10: 3 FC hidden layers of 1024 neurons + 1 softmax layer of 10 neurons (+ one
random hidden feedback layer of 2048 neurons for the DDTP-RHL variants)

e CIFAR10 with CNN:

— Conv 5x5x32, stride 1 (with tanh nonlinearity)

Maxpool 3x3, stride 2

Conv 5x5x64, stride 1 (with tanh nonlinearity)

Maxpool 3x3, stride 2

FC hidden layer with 512 neurons (with tanh nonlinearity)
Softmax layer of 10 neurons

Numerical errors. We observed that using the standard data type float32 for the tensors in
PyTorch (Paszke et al., 2019) leads to numerical errors when computing the weight updates of the

network. The output target is computed as h;, = h;, — ner,. When the output gradient e;, becomes
very small during training, £1oat32 cannot represent the small addition ne, to the relatively large

output activation hy. Hence, when you compute the target updates Ah; = h; — h;, fjey, is lost and
Ah; = 0. This problem can be resolved by using float64.

Hyperparameters. All hyperparameter searches were done based on the best validation error over
100 epochs, with a validation set of 5000 samples, taken from the training set (60000 training samples
in MNIST and Fashion-MNIST, 50000 training samples in CIFAR10). We used the Tree of Parzen
Estimators algorithm (Bergstra et al., 2011) for performing the hyperparameter search, based on the
Hyperopt (Bergstra et al., 2013) and Ray Tune (Liaw et al., 2018) Python packages. Table S1 summa-
rizes which hyperparameters were used for the various methods. The hyperparameter search intervals
for the various methods are given in Table S2, S3, S4 and S5. Note that we used different search
intervals for 7 and o in for our new methods (DDTP and DTPDRL) compared to the original DTP
methods. Our theory is based on small values for 7) and o, whereas the implementations of DTP in the
literature used relatively big values for 7 and o (Lee et al., 2015; Bartunov et al., 2018). The original
DTP method does not use weight decay on the feedback parameters, hence we did not include it for
this method. For enabling a fair comparison with our methods, we included the possibility of weight
decay on the feedback parameters in DTP-pretrained. The specific hyperparameter configurations for
all methods can be found in our code base.?® In the hyperparameter searches, we treated Ir - ) and 7 as
hyperparameters instead of Ir and 7 separately, as the stepsize of the forward parameter updates AW;
is determined by Ir - ). The value of 7 then decides the trade-off between Ir and 7): the smaller 7), the
better the Taylor approximations in the theory hold and thus the closer the method is related to GN,
however, the implementation is more prone to numerical errors for small 7). For the CNNs, we have a
separate Adam optimizer for each layer to train the forward weights and one shared Adam optimizer
for training all feedback weights. We fix all 8 values to 51 = S, = 0.9 and B2 = B2 1 = 0.999

Table S1: Hyperparameter symbols

Symbol | Hyperparameter
Ir learning rate of the Adam optimizer for the forward parameters
51 (1 parameter of the Adam optimizer for the forward parameters
B2 B2 parameter of the Adam optimizer for the forward parameters
€ € parameter of the Adam optimizer for the forward parameters
Irg, learning rate of the Adam optimizer for the feedback parameters

B0 (1 parameter of the Adam optimizer for the feedback parameters
Ba.b (o parameter of the Adam optimizer for the feedback parameters

€fb € parameter of the Adam optimizer for the feedback parameters

0 output target stepsize

o standard deviation of noise perturbations in the reconstruction loss
wdgp weight decay for the feedback parameters

3PyTorch implementation of all methods is available on github.com/meulemansalex/theoretical_
framework_for_target_propagation
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Table S2: Hyperparameter search intervals for DTPDRL and the DDTP variants

Hyperparameter | ~ Search interval
Ir -7 (1076 : 107
B1 {0.9;0.99;0.999}
B2 {0.9;0.99;0.999}
€ [1078: 1071
Irp, [3-107°:5-1079]
B {0.9;0.99;0.999}
Bato {0.9;0.99;0.999}
€fb [1078 :107%]
i [1072:107Y]
o (1073 : 107
wdgp [1077: 107

Table S3: Hyperparameter search intervals for DTP

Hyperparameter |

Search interval

Ir- 7
B
Ba
€
lrfb

Bt

BZ,fb
€fb

n
o

wdp,

[1076:1071]
{0.9;0.99;0.999}
{0.9;0.99;0.999}

[1078: 107

[3-107°:5-1077]
{0.9;0.99;0.999}
{0.9;0.99;0.999}

[1078: 107
[1072:3-1071]
[1072:3-1071]

0

Table S4: Hyperparameter search intervals for DTP (pre-trained)

Hyperparameter \ Search interval
Ir-7 [1076:107%]
B {0.9;0.99;0.999}
P2 {0.9;0.99;0.999}
€ [1078 : 1074]
Irg, [3-107%:5-1077]
B {0.9;0.99;0.999}
Bao {0.9;0.99;0.999}
€M (1078 : 107
i (1072 :3-1071]
o [1073:3-1071)
wdg, (1077 : 107

Table S5: Hyperparameter search intervals for BP and DFA

Hyperparameter \ Search interval
Ir [10*5 : 10*2]
b1 {0.9;0.99;0.999}

B2
€

{0.9:0.99:0.999}

[1078:1077]
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B.2 Extended experimental results

Here, we provide extra experimental results and figures, complementing the results of the main
manuscript. Table S6 provides extra test performance results and Fig. S4, S5, S6 and S7 give
the alignment angles with the loss gradients and GNT updates for all methods and datasets (with
hyperparemeters tuned for test performance). Tables S8, S9 and S10 provide the training losses for
all experiments.

Table S6: Test errors corresponding to the epoch with the best validation error over a training of 100
epochs. The mean and standard deviation over 10 randomly initialized weight configurations are

given. The best test errors (except BP) are displayed in bold.

MNIST Frozen-MNIST Fashion-MNIST CIFAR10
BP 1.98 £0.14% 4.394+0.13% 10.74+0.16%  45.60 & 0.50%
DDTP-linear 2.04+0.08% 6.42+0.17% 11.11+0.35% 50.36 +0.26%
DDTP-RHL 2.10+0.14% 5.11+0.19% 11.534+0.31% 51.94 + 0.49%
DDTP-RHL 19 | (139  53440.17% 11134+ 0.19% 51.24 + 0.44%
(extra FB) . . 0 . . 0 . . 0 . . 0
DDTP-RHL

(rec. and extra FB) 221+0.10% 5.36+0.18% 11.74+0.34% 52.31 £ 0.44%
DTPDRL 221 £0.09% 6.10+£0.17% 11.224+0.20% 50.80 £+ 0.43%
DDTP-control 2.51+0.08% 9.70+0.31% 11.714+0.28% 51.75+0.43%
DTP 2.39+0.19% 10.64+0.53% 11.494+0.23% 51.74 + 0.30%

DTP (pre-trained) 2.26 +0.18% 9.31 £0.40% 11.524+0.31%  52.20 + 0.50%
DFA 2.174+0.14% / 11.26 +£0.25%  51.28 +0.41%

Extra feedback weight training. Although DDTP-RHL provides the best feedback signals in
the frozen MNIST task, we observed that it needs extra training iterations for its many feedback
parameters to enable decent performance for the more complex tasks. DDTP-RHL (extra FB) uses
a couple of extra epochs of pure feedback parameter training between each epoch of both forward and
feedback parameter training (see Section B.1 for details). On Fashion MNIST, this extra feedback
weight training brings the performance of DDTP-RHL (extra FB) on the same level of DDTP-linear.
On CIFAR10, DDTP-RHL (extra FB) has a significantly better performance compared to DDTP-RHL,
however, it does not perform as good as DDTP-linear. It appears that on CIFAR10, the possibility for
better feedback signals does not outweigh the training challenges caused by the increased complexity
of the feedback connections in DDTP-RHL. Hence, future research should explore inductive biases
and training methods that can improve the feedback parameter training, while harvesting the benefits
of the better feedback signals provided by DDTP-RHL.

Recurrent feedback connections. In Section A.3 we discussed that adding recurrent connections
to the feedback path could improve the alignment of the feedback signals with the ideal GNT updates.
To test this hypothesis, we used the DDTP-RHL (rec.) method (see Section A.3 and Algorithm 4) on
the various datasets and computed the alignment angles with the loss gradients and damped GNT
updates. Similar to DDTP-RHL (extra FB), we used extra training epochs for training the feedback
connections, resulting in DDTP-RHL (rec. and extra FB). Fig. S4 shows that the alignment with
both the loss gradients and the damped GNT methods indeed improved by adding recurrent feedback
connections. However, the performance results in Table S6 and Fig. S5 and S6 indicate that the
training challenges originating from the added complexity outweigh the capacity for better feedback
signals and result in worse performance compared to DDTP-linear. Similar to DDTP-RHL, future
research can explore whether better optimizers and inductive biases can alleviate these training
challenges and improve performance.

Damped Gauss-Newton targets. In our theory, we focussed on undamped GN targets. For practi-
cal reasons of stability, however, it is advised to damp the GN targets, which we did by using weight
decay on the feedback parameters. Condition S3 formalizes these damped GN targets.
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Condition S3 (Damped Gauss-Newton Target method). The network is trained by damped GN
targets: each hidden layer target is computed by
(b)

AR & B = = RTINS M) el (16

with A a Tikhonov damping constant, after which the network parameters of each layer i are updated
by a gradient descent step on its corresponding local mini-batch loss L; =, ||Ahl(-b) |3, while
considering h; fixed.

For computing the alignment angles in Fig. S4, S5 and S6, the weight updates W, should
be compared with the damped GN targets of Condition S3. To find the damping constant
A that best corresponds to the weight updates AW, we computed the alignment angles for
A€ {0,1075,107%,1073,1072,1071,1, 10} and selected the damping value that resulted in the
best alignment. The alignment angles were averaged over one epoch, after two epochs of training
(such that the tanh activation functions are already partially pushed in their nonlinear regime). Table
S7 provides the selected A for all methods on Fashion-MNIST. Our code base contains the specific
damping values used for the other datasets. Interestingly, the DDTP variants and DTPDRL method
align best with GNT updates that are highly damped (A = 1 for all layers except the last hidden
layer), while the weight decay we used on the feedback parameters is in the order of magnitude of
10~* or smaller. Hence, our methods experience implicit damping, on top of the explicit damping
introduced by the weight decay. We hypothesize that this implicit damping originates from the
limited amount of parameters in the feedback paths, that prevent the DRL of being minimized to its
absolute minimum, as discussed in Section A.3. Hence, it is not possible for each batch sample b

that ng) = J](;_))LT (JJ(;))L J](;)LT + A\ ) 71, and the extreme singular values of Jg?i will be damped

first, as they interfere the most with Jg(lz?fb) of other batch samples, resulting in a similar behaviour

as Tikhonov damping. In line with this hypothesis, DDTP-RHL (rec. and extra FB) experiences
less implicit damping (A = 0.1), as it has more feedback parameters. We emphasize that the DDTP
variants and DTPDRL method did not select the highest damping value A = 10, indicating that it
aligns better with damped GNT updates instead of loss gradients, which is confirmed by Fig. S4, S5
and S6.

Table S7: Damping values A for the damped GNT updates according to Condition S3, which are used
to compute the alignment angles on Fashion-MNIST in Fig. S4b.

Layer 1 Layer2 Layer3 Layer4 Layer5

DDTP-linear 1 1 1 1 0
DDTP-RHL 1 1 1 1 0.001
DDTP-RHL

(extra FB) 1 1 1 1 0.001
DDTP-RHL

(rec. and extra FB) 0.1 0.1 0.1 0.1 0.0001

DTPDRL 1 1 1 1 0.01
DDTP-control 10 1 1 10 10
DTP 10 10 10 10 10
DTP (pre-trained) 1 1 1 1 1
DFA 10 1 1 10 1

A need for customized optimizers for TP methods. We used the Adam optimizer (Kingma and
Ba, 2014) for all experiments, because our methods aligned well with the loss gradients, and the
Adam optimizer is tuned for gradient descent. However, our theory and experiments showed that our
DTP variants can best be compared to damped GNT updates. This raises the question whether other
optimizers can be developed, that can make use of the specific characteristics of the TP methods,
such as its minimum-norm property. We hypothesize that with a tailored optimizer, that mitigates the
training challenges originating from the complex interplay of feedforward and feedback parameter
training and that harvests the beneficial minimum-norm characteristics of the TP methods, the current
performance gap with BP can be further closed or even exceeded for some applications.
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Training losses, fully connected networks. In Table S8 we provide the training losses that were
achieved after 100 epochs for the experiments of Table S6. Note that these training losses are different
from those of Table 2, as the hyperparameters are different (here, the hyperparameters are optimized
for validation error, while in Table 2 they are optimized for training loss). Better test errors can result
from finding a minimum of better quality (e.g. lower and/or flatter), implicit regularization (as we did
not use explicit regularization), or a combination of both. Table S8 clearly shows that the improved
test performance of the DRL methods compared to DTP and the controls result from finding lower
minima.

Table S8: Training loss after 100 epochs for the hyperparameter configurations of Table S6 (optimized
for best validation error). The mean and standard deviation over 10 randomly initialized weight
configurations are given. The best training losses (except BP) are displayed in bold.

MNIST Frozen-MNIST Fashion-MNIST CIFAR10
BP 2.62%145.10=3  (.199%0.013 g 99£0.19 19-2 3 .39+0.09. 1095

DDTP-linear 7.51F0-69.10=7  (.355+0.014 3 73+£034 19-2 ] 73+0.02. 194
DDTP-RHL 1.06%006.1076  0.306+0-012  8,08%*061. 1072 757062, 107!

DDTP-RHL 9 93i0.61 . 1077 0 308i0.023 2 81i0.25 A 1072 3 48j:0.27 . 1071
(extra FB) ) ) ) )
DDTP-RHL 9 16i4.26 . 10—4 0 286j:0.011 4 44i0.44 . 10—2 2 84i0‘11 . 10—1
(rec. and extra FB) ) ) ) ’
DTPDRL 8.95+413.10-7  (.350%0-018 393076, 109-2 1 38+007.709-4
DDTP-control ~ 3.60%296.10-3  (.988+0.055  599+0.56 . 19=2  § 58+0-23. 1091
DTP 4.46F4422 1073 1.282%0072 4 712035 . 19-2 5 g7+0.12. 101
DTP (pre-trained)  2.84+0-84.10=6 127540604 9 79+1.66 . 19=2 1 53+0.03 1091
DFA 4.87%357. 1077 / 3.92%0:26.1072  2.44%0-02. 10~

Training losses, CNNs. Table S9 shows the training losses that were achieved after 100 epochs for
the experiments of Table 3. We see that the training loss of DDTP-linear is close to the training loss
of BP, while DFA has a slightly lower loss. As the test performance of DFA is worse compared to BP
and DDTP-linear, lower minima do not seem to lead to better test performance for this dataset and
these methods. Hence, the test performance likely benefits from implicit regularization and/or small
learning rates.

Table S9: Training loss after 100 epochs on CIFAR10 with a small CNN for the hyperparameter
configurations of Table 3 (optimized for best validation error). Mean =+ SD for 10 random seeds. The
best training loss (except BP) is displayed in bold.

BP DDTP-linear DDTP-control DFA
1.15%0-03 . 10-1 1,19+0-14.109-1 2.95+129. 10~ 7.95+0.87. 102

To investigate the optimization capabilities of the various methods, we selected hyperparameters
tuned for minimizing the training loss and provide the results in Table S10. As can be seen, the
training loss of DDTP-linear is an order of magnitude bigger compared to the training losses of DFA
and BP. At first sight, this would suggest that the optimization capabilities of DDTP-linear are worse
compared to DFA. However, we hypothesize that this worse performance can be explained by the
learning rates: DDTP-linear selected learning rates at least an order of magnitude smaller compared
to those of DFA. Most likely, DDTP-linear needs to select these small learning rates to make sure that
the interplay between feedforward and feedback weight training remains stable. The smaller learning
rates combined with the fact that the training loss keeps decreasing (it does not converge) during the
whole training procedure for both DFA and DDTP-linear, can explain why DDTP-linear ends up with
a bigger training loss. Figure S7 shows that the update directions of DDTP-linear are much better
aligned with both the gradients and GNT updates compared to DFA, indicating that DDTP-linear
has more efficient update directions for CNNs than DFA. The observation that DFA still succeeds in
decreasing the training loss sufficiently while having update directions close to 90 degrees relative to
the gradient direction in the convolutional layers (as seen in Figure S7), is remarkable and deserves
further investigation in future work.

36



Table S10: Training loss after 300 epochs on CIFAR10 with a small CNN for a new hyperparameter
configuration optimized for training loss. Mean + SD for 10 random seeds. The best training loss
(except BP) is displayed in bold.

BP DDTP-linear DDTP-control DFA
4.07:i:0.41 .10710 4.31:|:1.03 .10-6 3.71:i:0.71 .10-5 4'94:|:0.55 . 1077

B.3 Experimental details for the toy experiments

Here, we provide the experimental details of the toy experiments in Fig. 2 and Fig. S3.

Synthetic regression dataset. For both toy experiments, we used a synthetic student-teacher
regression dataset. The dataset is generated by randomly initializing a nonlinear teaching network
with 4 hidden layers of each 1000 neurons and an input and output layer matching dimensions of the
student network. Random inputs are then fed through the teacher network to generate input-output
pairs for the training and test set. The teacher network has ReLU activation functions and is initialized
with random Gaussian weights, to ensure that the teacher dataset is nonlinear.

Toy experiment 1. For the null-space component toy experiment of Fig. 2, we took a nonlinear
student network with two hidden layers of 6 neurons, an input layer of 6 neurons and an output layer of
2 neurons. We trained this student network with DTP (pre-trained) and DDTP-linear on the synthetic
dataset and computed the components of AW that lie in the nullspace of 0o 1, (ho)/0AW;. Small
steps in the direction of these null-space components don’t result in a change of output and can thus be
considered useless. Furthermore, these null-space components will likely interfere with the updates
from other minibatches. We used a minibatch size of 1 for this toy experiment, to investigate the
updates resulting from each batch sample separately, without averaging them over a bigger minibatch.
We froze the forward weights of the network (but still computed what their updates would be), to
investigate the forward parameter updates in an ideal regime, where the feedback weights are trained
until convergence on their reconstruction losses, without needing to track changing forward weights.

Toy experiment 2. For the output space toy experiment of Fig. S3, we took a nonlinear student
network with two hidden layers of 4 neurons, an input layer of 4 neurons and an output layer of 2
neurons. We trained this student network with GNT and BP on the synthetic dataset and computed
in which direction the resulting updates push the output activation of the network. To compute
this output space direction, we updated the networks forward parameters with a small learning rate,
computed the output activation before and after this update and normalized the difference vector
between these two output activations to represent the direction in output space.

C Review of the Gauss-Newton method

The Gauss-Newton (GN) algorithm is an iterative optimization method that is used for non-linear
regression problems, defined as follows:

B
1
i S (b)2 1
min L= ;e (165)
e® 2 4O _(b) (166)

with L the regression loss, B the mini-batch size, e(?) the regression residual of the b sample, 3(®)
the model output and [(?) the corresponding label. The one-dimensional output y is a nonlinear
function of the inputs «, parameterized by 3. At the end of this section, the Gauss-Newton method
will be extended for models with multiple outputs. The Gauss-Newton algorithm can be derived in
two different ways: (i) via a linear Taylor expansion around the current parameter values 3 and (ii)
via an approximation of Newton’s method. Here, we discuss the first derivation, as this will give us
the most insights in the inner working of target propagation.

37



C.1 Derivation of the method

The goal of a Gauss-Newton iteration step is to find a parameter update A3 that leads to a lower
regression loss:

B+ . gm) | Ag. (167)

Ideally, we want to minimize the regression loss L with respect to the parameters 3 by finding a local
minimum:

0= g—g —JTe (168)
ga %, (169)

with e a vector containing all the B residuals e(*) and y a vector containing all the outputs. y and e
can be approximated by a first order Taylor expansion around the current parameter values 3 (m),

y(m—H) ~ y(m) + JAB (170)
emtD) — o (m+1) |~ e(m 1 JAB (71)
Now this approximation of e can be filled in equation (168), which results in
oL
Z o Jl(e™ L JAB) =0 172
5 (e™ + JAB) (172)
N JT.]AB = _JTelm) (173)

JT'J can be interpreted as an approximation of the loss Hessian matrix used in Newton’s method and
is often referred to as the Gauss-Newton curvature matrix G. If JT J is invertible, this leads to:

AB=—(JTT) I el (174)
AB =—Jte™), (175)

With JT the Moore-Penrose pseudo inverse of J. Note that if J T J is not invertible, —JTe(™) leads
to the solution A3 with the smallest norm. If .J is square and invertible, the pseudo inverse is equal
to the real inverse, leading to the following expression:

AB=—J tel™, (176)

Note the similarity between the above equations (173)-(176) and linear least squares: the design
matrix X is replaced by the Jacobian J and the residuals and parameter increments are used instead
of the output values and the parameters respectively. To get some intuition of this similarity, figure S8
illustrates a Gauss-Newton iteration for a toy problem with only one parameter /3. In figure S8a, the
current fitted nonlinear function together with the data samples is shown. Figure S8b shows the linear
least squares problem that is solved in equation (173). The residuals e(;) are plotted on the vertical
axis and the horizontal axis represents how sensitive these residuals are to a change of parameter
(which is represented by .J). The parameter update Af is then represented by the slope of the fitted
line through the origin. In more dimensions, the same intuitive interpretation holds, only we have
more "horizontal’ axes (one for each parameter sensitivity) and we fit a hyperplane through the origin
instead of a line.

As mentioned earlier, the Gauss-Newton method can also be interpreted as an approximation to the
Newton method, thereby making Gauss-Newton an approximate second-order optimization method.

C.2 The Gauss-Newton method for multiple-output models

In the previous paragraphs, the Gauss-Newton method was derived for regression models with a
one-dimensional output. This can easily be extended to regression models with multi-dimensional
outputs, such as most feed-forward neural networks. The regression loss is now given by:

B
1
£=5 13 (177)
b=1
e® & b _®) (178)
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(a) (b)

Figure S8: Gauss-Newton optimization step for a toy example. (a) The data points together with the
fitted curve at the current iteration (b) a visualisation of the linear least squares regression problem
that is solved in the Gauss-Newton iteration.

The Jacobian J of the model outputs and samples with respect to the model parameters can be
constructed by concatenating the Jacobians of the model outputs for each sample along the row
dimension. The resulting Jacobian has size Bnouiput X Nparameters-

C.3 Tikhonov damping and the Levenberg-Marquardt method

The linear system (173) can sometimes be poorly conditioned, leading to very large step sizes of the
Gauss-Newton method, which pushes the model outside the region in which the linear model is a
good approximation. The Levenberg-Marquardt (LM) method (Levenberg, 1944; Marquardt, 1963)
mitigates this issue by adding Tikhonov damping to the curvature matrix G' = J7 .J:

(JTT+A)AB=—JTel™, (179)
with A the damping parameter. ) is typically updated during each training iteration by a heuristic
based on trust regions. The added damping prevents the Levenberg-Marquardt method from taking
too large steps and thereby greatly stabilizes the optimization process. Intuitively, the Levenberg-
Marquardt method can be seen as an interpolation between Gauss-Newton optimization and gradient
descent, as for A — 0 the LM method is equal to the GN method, and for A — oo the LM method is
equal to gradient descent with a very small step size.

D Generalized-Gauss-Newton extension of TP

In this section, we discuss how the link between TP and GN optimization can be extended to other
losses than the Lo loss. Note that the minimum-norm interpretation of TP discussed in section 3.4
and A.4 holds for all loss functions, only the link to GN is specific to the Lo loss. We start with a
brief overview of the Generalized Gauss-Newton method (Schraudolph, 2002) and then provide a
theoretical extension to the TP framework to incorporate generalized GN targets. For a more detailed
discussion of generalized Gauss-Newton optimization in neural networks, we recommend the PhD
thesis of Martens (2016).

D.1 The generalized Gauss-Newton method

For understanding the generalized Gauss-Newton method, it is best to derive the GN method via
Newton’s method and then extend it to other loss functions. Newton’s method updates the parameters
in each iteration as follows:

/6(777,4-1) . ﬁ(WL) _ H_lg7 (180)
with H and g the Hessian and gradient respectively of the loss function £ with respect to parameters
B. For an L loss function, the gradient is given by

oL

gé %:JTQL’ (181)
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with J the Jacobian of your model outputs (of all minibatch samples) with respect to the parameters
3 and e, the output errors (equal to the derivative of £ with respect to the model outputs because we
have and L5 loss). Following equation 165, the elements of the Hessian H are given by

B () o,(b) 2,(b)
o Oey’ Oey w) 0%y,
Hijt _Zb:1 ( a8; 0By ‘L aﬁjaﬂk)' (182)

The Gauss-Newton algorithm approximates the Hessian by ignoring the second term in the above
equation, as in many cases, the first term dominates the Hessian. This leads to the following
approximation of the Hessian:

H~G2JtJ (183)

This Gauss-Newton approximation of the Hessian is always a PSD matrix. The update from Newton’s
method with the approximated Hessian gives rise to the Gauss-Newton update:

Bt gm _ g1 Telm = glm) _ il (184)
Schraudolph (2002) showed that a similar approximation of H for any loss function £ leads to
H~G=J"H.J (185)

with Hj, the Hessian of £ w.r.t. the model output. If £ is convex, H;, will be PSD and so will G.
The Generalized Gauss-Newton (GGN) iteration is then given by:

BT (L gm) Gl gTelm) — glm) (T Er 1) T el (186)
When Thikonov damping is added to G, this results in
B g _ (JTH ]+ M) JTel™. (187)

D.2 Propagating generalized Gauss-Newton targets

Following the derivation of GGN in section D.1, GGN targets can be defined by

N & h— (JT Hidp, 4 M) TUIE er (188)

K2

with Hy, the Hessian of L w.rt. by, Jy, | = 0fr(..(fi+1(hi)))/Oh; and e, = (0L£/0h )T . Hence,
in order to propagate GGN targets, the following condition should hold for all minibatch samples b:

(®) _ (70T £7(b) 7(b) =1 ;)T
Jor, = (g, HY'TG + )T (189)
From Theorem 4, we know that the DRL trains the feedback path gy, ; such that
() o (7T 7(b) -1 .0b)T
Jor, = (T3, J5, A M) TR (190)

With a small adjustment to the forward mapping f; 1., we can make sure that H7, is also incorporated

in J (b) . Consider the singular value decomposition (SVD) of Hp.:
H, =U X VE (191)

As Hy, is symmetric and PSD, V;, = Uy, and H, can be written as H;, = K, K*, with K, £ UX%5,
Now let us define f% L as

FE (i) & KT fi.L (k). (192)

When we use f/, in the DRL, this results in:

Lo UzZﬂ E o N 0+ oe). h b0 — (b + oen) 3]

+62Nk]7:4(0 .y [/\”gd]tt( (b) + oeo, hi), h(b)) 2(_b)||%}, (193)
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Via a similar derivation as Theorem 4, it can be shown that the absolute minimum of limg,_,q E;ec’d'“’K

is attained when for each sample it holds that

() _ (O)T 7-(b) 7-(B)T £(b) —1 ()T .-(b)

Jan = (g, Ko KL T 4 M) T3 Ky (194)
— (JOT g7 (d) 7(b) =1 1 (b)T 7-(b)
= (J5,, H T, + A1) T Ky (195)

If now the output target is defined as hy £ h, — nkK Zle L, a first-order Taylor expansion of h;
results in:

hi~h; —0J;, . K;'er. (196)

[

rec,diff, K
L i

We assume that Hy, is PD and hence K7, is invertible. If the absolute minimum of is attained

and hence equation (195) holds, the network propagates approximate GGN targets:

p O O s g OT pr(b) 1(6) =147 ()

hi "~ b =i (T H T + M) T ey (197
Note that K~! = X ~%3UT in which X is a diagonal matrix, hence K~ is straight-forward attained
from the SVD of H;. When L is a sum of element-wise losses on each output neuron such as the
cross-entropy loss and (weighted) Lo loss, Hy, is a diagonal matrix and hence K, = HY-®, which
removes the need for an SVD. When the cross-entropy loss is combined with the softmax output, this
is not the case anymore and an SVD is needed.

In this section, we briefly summarized how the TP framework can be theoretically extended to
propagate GGN targets. Future research can explore whether this GGN extension improves the
performance of the TP variants and whether this GGN extension can be implemented or approximated
in a more biologically plausible manner.

41



