
A Algorithms

A.1 Training the ITE model

In Algorithm 1 we give a detailed overview of how our ITE model (Section 4) is trained. There are two
main blocks: first the organ clusters are trained; then, we train our ITE model using backpropagation.
The GRL allows us to compartmentalise the gradient updates in three distinct updates: one for the
outcome prediction parameters, ✓Y ; one for the treatment classification parameters, ✓c, based on
the organ clusters trained in the first block; and one for the representation parameters, ✓�, where
the previous losses are combined as in (5). Of course, these three distinct updates are equal to one
update over @LITE(✓�,✓Y ,✓p)

@✓�@✓Y @✓p
, instead, but found this to abstract away to much detail at the expense of

understanding. [47]

Input :model parameters, ✓Y , ✓p, ✓�
training data, D = {(xi,oi, yi) : i = 1, ..., N}

amount of organ types, k
learning rate, �

c(O) KMeans(k, {oi : i = 1, .., N} ⇢ D) ; // Training the organ-clusters

for e = 1, ...,max epochs do
for Batch B = {(xj ,oj , yj , c(oj)) : j = 1, ..., |B|} in epoch do

Compute LMSE(✓�, ✓Y ) =
1
|B|

P
j2B

L
j
MSE(✓�, ✓Y ) ; // Output prediction loss

Compute LCE(✓�, ✓p) =
1
|B|

P
j2B

L
j
CE(✓�, ✓p) ; // Treatment classification

loss

✓Y  ✓Y � � @LMSE(✓�,✓Y )
@✓Y

; // Update outcome prediction parameters

✓p  ✓p � � @LCE(✓�,✓p)
@✓p

; // Update classification parameters

✓�  ✓� � �
⇣

@LMSE(✓�,✓Y )
@✓�

� � @LCE(✓�,✓c)
@✓�

⌘
; // Update representation

parameters

end
end

Algorithm 1: Training our ITE model.
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A.2 Organ-to-patient assignment results

We describe how we evaluate the organ-to-patient assignment policies on real data in Algorithm 2.
Should a patient-organ pair be present as-is in the test set, we base the score on the factual outcome,
otherwise we use a counterfactual model to provide an outcome. Furthermore, after every organ
assignment, we check whether the other patients have died while in XQ.

Input :data, D = {(xi,oi, yi) : i = 1, ..., N}

test data, Dtest ⇢ D

counterfactual model, Ŷ
to-evaluate policy, ⇡

for t = 0, 1, ..., |Dtest| do
X

t
Q  X

t�1
Q [ {X

t
} 2 Dtest;

o O
t
2 Dtest;

if o 6= ; then
x ⇡(o);
if (x,o) 2 Dtest then

score score +Dtest(Y |X,O) ; // Patient-organ is in test-set

else
score score + Ŷ (X,O) ; // Patient-organ pair not in test-set

end
end
for all x 2 X

t
Q do

if x died in X
t
Q then

if x did not receive an organ in Dtest then
score score +Dtest(Y |X) ; // Patient-organ is in test-set

else
score score + Ŷ (X) ; // Patient-organ pair not in test-set

end
end

end
end
Algorithm 2: Evaluation of a policy, ⇡. Ŷ is trained using Dtrain, where Dtest [Dtrain = D and
Dtest \Dtrain = ;.

B Benchmarks and ablations: details

B.1 ITE model

We compare our ITE model with ConfidentMatch, and a multitask network which predicts the
outcome per organ-type (based on the organ clusters, c(O)).

ConfidentMatch [10, 28]. ConfidentMatch is an ensemble prediction method where the trainingdata
is divided in partitions and a predictor method is fitted on every partition. Given an hypothesis space
(i.e., prediction methods of a certain VC-dimension), and a maximum partition count, ConfidentMatch
optimises a prediction loss over different compositions of the partitions and combinations of predictors
from the hypothesis space.

We set the maximum partition count to the number of organ-clusters we used when comparing to our
ITE model. For example, when we fit our KMeans cluster with k = 15, we restrict ConfidentMatch’s
partition count to 15. Furthermore, we set the hypothesis space to a RandomForestRegressor,
support vector machine for regression (SVR), and a multi-layered perceptrion (MLP) [63].

Multi-task network. Given the organ-clusters, c(O), we train a multi-task network to predict
outcomes for every organ-cluster. Specifically, we employ a hard-parameter sharing methodology
for our mutli-task network. As we have only one factual outcome for every patient, we set the
counterfactuals (i.e. the other organ-clusters) to the prediction when computing the loss. As such,
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Figure 5: Networks used in the ablation study.

the loss for the counterfactuals remains 0, such that the gradient update is only based on the factual
outcome.

B.2 Ablation study networks

As we have in Figure 3, we illustrate the architectures for the ablation studies of our ITE model in
Figure 5.

B.3 Organ-to-patient assignment policy benchmarks
Best match (BM) – ⇡BM(XQ,O) := argmax

X2XQ

�
Y O

|X
 

A common organ-to-patient assignment policy, selecting whomever is associated with high-
est life expectancy, given the available organ. We use the same policy for ConfidentMatch,
but let Ŷ be estimated as in Yoon et al. [10].

First in first out (FIFO) – ⇡FIFO(XQ,O) := argmin
X2XQ

{sX}

FIFO is a naive scheduling algorithm that simply selects the oldest addition to the queue,
based on sX representing the time of entry, whenever an organ becomes available.

Sickest person first (SPF) – ⇡SPF(XQ,O) := argmin
X2XQ

{Y ;
|X}

Like FIFO, we relate SPF to common queueing strategies, where SPF relates to a prioritised
queue. While a measure of sickness is not directly observable, we can approximate it with
a patient’s estimated life expectancy, Ŷ ;. That is, a patient with lower life expectancy is
considered sicker than a patient with higher life expectancy.

Incremental survival (IS) – ⇡IS(XQ,O) := argmax
X2XQ

{Y O
� Y ;

|X}

Currently employed as policy in the UK, is an estimate of incremental survival rates for an
individual patient [9]. In effect, this is a first step towards a counterfactual based approach,
though it should be noted that in Neuberger et al. [9], assignment bias was not balanced
from the dataset.
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C Additional results

C.1 Organ-to-patient assignment

We present a detailed breakdown of the results for our organ-to-patient assignment policy. Specifically,
we report: (i) the premature deaths in XQ and XM— where any death in XQ and any death before 5
years in XM is considered premature; and (ii) the average time alive in XQ and XM— where patients
in XM are not considered for the average time alive in XQ.

While these results are informative on the performance of all policies, they require careful attention.
For example, a high life expectancy in XQ is not necessarily a good property of a policy, as this
means that potentially healthier patients are dying before they receive a transplant-organ. Similarly
for deathrates in XQ, where a low deathrate in XQ could indicate a waste of tranplant-organs as the
policy might prefer sicker patients, with lower life expectancy in XM .

As mentioned in our related works (Section 2), deciding the objective brings forth an ethical discussion
and should be done with great care. By reporting these details, we offer argumentation for clinicians
interested in implementing a policy for scarce medical resources. While OrganITE is clearly the
best policy when optimising the total population life years (as was our objective, cfr. Section 3),
some situations might favor SPF as it allows sicker patients to be treated first. An example of such a
situation could be pain relief, where patients suffering the most are aided first.

Table 4: Organ-to-patient evaluation on synthetic data over 10 different folds. Lower is better above
the dotted line, and higher is better below the dotted line.

Using our ITE model FIFO SPF BM IS CM OrganITE

Population life years 83509 92153 104889 111228 110129 112359
Deaths in XQ 0.2646 0.2309 0.2357 0.2067 0.2038 0.1926
Deaths before 5 years in XM 0.1683 0.1869 0.1702 0.1593 0.1891 0.1472
Avg. days alive in XQ 32.49 32.38 32.81 32.65 33.12 37.19
Avg. years alive in XM 4.347 4.138 5.088 5.057 5.165 5.905
Using TransplantBenefit

Population life years n.a. 71953 86664 81813 n.a. 106392
Deaths in XQ n.a. 0.1587 0.2179 0.3201 n.a. 0.3346
Deaths before 5 years in XM n.a. 0.3201 0.3152 0.3048 n.a. 0.3055
Avg. days alive in XQ n.a. 24.46 11.55 20.52 n.a. 31.50
Avg. years alive in XM n.a. 4.222 5.181 4.572 n.a. 5.785

Results on synthetic data. In Table 4 we report a detailed breakdown of the results presented in the
upper part of Table 3 in our main text. From this we learn that OrganITE’s performance is better
across all reported metrics when using our ITE model. However, when using TransplantBenefit we
notice weaker performance in death rates, especially in XQ. This small performance drop is made up
for by a significant increase in expected life years after transplantation.

Results on real data. We argue that OrganITE’s performance is a result of balancing the various
aspects taken into account in organ-to-patient assignment (cfr. Section 4.1). Leveraging this balance
results in less deaths and high life expectancy, making OrganITE such a successful assignment-policy.

This balance is visible in Table 5, where we find OrganITE to excel in life expectancy post-
transplantation, while maintaining decent performance in the other performance indicators. For
example, notice how OrganITE is best in life expectancy post-transplantion across all counterfactual
models, while performing: best or second best in premature deaths in XM ; never worst in death rates
for XQ (even second best for TB as the counterfactual model); and never worst in life expectancy in
XQ (third using TB as the counterfactual model).

Furthermore, notice how SPF has higher life expectancy and lower death rates in XQ, while perform-
ing very poorly in total population life years. SPF’s performance is due to the aforementioned greedy
approach to selecting the sickest patients in the waiting queue, XQ.
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Table 5: Organ-to-patient evaluation on real data over 10 different folds. Lower is better above the
dotted line, and higher is better below the dotted line.

Nearest neighbor counterfactual FIFO SPF BM IS OrganITE

Population life years 94062 83198 100249 102303 108217
Deaths in XQ 0.4414 0.4055 0.4209 0.4236 0.4233
Deaths before 5 years in XM 0.2196 0.2422 0.2093 0.1972 0.1787
Avg. days alive in XQ 28.78 28.96 27.83 28.12 28.15
Avg. years alive in XM 3.805 3.363 4.057 4.138 4.378
ITE model counterfactual

Population life years 95646 84757 92948 105866 107623
Deaths in XQ 0.4294 0.4081 0.4189 0.4245 0.4257
Deaths before 5 years in XM 0.1995 0.2455 0.1996 0.1794 0.1806
Avg. days alive in XQ 28.70 28.96 28.33 28.13 28.05
Avg. years alive in XM 3.875 3.436 3.765 4.282 4.349
TB counterfactual

Population life years 89979 83347 99259 101585 102773
Deaths in XQ 0.4294 0.4041 0.4277 0.4167 0.4113
Deaths before 5 years in XM 0.2195 0.2653 0.2296 0.1994 0.1906
Avg. days alive in XQ 27.21 28.83 22.34 25.48 26.77
Avg. years alive in XM 3.676 3.348 4.008 4.109 4.153

Figure 6: Policy performance indicators in function of temperature, ⌧ , as in (7). From left to right:
Deaths in XQ, Deaths in XM , Days alive in XQ, and Years alive in XM . For deaths, lower is better;
for time alive, higher is better.

C.2 Density importance

Adjusting the density p(O) in the synthetic experiment (Table 4) allows us to report on how important
this density is to OrganITE and other organ-assignment policies, in terms of the performance metrics
presented above. From Figure 4 we learn that OrganITE’s expected total population life years seems
much less affected by more extreme organ-densities, when compared to the other organ-to-patient
assignment policies. Here, we report the same breakdown of our result as we have above, providing a
more detailed argument for the organ-to-patient assignment policies.

What is a more extreme density? First, we clarify that by introducing a temperature parameter, we
make some organs more rare than other organs. Specifically, because the weights, w, in (7) sum to
one (

P
w = 1 making 0  wi  18wi), and every component of w is divided by ⌧ 2 (0, 1], we

make some organ clusters less likely or more likely. As such, leaving patients in need of otherwise
more frequent organs (as they are present in D), now less likely to receive a suitable organ.

Why is this important? Having more patients in need of rare organs, requires a policy to explicitly
handle these deficits in a way that gives higher priority to these patients, at the cost of potentially
multiple better matches with the available organ. From this experiment it is clear that using an
estimate of p(O) allows OrganITE to make more informed decisions on how to distribute organs in
such an extreme condition.
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Results. Consider Figure 6 where we breakdown the result presented in Figure 4 as we did for the
results above. From this breakdown we notice that OrganITE’s performance does drop when the
conditions get more severe, however, they remain much more stable when compared to the other
policies.

Another observation we make is how FIFO seems largely unaffected in XQ. We argue this is due to
FIFO being a queue based policy, effectively assigning organs to patients without any estimate of Ŷ .
Naturally, FIFO is triumphed in performance by all estimation based policies, i.e., IS, BM, SPF, and
OrganITE; though this might explain why FIFO is performing slightly better in Figure 4 given low
⌧ . Furthermore we notice that IS’ performance is fairly close to OrganITE’s performance when ⌧
increases, suggesting the density might matter less when the organ-density converges to a uniform
density. We reason as such, as IS resembles OrganITE most closely as it too uses an ITE estimation
rather than mere prediction.

D Hyperparameters

Table 6: Hyperparameters ITE model and ablations
Padded network Two models Siamese network

Layers • �:(32, 16, 16)
• c:(16, 16, k)
• Y :(16, 16, 1)

• �;:(16, 16, 16)
• �O:(32, 16, 16)
• c:(16, 16, k)
• Y ;:(16, 16, 1)
• Y O:(16, 16, 1)

• �:(16 and 32,
16, 16)

• c:(16, 16, k)
• Y ;:(16, 16, 1)

Activation ReLU ReLU ReLU
Learning rate 0.0004 ;: 0.0001; O:0.0004 0.0004

� 0.25 0.25 0.25
max-epochs 60 60 60

batch-size 100 100 100

Table 7: Hyperparameters multitask network
Layers activation learning rate max-epochs batch-size

(32, 16, 16, 16, 16, k) ReLU 0.0004 60 100

Table 8: Hyperparameters OrganITE
a b ↵1 ↵2 KDE bandwith KDE kernel

1 1 1 1 1 Gaussian
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E Data

Table 9: Features used in real data experiments.
Recipient Organ Cause of death

Name Mean (std.) Name Mean (std.) Cause Proportion

Height 168.6 (17.6) BMI 25.8 (4.95) Intracranial
haemorrhage

57.4%

Gender 37.3% male Gender 53.3% male Hypoxic brain
damage - all
causes

13.8%

Haemoglobin 11.5 (3.8) Cause of
death

see right Other trauma -
accident

3.4%

White blood
cells

5.6 (3.8) Age 46.8 (15.99) Intracranial -
type unclassi-
fied (CVA)

3.3%

Platelets 123.5 (90.5)

Donor type

84.7% brain
dead

Unspecified 3.1%

Serum urea 6.3 (5.6) 13.7% circula-
tory death

Trauma RTA -
car

2.9%

Serum creati-
nine

84.9 (43.7) 1.13% living Intracranial
thrombosis

2.1%

Serum albu-
min

31.9 (6.7) 0.39%
domino

Trauma RTA -
pedestrian

1.8%

INR 1.4 (0.5) Living donor 1.4%
Serum biliru-
bin

87.0 (119.0) Meningitis 1.4 %

Serum sodium 136.2 (4.8) Brain tumour 1.4%
Serum potas-
sium

4.2 (0.53) Trauma RTA -
motorbike

1.1%

PO2 12.5 (3.44) Under 1% not reported.
AFP level 26.0 (286.37)
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