
4 Proofs of positive results: universality of deep learning

4.1 Emulation of arbitrary algorithms

Any algorithm that learns a function from samples must repeatedly get a new sample and then change
some of the values in its memory in a way that is determined by the current values in its memory
and the value of the sample. Eventually, it must also attempt to compute the function’s output based
on its input and the values in memory. If the learning algorithm is efficient, then there must be a
polynomial-sized circuit that computes the values in the algorithm’s memory in the next timestep
from the sample it was given and its memory values in the current timestep. Likewise, there must be
a polynomial-sized circuit that computes its guesses of the function’s output from the function’s input
and the values in its memory.

Any polynomial-sized circuit can be translated into a neural net of polynomial size. Normally,
stochastic gradient descent would tend to alter the weights of edges in that net, which might cause it
to stop performing the calculations that we want. However, we can prevent its edge weights from
changing by using an activation function that is constant in some areas, and ensuring that the nodes
in the translated circuit always get inputs in that range. That way, the derivatives of their activation
levels with respect to the weights of any of the edges leading to them are 0, so backpropagation will
never change the edge weights in the net. That leaves the issue of giving the net some memory that it
can read and write. A neural net’s memory takes the form of its edge weights. Normally, we would
not be able to precisely control how stochastic gradient descent would alter these weights. However,
it is possible to design the net in such a way that if certain vertices output certain values, then every
path to the output through a designated edge will pass through a vertex that has a total input in one of
the flat parts of the activation function. So, if those vertices are set that way the derivative of the loss
function with respect to the edge weight in question will be 0, and the weight will not change. That
would allow us to control whether or not the edge weight changes, which gives us a way of setting
the values in memory. As such, we can create a neural net that carries out this algorithm when it is
trained by means of stochastic gradient descent with appropriate samples and learning rate. This net
will contain the following components:

1. The output vertex. This is the output vertex of the net, and the net will be designed in such a
way that it always has a value of ±1.

2. The input bits. These will include the regular input vertices for the function in question.
However, there will also be a couple of extra input bits that are to be set randomly in
each timestep. They will provide a source of randomness that is necessary for the net to
run randomized algorithms11, in addition to some other guesswork that will turn out to be
necessary (see more on this below).

3. The memory component. For each bit of memory that the original algorithm uses, the net
will have a vertex with an edge from the constant vertex that will be set to either a positive
or negative value depending on whether that bit is currently set to 0 or 1. Each such vertex
will also have an edge leading to another vertex which is connected to the output vertex by
two paths. The middle vertex in each of these paths will also have an edge from a control
vertex. If the control vertex has a value of 2, then that vertex’s activation will be 0, which
will result in all subsequent vertices on that path outputting 0, and none of the edge weights
on that path changing as a result of backpropagation along that path. On the other hand, if
the control vertex has a value of 0, then that vertex will have a nonzero activation, and so
will all subsequent vertices on that path. The learning rate will be chosen so that in this case,
if the net gives the wrong output, the weight of every edge on this path will be multiplied by
−1. This will allow the computation component to set values in memory using the control
vertices. (See definition 6 and lemma 2 for details on the memory component.)

4. The computation component. This component will have edges leading to it from the inputs
and from the memory component. It will use the inputs and the values in memory to compute
what the net should output and what to set the memory bits to at the end of the current
timestep if the net’s output is wrong. There will be edges leading from the appropriate
vertices in this component to the control vertices in the memory component in order to set

11Two random bits will always be sufficient because the algorithm can spend as many timesteps as it needs
copying random bits into memory and ignoring the rest of its input.
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<latexit sha1_base64="auaCP08tcZpJswTaIulG3PkSIGk=">AAAB+XicbVC7SgNBFL3rM8bXqqXNYBCswm4stAzaWEYwD0iWMDuZJEPmsczMBpYlf2JjoYitf2Ln3zhJttDEAwOHc+7h3jlxwpmxQfDtbWxube/slvbK+weHR8f+yWnLqFQT2iSKK92JsaGcSdq0zHLaSTTFIua0HU/u5357SrVhSj7ZLKGRwCPJhoxg66S+7wsqlM4QUSJRkkrb9ytBNVgArZOwIBUo0Oj7X72BIqlwWcKxMd0wSGyUY20Z4XRW7qWGJphM8Ih2HZVYUBPli8tn6NIpAzRU2j1p0UL9ncixMCYTsZsU2I7NqjcX//O6qR3eRjmTSWqpJMtFw5Qjq9C8BjRgmhLLM0cw0czdisgYa0ysK6vsSghXv7xOWrVqeF2tPdYq9buijhKcwwVcQQg3UIcHaEATCEzhGV7hzcu9F+/d+1iObnhF5gz+wPv8AfBwk9k=</latexit>
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<latexit sha1_base64="K8kN+6lhhPvd1R1i+9tOLPNxjWM=">AAAB7XicbVDLSgMxFL3js9ZX1aWbYBFclZm60GXRjcsK9gHtUDJp2sZmkiG5I5Sh/+DGhSJu/R93/o1pOwttPRA4nHMvuedEiRQWff/bW1vf2NzaLuwUd/f2Dw5LR8dNq1PDeINpqU07opZLoXgDBUreTgyncSR5KxrfzvzWEzdWaPWAk4SHMR0qMRCMopOaOsUkxV6p7Ff8OcgqCXJShhz1Xumr29csjblCJqm1ncBPMMyoQcEknxa7qeUJZWM65B1HFY25DbP5tVNy7pQ+GWjjnkIyV39vZDS2dhJHbjKmOLLL3kz8z+ukOLgOM6FcIq7Y4qNBKglqMotO+sJwhnLiCGVGuFsJG1FDGbqCiq6EYDnyKmlWK8FlpXpfLddu8joKcApncAEBXEEN7qAODWDwCM/wCm+e9l68d+9jMbrm5Tsn8Afe5w8Ezo9p</latexit>

2
<latexit sha1_base64="2E7c16pDE7cfLGXFZ+jYuNo5Q3g=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8EgWIXdWGgjBm0sEzAXSJYwOzmbjJm9MDMrhCVPYGOhiK0+jL2N+DZOLoVGfxj4+P9zmHOOnwiutON8Wbml5ZXVtfy6vbG5tb1T2N1rqDiVDOssFrFs+VSh4BHWNdcCW4lEGvoCm/7wapI371AqHkc3epSgF9J+xAPOqDZWrdwtFJ2SMxX5C+4cihfv9nny9mlXu4WPTi9maYiRZoIq1XadRHsZlZozgWO7kypMKBvSPrYNRjRE5WXTQcfkyDg9EsTSvEiTqfuzI6OhUqPQN5Uh1QO1mE3M/7J2qoMzL+NRkmqM2OyjIBVEx2SyNelxiUyLkQHKJDezEjagkjJtbmObI7iLK/+FRrnknpTKNadYuYSZ8nAAh3AMLpxCBa6hCnVggHAPj/Bk3VoP1rP1MivNWfOeffgl6/Ub3PaP9w==</latexit>

�2
<latexit sha1_base64="PZrFhh2AD+1kf7UC9Bn/B+r7gn4=">AAAB6XicbVC7TgMxENwLryS8ApQ0FhESDdFdKKCMoKEMiDxEcop8ji+xYvtOtg8RnfIHNBQgoOUD+Bc6vgacRwEJI600mtnV7k4Qc6aN6345maXlldW1bC6/vrG5tV3Y2a3rKFGE1kjEI9UMsKacSVozzHDajBXFIuC0EQwuxn7jjirNInljhjH1Be5JFjKCjZWuj8udQtEtuROgReLNSLGSi19vP+6/q53CZ7sbkURQaQjHWrc8NzZ+ipVhhNNRvp1oGmMywD3aslRiQbWfTi4doUOrdFEYKVvSoIn6eyLFQuuhCGynwKav572x+J/XSkx45qdMxomhkkwXhQlHJkLjt1GXKUoMH1qCiWL2VkT6WGFibDh5G4I3//IiqZdL3kmpfGXTOIcpsrAPB3AEHpxCBS6hCjUgEMIDPMGzM3AenRfnbdqacWYze/AHzvsPBfaQvw==</latexit>

2
<latexit sha1_base64="2E7c16pDE7cfLGXFZ+jYuNo5Q3g=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8EgWIXdWGgjBm0sEzAXSJYwOzmbjJm9MDMrhCVPYGOhiK0+jL2N+DZOLoVGfxj4+P9zmHOOnwiutON8Wbml5ZXVtfy6vbG5tb1T2N1rqDiVDOssFrFs+VSh4BHWNdcCW4lEGvoCm/7wapI371AqHkc3epSgF9J+xAPOqDZWrdwtFJ2SMxX5C+4cihfv9nny9mlXu4WPTi9maYiRZoIq1XadRHsZlZozgWO7kypMKBvSPrYNRjRE5WXTQcfkyDg9EsTSvEiTqfuzI6OhUqPQN5Uh1QO1mE3M/7J2qoMzL+NRkmqM2OyjIBVEx2SyNelxiUyLkQHKJDezEjagkjJtbmObI7iLK/+FRrnknpTKNadYuYSZ8nAAh3AMLpxCBa6hCnVggHAPj/Bk3VoP1rP1MivNWfOeffgl6/Ub3PaP9w==</latexit>

2
<latexit sha1_base64="2E7c16pDE7cfLGXFZ+jYuNo5Q3g=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8EgWIXdWGgjBm0sEzAXSJYwOzmbjJm9MDMrhCVPYGOhiK0+jL2N+DZOLoVGfxj4+P9zmHOOnwiutON8Wbml5ZXVtfy6vbG5tb1T2N1rqDiVDOssFrFs+VSh4BHWNdcCW4lEGvoCm/7wapI371AqHkc3epSgF9J+xAPOqDZWrdwtFJ2SMxX5C+4cihfv9nny9mlXu4WPTi9maYiRZoIq1XadRHsZlZozgWO7kypMKBvSPrYNRjRE5WXTQcfkyDg9EsTSvEiTqfuzI6OhUqPQN5Uh1QO1mE3M/7J2qoMzL+NRkmqM2OyjIBVEx2SyNelxiUyLkQHKJDezEjagkjJtbmObI7iLK/+FRrnknpTKNadYuYSZ8nAAh3AMLpxCBa6hCnVggHAPj/Bk3VoP1rP1MivNWfOeffgl6/Ub3PaP9w==</latexit>

xn
<latexit sha1_base64="jq0Y1uAFps75259e6BAX8U9P6Ac=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgWcLsZDYZMjO7zMyKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3Dxo6ShShdRLxSLUCrClnktYNM5y2YkWxCDhtBsOrid+8o0qzSN6aUUx9gfuShYxgY6Wb+67s5gtu0Z0CLRNvTgrlo9o3e698VLv5z04vIomg0hCOtW57bmz8FCvDCKfjXCfRNMZkiPu0banEgmo/nZ46RqdW6aEwUrakQVP190SKhdYjEdhOgc1AL3oT8T+vnZjw0k+ZjBNDJZktChOOTIQmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6gDNdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YDSBqRfg==</latexit>

...<latexit sha1_base64="7t24ksjV8fObpViH8enJRBZbKaQ=">AAAB7XicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZAmzs5NkzOzMMjMbCEvewcZCERsLH8XeRnwbJ5dCE38Y+Pj/c5hzTphwpo3nfTtLyyura+u5DXdza3tnN7+3X9MyVYRWieRSNUKsKWeCVg0znDYSRXEccloP+9fjvD6gSjMp7swwoUGMu4J1GMHGWrXWIJJGt/MFr+hNhBbBn0Hh8sO9SN6+3Eo7/9mKJEljKgzhWOum7yUmyLAyjHA6cluppgkmfdylTYsCx1QH2WTaETq2ToQ6UtknDJq4vzsyHGs9jENbGWPT0/PZ2Pwva6amcx5kTCSpoYJMP+qkHBmJxqujiClKDB9awEQxOysiPawwMfZArj2CP7/yItRKRf+0WLr1CuUrmCoHh3AEJ+DDGZThBipQBQL38ABP8OxI59F5cV6npUvOrOcA/sh5/wEsU5KD</latexit>

...<latexit sha1_base64="7t24ksjV8fObpViH8enJRBZbKaQ=">AAAB7XicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZAmzs5NkzOzMMjMbCEvewcZCERsLH8XeRnwbJ5dCE38Y+Pj/c5hzTphwpo3nfTtLyyura+u5DXdza3tnN7+3X9MyVYRWieRSNUKsKWeCVg0znDYSRXEccloP+9fjvD6gSjMp7swwoUGMu4J1GMHGWrXWIJJGt/MFr+hNhBbBn0Hh8sO9SN6+3Eo7/9mKJEljKgzhWOum7yUmyLAyjHA6cluppgkmfdylTYsCx1QH2WTaETq2ToQ6UtknDJq4vzsyHGs9jENbGWPT0/PZ2Pwva6amcx5kTCSpoYJMP+qkHBmJxqujiClKDB9awEQxOysiPawwMfZArj2CP7/yItRKRf+0WLr1CuUrmCoHh3AEJ+DDGZThBipQBQL38ABP8OxI59F5cV6npUvOrOcA/sh5/wEsU5KD</latexit>

v001<latexit sha1_base64="jTGucd0R+BtIxGBU0ZbkRJ9KDpk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBapp5JUQY8FLx4rmFpoQ9lsJ+3SzSbsbgol9Dd48aCIV3+QN/+N24+Dtj4YeLw3w8y8MBVcG9f9dgobm1vbO8Xd0t7+weFR+fikpZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBT+HobuY/jVFpnshHM0kxiOlA8ogzaqzkj3tetdorV9yaOwdZJ96SVGCJZq/81e0nLItRGiao1h3PTU2QU2U4EzgtdTONKWUjOsCOpZLGqIN8fuyUXFilT6JE2ZKGzNXfEzmNtZ7Eoe2MqRnqVW8m/ud1MhPdBjmXaWZQssWiKBPEJGT2OelzhcyIiSWUKW5vJWxIFWXG5lOyIXirL6+TVr3mXdXqD9eVRmMZRxHO4BwuwYMbaMA9NMEHBhye4RXeHOm8OO/Ox6K14CxnTuEPnM8fy5WOAg==</latexit>

1
<latexit sha1_base64="lmmzmfZ/LUbAFZRsVWP1EJi8i0g=">AAAB6HicbZC7SgNBFIbPxluMt3jpbBaDYBV2Y6GdAQstEzAXSJYwOzmbjJmdXWZmhbjkCWwsFLH1AXwKn8DO0jdxcik08YeBj/8/hznn+DFnSjvOl5VZWl5ZXcuu5zY2t7Z38rt7dRUlkmKNRjySTZ8o5ExgTTPNsRlLJKHPseEPLsd54w6lYpG40cMYvZD0BAsYJdpYVbeTLzhFZyJ7EdwZFC4+7r+v3g/SSif/2e5GNAlRaMqJUi3XibWXEqkZ5TjKtROFMaED0sOWQUFCVF46GXRkHxunaweRNE9oe+L+7khJqNQw9E1lSHRfzWdj87+slejg3EuZiBONgk4/ChJu68geb213mUSq+dAAoZKZWW3aJ5JQbW6TM0dw51dehHqp6J4WS1WnUC7DVFk4hCM4ARfOoAzXUIEaUEB4gCd4tm6tR+vFep2WZqxZzz78kfX2A7TikJU=</latexit>

memory
<latexit sha1_base64="Ji85Mp88q3Tnt1DQN1jTdOiV7wU=">AAAB+nicbVC7TsMwFHXKq4RXCiOLRYXEVCVlgLESC2OR6ENqo8pxnNaqH5HtgKLQT2FhACFWvoSNv8FtM0DLka50dM699r0nShnVxve/ncrG5tb2TnXX3ds/ODzyasddLTOFSQdLJlU/QpowKkjHUMNIP1UE8YiRXjS9mfu9B6I0leLe5CkJORoLmlCMjJVGXm0oJBUxEcblhEuVw5FX9xv+AnCdBCWpgxLtkfc1jCXOuH0DM6T1IPBTExZIGYoZmbnDTJMU4Skak4GlAnGiw2Kx+gyeWyWGiVS2hIEL9fdEgbjWOY9sJ0dmole9ufifN8hMch0WVKSZIQIvP0oyBo2E8xxgTBXBhuWWIKyo3RXiCVIIG5uWa0MIVk9eJ91mI7hsNO+a9VarjKMKTsEZuAABuAItcAvaoAMweATP4BW8OU/Oi/PufCxbK045cwL+wPn8AQTzk9M=</latexit>

read
<latexit sha1_base64="gXx0AA9+5GphPc32Ao/Vci7NBFQ=">AAAB63icbVDLSgMxFL3xWeur6tJNsAiuykxd6LLgxmUF+4B2KJlMpg1NMkOSEcrQX3DjQhG3/pA7/8ZMOwttPRA4nHMuufeEqeDGet432tjc2t7ZrexV9w8Oj45rJ6ddk2Sasg5NRKL7ITFMcMU6llvB+qlmRIaC9cLpXeH3npg2PFGPdpayQJKx4jGnxBaSi0ajWt1reAvgdeKXpA4l2qPa1zBKaCaZslQQYwa+l9ogJ9pyKti8OswMSwmdkjEbOKqIZCbIF7vO8aVTIhwn2j1l8UL9PZETacxMhi4piZ2YVa8Q//MGmY1vg5yrNLNM0eVHcSawTXBxOI64ZtSKmSOEau52xXRCNKHW1VN1JfirJ6+TbrPhXzeaD816q1XWUYFzuIAr8OEGWnAPbegAhQk8wyu8IYle0Dv6WEY3UDlzBn+APn8AEj2OPg==</latexit> write

<latexit sha1_base64="oNJ9ndJpByYunMN/Ou94XJuZx6g=">AAAB7HicbVBNT8JAFNziF+IX6tHLRmLiibR40COJF4+YWCCBhmyXV9iw3Ta7rxrS8Bu8eNAYr/4gb/4bF+hBwUk2mcy8l7czYSqFQdf9dkobm1vbO+Xdyt7+weFR9fikbZJMc/B5IhPdDZkBKRT4KFBCN9XA4lBCJ5zczv3OI2gjEvWA0xSCmI2UiARnaCX/SQuEQbXm1t0F6DrxClIjBVqD6ld/mPAsBoVcMmN6nptikDONgkuYVfqZgZTxCRtBz1LFYjBBvvjsjF5YZUijRNunkC7U3xs5i42ZxqGdjBmOzao3F//zehlGN0EuVJohKL48FGWSYkLnyelQaOAop5YwbnMLTvmYacbR9lOxJXirkddJu1H3ruqN+0at2SzqKJMzck4uiUeuSZPckRbxCSeCPJNX8uYo58V5dz6WoyWn2Dklf+B8/gAR6Y7X</latexit>

memory
<latexit sha1_base64="Ji85Mp88q3Tnt1DQN1jTdOiV7wU=">AAAB+nicbVC7TsMwFHXKq4RXCiOLRYXEVCVlgLESC2OR6ENqo8pxnNaqH5HtgKLQT2FhACFWvoSNv8FtM0DLka50dM699r0nShnVxve/ncrG5tb2TnXX3ds/ODzyasddLTOFSQdLJlU/QpowKkjHUMNIP1UE8YiRXjS9mfu9B6I0leLe5CkJORoLmlCMjJVGXm0oJBUxEcblhEuVw5FX9xv+AnCdBCWpgxLtkfc1jCXOuH0DM6T1IPBTExZIGYoZmbnDTJMU4Skak4GlAnGiw2Kx+gyeWyWGiVS2hIEL9fdEgbjWOY9sJ0dmole9ufifN8hMch0WVKSZIQIvP0oyBo2E8xxgTBXBhuWWIKyo3RXiCVIIG5uWa0MIVk9eJ91mI7hsNO+a9VarjKMKTsEZuAABuAItcAvaoAMweATP4BW8OU/Oi/PufCxbK045cwL+wPn8AQTzk9M=</latexit>

2/s0
<latexit sha1_base64="huO1tcKjvM50kRScb1DkXMUSaAQ=">AAAB/nicbVDLSsNAFL3x1VpfUXHlZrCIrmpSEV0W3LhswT6gDWUyndihk0mYmQglBPwVNy4Ucet3uPMHxM9wmnahrQcGDufc1xw/5kxpx/m0lpZXVtcKxfXSxubW9o69u9dSUSIJbZKIR7LjY0U5E7Spmea0E0uKQ5/Ttj+6nvjteyoVi8StHsfUC/GdYAEjWBupbx+kvXxIanQqNM6qZ+ok69tlp+LkQIvEnZFyDTW+v4qFi3rf/ugNIpKEZgThWKmu68TaS7HUjHCalXqJojEmI7Oka6jAIVVemm/O0LFRBiiIpHlCo1z93ZHiUKlx6JvKEOuhmvcm4n9eN9HBlZcyESeaCjJdFCQc6QhNskADJinRfGwIJpKZWxEZYomJNomVTAju/JcXSatacc8r1YZJowZTFOEQjuAUXLiEGtxAHZpAIIVHeIYX68F6sl6tt2npkjXr2Yc/sN5/ACGNmIE=</latexit>

computation component
<latexit sha1_base64="5tCxzzpjEK5snm0jg3Azlx55Gt4=">AAAB/nicbVDLSgMxFL1TX7W+RsWVm2ARXJWZutBl0Y3LCvYB7VAyadqGZpIhyQhlKPgrblwo4tbvcOffmJnOQlsPBE7OvYd77wljzrTxvG+ntLa+sblV3q7s7O7tH7iHR20tE0Voi0guVTfEmnImaMsww2k3VhRHIaedcHqb1TuPVGkmxYOZxTSI8FiwESPYWGngnhAZxYnJfyjjUlBhBm7Vq3k50CrxC1KFAs2B+9UfSpJE1ks41rrne7EJUqwMI5zOK/1E0xiTKR7TnqUCR1QHab7+HJ1bZYhGUtknDMrV344UR1rPotB2RthM9HItE/+r9RIzug5SJuyBVJDFoFHCkZEoywINmaLE8JklmChmd0VkghUmxiZWsSH4yyevkna95l/W6vf1auOmiKMMp3AGF+DDFTTgDprQAgIpPMMrvDlPzovz7nwsWktO4TmGP3A+fwD/5ZYl</latexit>

s
<latexit sha1_base64="iYXiE/5cZc3fOJ02ATjpHe6H7SU=">AAAB9XicbVC7TsMwFL0pr1Je5bGxWFRITFVSBtioxABjkehDakPlOE5r1XEi2wGVKP/BwgBCjPATfAEbI3+C+xig5UhXOjrnXl/f48WcKW3bX1ZuYXFpeSW/Wlhb39jcKm7vNFSUSELrJOKRbHlYUc4ErWumOW3FkuLQ47TpDc5HfvOWSsUica2HMXVD3BMsYARrI92knfETqaR+prJusWSX7THQPHGmpHT2cf998baX1rrFz44fkSSkQhOOlWo7dqzdFEvNCKdZoZMoGmMywD3aNlTgkCo3Ha/M0KFRfBRE0pTQaKz+nkhxqNQw9ExniHVfzXoj8T+vnejg1E2ZiBNNBZksChKOdIRGESCfSUo0HxqCiWTmr4j0scREm6AKJgRn9uR50qiUneNy5couVaswQR724QCOwIETqMIl1KAOBCQ8wBM8W3fWo/VivU5ac9Z0Zhf+wHr/AbAolv8=</latexit>

�s
<latexit sha1_base64="1mcpBiIh3ctEi7e4d9SIEkH/RjM=">AAAB+HicbVBNS8NAEJ1UW2v9aNSjl2ARvFiSetBjwYvHCvYD2lA2m027dLMJuxuhhlz9E3rwoIjgyZ/izR/i3W3ag7Y+GHi8N7Oz87yYUals+8sorK0XSxvlzcrW9s5u1dzb78goEZi0ccQi0fOQJIxy0lZUMdKLBUGhx0jXm1zO/O4tEZJG/EZNY+KGaMRpQDFSWhqa1XSQP5IK4menMhuaNbtu57BWibMgtWbp8Zu/3xdbQ/Nz4Ec4CQlXmCEp+44dKzdFQlHMSFYZJJLECE/QiPQ15Sgk0k3znZl1rBXfCiKhiysrV39PpCiUchp6ujNEaiyXvZn4n9dPVHDhppTHiSIczxcFCbNUZM1SsHwqCFZsqgnCguq/WniMBMJKZ1XRITjLJ6+STqPunNUb1zqNJsxRhkM4ghNw4ByacAUtaAOGBB7gGV6MO+PJeDXe5q0FYzFzAH9gfPwADDOXAQ==</latexit>

p
3s

<latexit sha1_base64="/ItCbVfKzUb5eh5pgr++UZeMGbk=">AAAB/3icbVC7TsMwFHV4tuUVQGJhsaiQmKqkHUBiqWBhLBJ9SE1UOY7TWnWcYDtIVcjAxlcwsDCAECs/wdCNv8FNO0DLka50dM69vr7HixmVyrK+jaXlldW19UKxtLG5tb1j7u61ZJQITJo4YpHoeEgSRjlpKqoY6cSCoNBjpO0NLyd++44ISSN+o0YxcUPU5zSgGCkt9cyD1MkfSQXxM0feCpXWMpn1zLJVsXLARWLPSLlefBo/fsXnjZ45dvwIJyHhCjMkZde2YuWmSCiKGclKTiJJjPAQ9UlXU45CIt00X53BY634MIiELq5grv6eSFEo5Sj0dGeI1EDOexPxP6+bqODMTSmPE0U4ni4KEgZVBCdhQJ8KghUbaYKwoPqvEA+QQFjpyEo6BHv+5EXSqlbsWqV6rdO4AFMUwCE4AifABqegDq5AAzQBBvfgGbyCN+PBeDHejY9p65Ixm9kHf2B8/gBce5qr</latexit>

3
p

3s
<latexit sha1_base64="NcdvUyyIIGuk59iFbI0WQA9EDAQ=">AAACAHicbVC7TsMwFHXKqy2vAAMDi0WFxFQl7QASSwULY5HoQ2qiynGc1qrjBNtBqqIsTHwFCwsDCLHyEQzd+BvctAO0HOlKR+fc6+t7vJhRqSzr2yisrK6tbxRL5c2t7Z1dc2+/LaNEYNLCEYtE10OSMMpJS1HFSDcWBIUeIx1vdDX1O/dESBrxWzWOiRuiAacBxUhpqW8epk7+SCqIn9UdeSdUWs9k1jcrVtXKAZeJPSeVRulp8vgVXzT75sTxI5yEhCvMkJQ924qVmyKhKGYkKzuJJDHCIzQgPU05Col003x3Bk+04sMgErq4grn6eyJFoZTj0NOdIVJDuehNxf+8XqKCczelPE4U4Xi2KEgYVBGcpgF9KghWbKwJwoLqv0I8RAJhpTMr6xDsxZOXSbtWtevV2o1O4xLMUARH4BicAhucgQa4Bk3QAhhk4Bm8gjfjwXgx3o2PWWvBmM8cgD8wPn8A1hua6A==</latexit>

9
p

3s
<latexit sha1_base64="xVwUhki2nWA3Ke0uVuMZKURZQ5g=">AAACAHicbVC7TsMwFHV4tuUVYGBgsaiQmKqkHQCxVLAwFok+pCaqHMdprTpOsB2kKsrCxFewsDCAECsfwdCNv8FNO0DLka50dM69vr7HixmVyrK+jaXlldW19UKxtLG5tb1j7u61ZJQITJo4YpHoeEgSRjlpKqoY6cSCoNBjpO0NryZ++54ISSN+q0YxcUPU5zSgGCkt9cyD1MkfSQXxs3NH3gmV1jKZ9cyyVbFywEViz0i5XnwaP37FF42eOXb8CCch4QozJGXXtmLlpkgoihnJSk4iSYzwEPVJV1OOQiLdNN+dwWOt+DCIhC6uYK7+nkhRKOUo9HRniNRAznsT8T+vm6jgzE0pjxNFOJ4uChIGVQQnaUCfCoIVG2mCsKD6rxAPkEBY6cxKOgR7/uRF0qpW7FqleqPTuARTFMAhOAInwAanoA6uQQM0AQYZeAav4M14MF6Md+Nj2rpkzGb2wR8Ynz/fb5ru</latexit>

9s
<latexit sha1_base64="ZYW+9bpArxuyt7CZwmaYrGApMH8=">AAAB+HicbVDLSsNAFL2prxofjbp0EyyCq5LUhboQi25cVrAPaEOZTCbt0MkkzEyEGvolbgQVcetPuHcj/o3TtAttPXDhcM69c+ceP2FUKsf5NgpLyyura8V1c2Nza7tk7ew2ZZwKTBo4ZrFo+0gSRjlpKKoYaSeCoMhnpOUPryZ+644ISWN+q0YJ8SLU5zSkGCkt9axS1s0fyQQJxmdy3LPKTsXJYS8Sd0bKFx/mefL0ZdZ71mc3iHEaEa4wQ1J2XCdRXoaEopiRsdlNJUkQHqI+6WjKUUSkl+U7x/ahVgI7jIUuruxc/T2RoUjKUeTrzgipgZz3JuJ/XidV4amXUZ6kinA8XRSmzFaxPUnBDqggWLGRJggLqv9q4wESCCudlalDcOdPXiTNasU9rlRvnHLtEqYowj4cwBG4cAI1uIY6NABDCg/wDC/GvfFovBpv09aCMZvZgz8w3n8Az3mW1A==</latexit>
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Figure 2: The emulation net. The parameters are s = 364
√

2−2433−1641/2/m′, where m′ =

max(m, d2−2433−1641/2(18
√

3)364e), s′ = (18
√

3s)3 and m is the total number of bits required to
perform the computation from the computation component. In this illustration, we considered only
two copies of the Ms from Definition 6; one copy is highlighted in red. The magenta dashed edges
are the memory read edges and the blue dashed edges are the memory write edges. The latter allow
to change the controller vertices vc, v′c that act on Ms to edit the memory. Random bit inputs are
omitted in this figure, and the information flows from left to right in all edges.

the bits to the values it has computed. If the net’s output is right, the derivative of the loss
function with respect to any edge weight will be 0, so the entire net will not change. This
component will be constructed in such a way that the derivative of the loss function with
respect to the weights of its edges will always be 0. As a result, none of the edge weights in
the computation component will ever change, as explained in lemma 1. This component
will also decide whether or not the net has learned enough about the function in question
based on the values in memory. If it thinks that it still needs to learn, then it will have the
net output a random value and attempt to set the values in memory to whatever they should
be set to if that guess is wrong. If it thinks that it has learned enough, then it will try to get
the output right and leave the values in memory unchanged.

See Figure 2 for a representation of the overall net. One complication that this approach encounters
is that if the net outputs the correct value, then the derivative of the loss function with respect to any
edge weight is 0, so the net cannot learn from that sample.12 Our approach to dealing with that is to
have a learning phase where we guess the output randomly and then have the net output the opposite
of our guess. That way, if the guess is right the net learns from that sample, and if it is wrong it
stays unchanged. Each guess is right with probability 1/2 regardless of the sample, so the probability
distribution of the samples it is actually learning from is the same as the probability distribution of
the samples overall, and it only needs (2 + o(1)) times as many samples as the original algorithm
in order to learn the function. Once it thinks it has learned enough, such as after learning from a

12This holds for any loss function that has a minimum when the output is correct, not just the L2 loss function
that we are using. We could avoid this by having the net output ±1/2 instead of ±1. However, if we did that
then the change in each edge weight if the net got the right output would be −1/3 of the change in that edge
weight if it got the wrong output, which would be likely to result in an edge weight that we did not want in at
least one of those cases. There are ways to deal with that, but they do not seem clearly preferable to the current
approach.
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designated number of samples, it can switch to attempting to compute the function it has learned on
each new input.

Example 1. We now give an illustration of how previous components would run and interact for
learning parities. One can learn an unknown parity function by collecting samples until one has a set
that spans the space of possible inputs, at which point one can compute the function by expressing any
new input as a linear combination of those inputs and returning the corresponding linear combination
of their outputs. As such, if we wanted to design a neural net to learn a parity function this way, the
memory component would have n(n+ 1) bits designated for remembering samples, and log2(n+ 1)
bits to keep a count of the samples it had already memorized. Whenever it received a new input
x, the computation component would get the value of x from the input nodes and the samples it
had previously memorized, (x1, y1), ..., (xr, yr), from the memory component. Then it would check
whether or not x could be expressed as a linear combination of x1, ..., xr. If it could be, then the
computation component would compute the corresponding linear combination of y1, ..., yr and have
the net return it. Otherwise, the computation component would take a random value that it got from
one of the extra input nodes, y′. Then, it would attempt to have the memory component add (x, y′) to
its list of memorized samples and have the net return NOT (y′). That way, if the correct output was
y′, then the net would return the wrong value and the edge weights would update in a way that added
the sample to the net’s memory. If the correct output was NOT (y′), then the net would return the
right value, and none of the edge weights would change. As a result, it would need about 2n samples
before it succeeded at memorizing a list that spanned the space of all possible inputs, at which point
it would return the correct outputs for any subsequent inputs. Note that the depth of the emulation
net is at least 7 in general due to the memory component, and here for parities, it can be done with
depth O(log n) as the computation component can be implemented with this depth.13

Before we can prove anything about how our net learns, we will need to establish some properties of
our activation function. Throughout this section, we will use an activation function f : R→ R such
that f(x) = 2 for all x > 3/2, f(x) = −2 for all x < −3/2, and f(x) = x3 for all −1 < x < 1.
There is a way to define f on [−3/2,−1] ∪ [1, 3/2] such that f is smooth and nondecreasing. The
details of how this is done will not affect any of our arguments, so we pick some assignment of values
to f on these intervals with these properties. This activation function has the important property that
its derivative is 0 everywhere outside of [−3/2, 3/2]. As a result, if we use SGD to train a neural
net using this activation function, then in any given time step, the weights of the edges leading to
any vertex that had a total input that is not in [−3/2, 3/2] will not change. This allows us to create
sections of the net that perform a desired computation without ever changing. In particular, it will
allow us to construct the net’s computation component in such a way that it will perform the necessary
computations without ever getting altered by SGD. More formally, we have the following.

Lemma 1 (Backpropagation-proofed circuit emulation). Let h : {0, 1}m → {0, 1}m′ be a function
that can be computed by a circuit made of AND, OR, and NOT gates with a total of b gates. Also,
consider a neural net with m input14 vertices v′1, ..., v

′
m, and a collection of chosen real numbers

y
(0)
1 < y

(1)
1 , y

(0)
2 < y

(1)
2 , ..., y

(0)
m < y

(1)
m . It is possible to add a set of at most b new vertices to the

net, including output vertices v′′1 , ..., v
′′
m′ , along with edges leading to them such that for any possible

addition of edges leading from the new vertices to old vertices, if the net is trained by SGD and the
output of v′i is either y(0)i or y(1)i for every i in every timestep, then the following hold:

1. None of the weights of the edges leading to the new vertices ever change, and no paths
through the new vertices contribute to the derivative of the loss function with respect to
edges leading to the v′i.

2. In any given time step, if the output of v′i encodes xi with y(0)i and y(1)i representing 0 and 1
respectively for each i15, then the output of v′′j encodes hj(x1, ..., xm) for each j with −2
and 2 encoding 0 and 1 respectively.

13Unless one uses more than two fan-in in the computation nodes, which can reduce the depth.
14Note that these will not be the input of the general neural net that is being built, but all the input entering the

computation component besides from the constant vertex.
15It would be convenient if v′1, ..., v′m all used the same encoding. However, the computation component will

need to get inputs from the net’s input vertices and from the memory component. The input vertices encode 0
and 1 as ±1, while the memory component encodes them as ±s′ for some small s′. Therefore, it is necessary to
be able to handle inputs that use different encodings.
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Proof. In order to do this, add one new vertex for each gate in a circuit that computes h. When the
new vertices are used to compute h, we want each vertex to output 2 if the corresponding gate outputs
a 1 and −2 if the corresponding gate outputs a 0. In order to make one new vertex compute the NOT
of another new vertex, it suffices to have an edge of weight −1 to the vertex computing the NOT
and no other edges to that vertex. We can compute an AND of two new vertices by having a vertex
with two edges of weight 1 from these vertices and an edge of weight −2 from the constant vertex.
Similarly, we can compute an OR of two new vertices by having a vertex with two edges of weight 1
from these vertices and an edge of weight 2 from the constant vertex. For vertices corresponding to
gates that act directly on the inputs, we have the complication that their vertices do not necessarily
encode 0 and 1 as ±2, but we can compensate for that by changing the weights of the edges from
these vertices, and the edges to these gates from the constant vertices appropriately.

This ensures that if the outputs of the v′i encode binary values x1, ..., xm appropriately, then each of
the new vertices will output the value corresponding to the output of the appropriate gate. So, these
vertices compute h(x1, ..., xm) correctly. Furthermore, since the input to each of these vertices is
outside of [−3/2, 3/2], the derivatives of their activation functions with respect to their inputs are all
0. As such, none of the weights of the edges leading to them ever change, and paths through them do
not contribute to changes in the weights of edges leading to the v′i.

Note that any efficient learning algorithm will have a polynomial number of bits of memory. In each
time step, it might compute an output from its memory and sample input, and it will compute which
memory values it should change based on its memory, sample input, and sample output. All of these
computations must be performable in polynomial time, so there is a polynomial sized circuit that
performs them. Therefore, by the lemma it is possible to add a polynomial sized component to any
neural net that performs these calculations, and as long as the inputs to this component always take
on values corresponding to 0 or 1, backpropagation will never alter the weights of the edges in this
component. That leaves the issue of how the neural net can encode and update memory bits. Our
plan for this is to add in a vertex for each memory bit that has an edge with a weight encoding the bit
leading to it from a constant bit and no other edges leading to it. We will also add in paths from these
vertices to the output that are designed to allow us to control how backpropagation alters the weights
of the edges leading to the memory vertices. More precisely, we define the following.

Definition 6. For any positive real number s, let Ms be the weighted directed graph with 12 vertices,
v0, v1, v2, v3, v4, v5, vc, v′3, v′4, v′5, v′c, and v6 and the following edges:

1. An edge of weight 33−t/2s from vt−1 to vt for each 0 < t ≤ 6

2. An edge of weight 3
√

3s from v2 to v′3

3. An edge of weight 33−t/2s from v′t−1 to v′t for each 3 < t < 6

4. An edge of weight −s from v′5 to v6

5. An edge of weight −226 · 391s40 from vc to v4.

6. An edge of weight −226 · 391s40 from v′c to v′4.

We refer to Figure 2 to visualize Ms. The idea is that this structure can be used to remember one bit,
which is encoded in the current weight of the edge from v0 to v1. A weight of 9

√
3s encodes a 0 and

a weight of −9
√

3s encodes a 1. In order to set the value of this bit, we will use vc and v′c, which
will be controlled by the computation component. If we want to keep the bit the same, then we will
have them both output 2, in which case v4 and v′4 will both output 0, with the result that the derivative
of the loss function with respect to any of the edge weights in this structure will be 0. However, if
we want to change the value of this bit, we will have one of vc and v′c output 0. That will result in a
nonzero output from v4 or v′4, which will lead to the net’s output having a nonzero derivative with
respect to some of the edge weights in this structure. Then, if the net gives the wrong output, the
weights of some of the edges in the structure will be multiplied by −1, including the weight of the
edge from v0 to v1. Unfortunately, if the net gives the right output then the derivative of the loss
function with respect to any edge weight will be 0, which means that any attempt to change a value
in memory on that timestep will fail.

More formally, we have the following.
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Lemma 2 (Editing memory when the net gives the wrong output). Let 0 < s < 1/18
√

3, γ =
2−244 ·3−1643/2s−362, and L(x) = x2 for all x. Also, let (f,G) be a neural net such that G contains
Ms as a subgraph with v6 as G’s output vertex, and there are no edges from vertices outside this
subgraph to vertices in the subgraph other than v0, vc, and v′c. Now, assume that this neural net is
trained using SGD with learning rate γ and loss function L for t time steps, and the following hold:

1. The sample output is always ±1.

2. The net gives an output of ±1 in every time step.

3. v0 outputs 2 in every time step.

4. vc and v′c each output 0 or 2 in every time step.

5. v′c outputs 2 in every time step when the net outputs 1 and vc outputs 2 in every time step
when the net outputs −1.

6. The derivatives of the loss function with respect to the weights of all edges leaving this
subgraph are always 0.

Then during the training process, the weight of the edge from v0 to v1 is multiplied by −1 during
every time step when the net gives the wrong output and vc and v′c do not both output 2, and its weight
stays the same during all other time steps.

Proof. More precisely, we claim that the weight of the edge from vc to v4 and the weight of the edge
from v′c to v′4 never change, and that all of the other edges in Ms only ever change by switching signs.
Also, we claim that at the end of any time step, either all of the edges on the path from v0 to v2 have
their original weights, or all of them have weights equal to the negatives of their original weights.
Furthermore, we claim that the same holds for the edges on each path from v2 to v6.

In order to prove this, we induct on the number of time steps. It obviously holds after 0 time steps.
Now, assume that it holds after t′ − 1 time steps, and consider time step t′. If the net gave the correct
output, then the derivative of the loss function with respect to the output is 0, so none of the weights
change.

Now, consider the case where the net outputs 1 and the correct output is −1. By assumption, v′c
outputs 2 in this time step, so v′4 gets an input of 227 · 391s40 from v′3 and an input of −227 · 391s40
from v′c. So, both its output and the derivative of its output with respect to its input are 0. That
means that the same holds for v5, which means that none of the edge weights on this path from
v2 to v6 change this time step, and nothing backpropagates through this path. If vc also outputs
2, then v4 and v5 output 0 for the same reason, and none of the edge weights in this copy of Ms

change. On the other hand, if vc outputs 0, then the output vertex gets an input of 2243 · 31641/2s364
from v5. The derivative of this input with respect to the weight of the edge from vi−1 to vi is
2243 · 31641/2s364 · [36−i/(33−i/2s)] if these weights are positive, and the negative of that if they
are negative. Furthermore, the derivative of the loss function with respect to the input to the output
vertex is 12. So, the algorithm reduces the weights of all the edges on the path from v0 to v6 that
goes through v4 exactly enough to change them to the negatives of their former values. Also, since vc
output 0, the weight of the edge from vc to v4 had no effect on anything this time step, so it stays
unchanged.

The case where the net outputs −1 and the correct output is 1 is analogous, with the modification that
the output vertex gets an input of −2243 · 31641/2s364 from v′5 if v′c outputs 0 and the edges on the
path from v0 to v6 that goes through v′4 are the ones that change signs. So, by induction, the claimed
properties hold at the end of every time step. Furthermore, this argument shows that the sign of the
edge from v0 to v1 changes in exactly the time steps where the net outputs the wrong value and vc
and v′c do not both output 2.

So, Ms satisifes some but not all of the properties we would like a memory component to have. We
can read the bit it is storing, and we can control which time steps it might change in by controlling
the inputs to vc and v′c. However, for it to work we need the output of the overall net to be ±1 in
every time step, and each such memory component will input±2243 · 31641/2s364 to the output vertex
every time we try to flip it. More problematically, the values these components are storing can only
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change when the net gets the output wrong. We can deal with the first issue by choosing parameters
such that 2243 · 31641/2s364 is the inverse of an integer that is at least as large as the number of bits
that we want to remember, and then adding some extraneous memory components that we can flip in
order to ensure that exactly 1/2243 · 31641/2s364 memory components get flipped in each time step.
We cannot change the fact that the net will not learn from samples where it got the output right, but
we can use this to emulate any efficient learning algorithm that only updates when it gets something
wrong. More formally, we have the following.

Lemma 3. For each n, let mn be polynomial in n, and hn : {0, 1}n+mn → {0, 1} and gn :
{0, 1}n+mn → {0, 1}mn be functions that can be computed in polynomial time. Then there exists
a neural net (Gn, f) of polynomial size and γ > 0 such that the following holds. Let T > 0 and
(xt, yt) ∈ {0, 1}n · {0, 1} for each 0 < t ≤ T . Then, let b0 = (0, ..., 0), and for each 0 < t ≤ T ,
let y?t = hn(xt, bt−1) and let bt equal bt−1 if y?t = yt and gn(xt, bt−1) otherwise. Then if we use
stochastic gradient descent to train (Gn, f) on the samples (2xt − 1, 2yt − 1) with a learning rate
of γ, the net outputs 1 in every time step where y?t = 1 and −1 in every time step where y?t = 0.

Proof. First, let m′ = max(m, d2−2433−1641/2(18
√

3)364e), and s = 364
√

2−2433−1641/2/m′.
Then, set γ = 2−244 · 3−1643/2s−362.

We construct Gn as follows. First, we take m + m′ copies of Ms, merge all of the copies of v6
to make an output vertex, and merge all of the copies of v0. Then we add in n input vertices
and a constant vertex and add an edge of weight 2 from the constant vertex to v0. Next, define
r : {0, 1}n+m → {0, 1}1+2m+2m′ such that given x ∈ {0, 1}n and b ∈ {0, 1}m, r(x, b) lists
hn(x, b) and one half the values of the vc and v′c necessary to change the values stored by the first
m memory units in the net from b to gn(x, b) and then flip the next m′ − |{i : bi 6= (gn(x, b))i}|
provided the net outputs 2hn(x, b)−1. Then, add a section to the net that computes r on the input bits
and the bits stored in the first m memory units, and connect each copy of vc or v′c to the appropriate
output by an edge of weight 1/2 and the constant bit by an edge of weight 1.

In order to show that this works, first observe that since hn and gn can be computed efficiently, so can
r. So, there exists a polynomial sized subnet that computes it correctly by lemma 1. That lemma also
shows that this section of the net will never change as long as all of the inputs and all of the memory
bits encode 0 or 1 in every time step. Similarly, in every time step v0 will have an input of 2 and all
of the copies of vc and v′c will have inputs of 0 or 2. So, the derivatives of their outputs with respect
to their inputs will be 0, which means that the weights of the edges leading to them will never change.
That means that the only edges that could change in weight are those in the memory components.
In each time step, m′ memory components each contribute (2hn(xt, bt−1) − 1)/m′ to the output
vertex, so it takes on a value of (2hn(xt, bt−1)− 1), assuming that the memory components were
storing bt−1 like they were supposed to. As such, the net outputs y?t , the memory bits stay the same
if y?t = yt, and the first m memory bits get changed to gn(xt, bt−1) otherwise with some irrelevant
changes to the rest. Therefore, by induction on the time step, this net performs correctly on all time
steps.

Remark 9. With the construction in this proof, m′ will always be at least 1079, which ensures that
this net will be impractically large. This is a result of the fact that the only edges going to the output
vertex are those contained in the memory component, and the paths in the memory component take a
small activation and repeatedly cube it. If we had chosen an activation function that raises its input
to the 11

9 when its absolute value was less than 1 instead of cubing it, the minimum possible value of
m′ would have been on the order of 1000.

In other words, we can train a neural net with SGD in order to duplicate any efficient algorithm that
takes n bits as input, gives 1 bit as output, and only updates its memory when its output fails to match
some designated “correct" output. The only part of that that is a problem is the restriction that it can
not update its memory in steps when it gets the output right. As a result, the probability distribution of
the samples that the net actually learns from could be different from the true probability distribution
of the samples. We do not know how an algorithm that we are emulating will behave if we draw
its samples from a different probability distribution, so this could cause problems. Our solution to
that will be to have a training phase where the net gives random outputs so that it will learn from
each sample with probability 1/2, and then switch to attempting to compute the actual correct output
rather than learning. That allows us to prove the following (re-statement of Theorem 1).

18



Theorem 4. For each n > 0, let PX be a probability measure on {0, 1}n, and PF be a probability
measure on the set of functions from {0, 1}n to {0, 1}. Also, let B1/2 be the uniform distribution on
{0, 1}. Next, define αn such that there is some algorithm that takes a polynomial number of samples
(xi, F (xi)) where the xi are independently drawn from PX and F ∼ PF , runs in polynomial time,
and learns (PF , PX ) with accuracy α. Then there exists γn > 0, a polynomial-sized neural net
(Gn, f), and a polynomial Tn such that using stochastic gradient descent with learning rate γn and
loss function L(x) = x2 to train (Gn, f) on Tn samples ((2xi − 1, 2ri − 1, 2r′i − 1), F (xi)) where
(xi, ri, r

′
i) ∼ PX ×B2

1/2 learns (PF , PX ) with accuracy α− o(1).

Proof. We can assume that the algorithm counts the samples it has received, learns from the desig-
nated number, and then stops learning if it receives additional samples. The fact that the algorithm
learns in polynomial time also means that it can only update a polynomial number of locations in
memory, so it only needs a polynomial number of bits of memory, mn. Also, its learning process can
be divided into steps which each query at most one new sample (xi, F (xi)) and one new random bit.
So, there must be an efficiently computable function A such that if b is the value of the algorithm’s
memory at the start of a step, and it receives (xi, yi) as its sample (if any) and ri as its random bit (if
any), then it ends the step with its memory set to A(b, xi, yi, ri).

Now, define A′ : {0, 1}mn+n+3 → {0, 1}mn such that

A′(b, x, y, r, r′) =

{
b if y = r′

A(b, x, y, r) if y 6= r′

Next, let b0 be the initial state of the algorithm’s memory, and consider setting bi =
A′(bi−1, xi, F (xi), ri, r

′
i) for each i > 0. We know that r′i is equally likely to be 0 or 1 and

independent of all other components, so bi is equal to A(bi−1, xi, F (xi), ri) with probability 1/2 and
bi−1 otherwise. Furthermore, the probability distribution of (bi−1, xi, F (xi), ri) is independent of
whether or not yi = r′i. Also, if we set b′ = b0 and then repeatedly replace b′ with A(b′, x, F (x), r),
then there is some polynomial number of times we need to do that before b′ stops changing because
the algorithm has enough samples and is no longer learning. So, with probability 1− o(1), the value
of bi will stabilize by the time it has received n times that many samples. Furthermore, the probability
distribution of the value bi stabilizes at is exactly the same as the probability distribution of the value
the algorithm’s memory stabilizes at because the probability distribution of tuples (bi−1, xi, F (xi))
that actually result in changes to bi is exactly the same as the overall probability distribution of
(bi−1, xi, F (xi)). So, given the final value of bi, one can efficiently compute F with an expected
accuracy of at least α.

Now, let A(b, x) be the value the algorithm outputs when trying to compute F (x) if its memory has a
value of b after training. Then, define A′′ such that

A′′(b, x, r, r′) =

{
A(b, x) if b is a memory state resulting from training on enough samples
r′ otherwise.

By the previous lemma, there exists a polynomial sized neural net (Gn, f) and γn > 0 such that if
we use SGD to train (Gn, f) on ((2xi − 1, 2ri − 1, 2r′i − 1), F (xi)) with a learning rate of γn then
the net outputs 2A′′(bi−1, xi, ri, r′i) − 1 for all i. By the previous analysis, that means that after a
polynomial number of steps, the net will compute F with an expected accuracy of α− o(1).

Remark 10. This net uses two random bits because it needs one in order to randomly choose
outputs during the learning phase and another to supply randomness in order to emulate randomized
algorithms. If we let m be the minimum number of gates in a circuit that computes the algorithm’s
output and the contents of its memory after the current timestep from its input, its current memory
values, and feedback on what the correct output was, then the neural net in question will have θ(m)
vertices and γn = θ(m362/364). If the algorithm that we are emulating is deterministic, then Tn
will be approximately twice the number of samples the algorithm needs to learn the function; if it is
randomized it might need a number of additional samples equal to approximately twice the number
of random bits the algorithm needs.

So, for any distribution of functions from {0, 1}n to {0, 1} that can be learned in polynomial time,
there is a neural net that learns it in polynomial time when it is trained by SGD.
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Proof of Corollary 1. Previous theorem shows that each efficiently learnable (PF , PX ) has some
neural net that learns it efficiently. We will next use a Kolmogorov complexity-like argument to
emulate a metaalgorithm as follows:

Learning-Metaalgorithm(c):

1. List every algorithm that can be written in at most log(log(n)) bits.

2. Get nc samples from the target distribution, and train each of these algorithms on them
in parallel. If any of these algorithms takes more than nc time steps on any sample, then
interrupt it and skip training it on that sample.

3. Get nc more samples, have all of the aforementioned algorithms attempt to compute the
function on each of them, and record which of them was most accurate. Again, if any of
them take more than nc steps on one of these samples, interrupt it and consider it as having
computed the function incorrectly on that sample.

4. Return the function that resulted from training the most accurate algorithm.

Given any distribution that is efficiently learnable, there exist ε, c > 0 such that there is some
algorithm that learns (PF , PX ) with accuracy 1/2 + ε − o(1), needs at most nc samples in order
to do so, and takes a maximum of nc time steps on each sample. For all sufficiently large n, this
algorithm will be less than log(log(n)) bits long, so Learning-Metaalgorithm(c) will consider it.
There are only O(log(n)) algorithms that are at most log(log(n)) bits long, so in the testing phase all
of them will have observed accuracies within O(n−c/2 log(n)) of their actual accuracies with high
probability. That means that the function that Learning-Metaalgorithm(c) judges as most accurate
will be at most O(n−c/2 log(n)) less accurate than the true most accurate function considered.
So, Learning-Metaalgorithm(c) learns (PF , PX ) with accuracy 1/2 + ε − o(1). More precisely,
this shows that for any efficiently learnable distribution, there exists C0 such that for all c > C0,
Learning-Metaalgorithm(c) learns (PF , PX ).

Now, if we let (f,Gc) be a neural net emulating Learning-Metaalgorithm(c), then (f,Gc) has
polynomial size and can be constructed in polynomial time for any fixed c. Any efficiently learnable
distribution can be learned by training (f,Gc) with stochastic gradient descent with the right c and
the right learning rate, assuming that random bits are appended to the input. Furthermore, the only
thing we need to know about the data distribution in order to choose the net and learning rate is some
upper bound on the number of samples and amount of time needed to learn it.

Remark 11. The previous remark shows that for any c > 0, there is a polynomial sized neural net
that learns any (PF , PX ) that can be learned by an algorithm that uses nc samples and nc time
per sample. However, that is still more restrictive than we really need to be. It is actually possible
to build a net that learns any (PF , PX ) that can be efficiently learned using nc memory, and then
computed in nc time once the learning process is done. In order to show this, first observe that any
learning algorithm that spends more than nc time on each sample can be rewritten to simply get a
new sample and ignore it after every nc steps. That converts it to an algorithm that spends nc time
after receiving each sample while multiplying the number of samples it needs by an amount that is at
most polynomial in n.

The fact that we do not know how many samples the algorithm needs can be dealt with by modifying
the metaalgorithm to find the algorithm that performs best when trained on 1 sample, then the
algorithm that performs best when trained on 2, then the algorithm that performs best when trained
on 4, and so on. That way, after receiving any number of samples, it will have learned to compute the
function with an accuracy that is within o(1) of the best accuracy attainable after learning from 1/4
that number of samples. The fact that we do not know how many samples we need also renders us
unable to have a learning phase, and then switch to attempting to compute the function accurately
after we have seen enough samples. Instead, we need to have it try to learn from each sample with a
gradually decreasing probability and try to compute the function otherwise. For instance, consider
designing the net so that it keeps a count of exactly how many times it has been wrong. Whenever
that number reaches a perfect square, it attempts to learn from the next sample; otherwise, it tries to
compute the function on that input. If it takes the metaalgorithm nc

′
samples to learn the function

with accuracy 1− ε, then it will take this net roughly n2c
′

samples to learn it with the same accuracy,
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and by that point the steps where it attempts to learn the function rather than computing it will only
add another o(1) to the error rate. So, if there is any efficient algorithm that learns (PF , PX ) with
nc memory and computes it in nc time once it has learned it, then this net will learn it efficiently.

Finally, it is necessary to know c in order to obtain such a universality result, since given a neural net
of size O(nc

′
), one could simply pick a function that requires a net of size Ω(nc

′+1) to compute.

4.2 Noisy emulation of arbitrary algorithms

So far, our discussion of emulating arbitrary learning algorithms using SGD has assumed that we
are using SGD without noise. It is of particular interest to ask whether there are efficiently learnable
functions that noisy SGD can never learn with inverse-polynomial noise, as perfect GD or SQ
algorithms break in such cases (e.g., parities). It turns out that the emulation argument can be adapted
to sufficiently small amounts of noise.

The computation component is already fairly noise tolerant because the inputs to all of its vertices
will normally always have absolute values of at least 2. If these are changed by less than 1/2, these
vertices will still have activations of ±2 with the same signs as before, and the derivatives of their
activations with respect to their inputs will remain 0.

However, the memory component has more problems handling noise. In the noise-free case, whenever
we do not want the value it stores to change, we arrange for some key vertices inside the component
to receive input 0 so that their outputs and the derivatives of their outputs with respect to their inputs
will both be 0. However, once we start adding noise we will no longer be able to ensure that the
inputs to these vertices are exactly 0. This could result in a feedback loop where the edge weights
shift faster and faster as they get further away from their desired values. In order to avoid this, we will
use an activation function designed to have output 0 whenever its input is sufficiently close to 0. More
precisely, in this section we will use an activation function f? : R → R chosen so that f?(x) = 0
whenever |x| ≤ 2−1213−9, f?(x) = x3 whenever 2−1203−9 ≤ |x| ≤ 1, and f?(x) = 2 sign(x)
whenever |x| ≥ 3/2. There must be a way to define f? on the remaining intervals such that it is
smooth and nondecreasing. The details of how this is done will not affect out argument, so we pick
some such assignment.

The memory component also has trouble handling bit flips when there is noise. Any time we flip a
bit stored in memory, any errors in the edge weights of the copy of Ms storing that bit are likely to
get worse. As a result, making the memory component noise tolerant requires a fairly substantial
redesign. First of all, in order to prevent perturbations in its edge weights from being amplified until
they become major problems, we will only update each value stored in memory once. That still leaves
the issue that due to errors in the edge weights, we cannot ensure that the output of the net is exactly
±1. As a result, even if the net gets the output right, the edge weights will still change somewhat.
That introduces the possibility that multiple unsuccessful attempts at flipping a bit in memory will
eventually cause major distortions to the corresponding edge weights. In order to address that, we
will have our net always give an output of 1/2 during the learning phase so that whenever we try to
change a value in memory, it will change significantly regardless of what the correct output is. Of
course, that leaves each memory component with 3 possible states, the state it is in originally, the
state it changes to if the correct output is 1, and the state it changes to if the correct output is −1.
More precisely, each memory value will be stored in a copy of the following.

Definition 7. Let M ′ be the weighted directed graph with 9 vertices, v0, v1, v2, v3, v4, v5, vc, v′c,
and vr and the following edges:

1. An edge of weight 3−t/2/4 from vt to vt+1 for each t

2. An edge of weight 128 from v1 to vr

3. An edge of weight −2−81 · 3−9 from vc to v4

4. An edge of weight −2−41 · 3−9 from v′c to v4

See Figure 3 for a representation of M ′. The idea is that by controlling the values of vc and v′c we
can either force v4 to have an input of approximately 0 in order to prevent any of the weights from
changing or allow it to have a significant value in which case the weights will change. With the
correct learning rate, if the correct output is 1 then the weights of the edges on the path from v0 to v5
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v0
<latexit sha1_base64="yI8kppRRH1VNhWzVjQ8HK4PftaQ=">AAAB6nicbVA9SwNBEJ3zM8avaEqbxSBYSLiLhZYBG8uI5gOSEPY2e8mSvb1jdy4QjjT2NhaK2PqLLAT/gb/Bys1HoYkPBh7vzTAzz4+lMOi6n87K6tr6xmZmK7u9s7u3nzs4rJko0YxXWSQj3fCp4VIoXkWBkjdizWnoS173B1cTvz7k2ohI3eEo5u2Q9pQIBKNopdthx+3kCm7RnYIsE29OCuX8x/f91/is0sm9t7oRS0KukElqTNNzY2ynVKNgko+zrcTwmLIB7fGmpYqG3LTT6aljcmKVLgkibUshmaq/J1IaGjMKfdsZUuybRW8i/uc1Ewwu26lQcYJcsdmiIJEEIzL5m3SF5gzlyBLKtLC3EtanmjK06WRtCN7iy8ukVip658XSjU2jDDNk4AiO4RQ8uIAyXEMFqsCgBw/wBM+OdB6dF+d11rrizGfy8AfO2w+w6JHR</latexit>

v1
<latexit sha1_base64="OO4urVOCk7FGOX6AnnL4WmEHixE=">AAAB6nicbVA9SwNBEJ3zM8avaEqbxSBYSLiLhZYBG8uI5gOSEPY2c8mSvb1jdy8QjjT2NhaK2PqLLAT/gb/Bys1HoYkPBh7vzTAzz48F18Z1P52V1bX1jc3MVnZ7Z3dvP3dwWNNRohhWWSQi1fCpRsElVg03AhuxQhr6Auv+4Gri14eoNI/knRnF2A5pT/KAM2qsdDvseJ1cwS26U5Bl4s1JoZz/+L7/Gp9VOrn3VjdiSYjSMEG1bnpubNopVYYzgeNsK9EYUzagPWxaKmmIup1OTx2TE6t0SRApW9KQqfp7IqWh1qPQt50hNX296E3E/7xmYoLLdsplnBiUbLYoSAQxEZn8TbpcITNiZAllittbCetTRZmx6WRtCN7iy8ukVip658XSjU2jDDNk4AiO4RQ8uIAyXEMFqsCgBw/wBM+OcB6dF+d11rrizGfy8AfO2w+ybJHS</latexit>

v2
<latexit sha1_base64="j2ZKv8P8zuliGbPRK9EokFKLkdY=">AAAB6nicbVA9SwNBEJ3zM8avaEqbxSBYSLiLhZYBG8uI5gOSEPY2e8mSvb1jdy4QjjT2NhaK2PqLLAT/gb/Bys1HoYkPBh7vzTAzz4+lMOi6n87K6tr6xmZmK7u9s7u3nzs4rJko0YxXWSQj3fCp4VIoXkWBkjdizWnoS173B1cTvz7k2ohI3eEo5u2Q9pQIBKNopdthp9TJFdyiOwVZJt6cFMr5j+/7r/FZpZN7b3UjloRcIZPUmKbnxthOqUbBJB9nW4nhMWUD2uNNSxUNuWmn01PH5MQqXRJE2pZCMlV/T6Q0NGYU+rYzpNg3i95E/M9rJhhctlOh4gS5YrNFQSIJRmTyN+kKzRnKkSWUaWFvJaxPNWVo08naELzFl5dJrVT0zoulG5tGGWbIwBEcwyl4cAFluIYKVIFBDx7gCZ4d6Tw6L87rrHXFmc/k4Q+ctx+z8JHT</latexit>

v3
<latexit sha1_base64="XNcbsLOD2bRgziz/0j+/vAC/cq4=">AAAB6nicbVC7SgNBFL0TXzG+oiltBoNgIWE3KbQM2FhGNA9IljA7mU2GzM4uM7OBsKSxt7FQxNYvshD8A7/Bysmj0MQDFw7n3Mu99/ix4No4zifKrK1vbG5lt3M7u3v7B/nDo4aOEkVZnUYiUi2faCa4ZHXDjWCtWDES+oI1/eHV1G+OmNI8kndmHDMvJH3JA06JsdLtqFvp5otOyZkBrxJ3QYrVwsf3/dfkvNbNv3d6EU1CJg0VROu268TGS4kynAo2yXUSzWJCh6TP2pZKEjLtpbNTJ/jUKj0cRMqWNHim/p5ISaj1OPRtZ0jMQC97U/E/r52Y4NJLuYwTwySdLwoSgU2Ep3/jHleMGjG2hFDF7a2YDogi1Nh0cjYEd/nlVdIol9xKqXxj06jCHFk4hhM4AxcuoArXUIM6UOjDAzzBMxLoEb2g13lrBi1mCvAH6O0HtXSR1A==</latexit>

v4
<latexit sha1_base64="8jzf1gksJm92Dvg6pDLL+eoR78E=">AAAB6nicbVC7SgNBFL0bXzG+oiltBoNgIWE3CloGbCwjmgckS5idzCZDZmeWmdlAWNLY21goYusXWQj+gd9g5eRRaOKBC4dz7uXee4KYM21c99PJrKyurW9kN3Nb2zu7e/n9g7qWiSK0RiSXqhlgTTkTtGaY4bQZK4qjgNNGMLia+I0hVZpJcWdGMfUj3BMsZAQbK90OO+edfNEtuVOgZeLNSbFS+Pi+/xqfVjv593ZXkiSiwhCOtW55bmz8FCvDCKfjXDvRNMZkgHu0ZanAEdV+Oj11jI6t0kWhVLaEQVP190SKI61HUWA7I2z6etGbiP95rcSEl37KRJwYKshsUZhwZCSa/I26TFFi+MgSTBSztyLSxwoTY9PJ2RC8xZeXSb1c8s5K5RubRgVmyMIhHMEJeHABFbiGKtSAQA8e4AmeHe48Oi/O66w148xnCvAHztsPtviR1Q==</latexit>

v5
<latexit sha1_base64="MJKEW9F02iNuBWzaIK8aWkDcXts=">AAAB6nicbVC7SgNBFL0bXzG+oiltBoNgIWE3IloGbCwjmgckS5idzCZDZmeWmdlAWNLY21goYusXWQj+gd9g5eRRaOKBC4dz7uXee4KYM21c99PJrKyurW9kN3Nb2zu7e/n9g7qWiSK0RiSXqhlgTTkTtGaY4bQZK4qjgNNGMLia+I0hVZpJcWdGMfUj3BMsZAQbK90OO+edfNEtuVOgZeLNSbFS+Pi+/xqfVjv593ZXkiSiwhCOtW55bmz8FCvDCKfjXDvRNMZkgHu0ZanAEdV+Oj11jI6t0kWhVLaEQVP190SKI61HUWA7I2z6etGbiP95rcSEl37KRJwYKshsUZhwZCSa/I26TFFi+MgSTBSztyLSxwoTY9PJ2RC8xZeXSb1c8s5K5RubRgVmyMIhHMEJeHABFbiGKtSAQA8e4AmeHe48Oi/O66w148xnCvAHztsPuHyR1g==</latexit>

vc
<latexit sha1_base64="1o9FZhveraCYR88PcrmcPvbufsc=">AAAB6nicbVA9SwNBEJ3zM8avaEqbxSBYSLiLhZYBG8uI5gOSEPY2c8mSvb1jdy8QjjT2NhaK2PqLLAT/gb/Bys1HoYkPBh7vzTAzz48F18Z1P52V1bX1jc3MVnZ7Z3dvP3dwWNNRohhWWSQi1fCpRsElVg03AhuxQhr6Auv+4Gri14eoNI/knRnF2A5pT/KAM2qsdDvssE6u4BbdKcgy8eakUM5/fN9/jc8qndx7qxuxJERpmKBaNz03Nu2UKsOZwHG2lWiMKRvQHjYtlTRE3U6np47JiVW6JIiULWnIVP09kdJQ61Ho286Qmr5e9Cbif14zMcFlO+UyTgxKNlsUJIKYiEz+Jl2ukBkxsoQyxe2thPWposzYdLI2BG/x5WVSKxW982LpxqZRhhkycATHcAoeXEAZrqECVWDQgwd4gmdHOI/Oi/M6a11x5jN5+APn7Qf+NJIE</latexit>

v0c
<latexit sha1_base64="gpfyvhowryT0f8QYpLOnQYDtURg=">AAAB63icbVC7TgJBFL3rE/GFWtpMRKMV2cVCSxIaOyGRRwIbMjvMwoSZ2c3MLAnZ8As2FhpjYeN3+A92/o2zQKHgSW5ycs69ufeeIOZMG9f9dtbWNza3tnM7+d29/YPDwtFxU0eJIrRBIh6pdoA15UzShmGG03asKBYBp61gVM381pgqzSL5YCYx9QUeSBYygk0mjXvkslcouiV3BrRKvAUpVtD5/Xu9+lnrFb66/YgkgkpDONa647mx8VOsDCOcTvPdRNMYkxEe0I6lEguq/XR26xRdWKWPwkjZkgbN1N8TKRZaT0RgOwU2Q73sZeJ/Xicx4a2fMhknhkoyXxQmHJkIZY+jPlOUGD6xBBPF7K2IDLHCxNh48jYEb/nlVdIsl7zrUrlu06jAHDk4hTO4Ag9uoAJ3UIMGEBjCIzzDiyOcJ+fVeZu3rjmLmRP4A+fjB25LkMU=</latexit>

vr
<latexit sha1_base64="i70YtcpCDg2CGeH3UVr+3yTPjiM=">AAAB6nicbVA9SwNBEJ3zM8avaEqbxSBYSLiLhZYBG8uI5gOSEPY2c8mSvb1jdy8QjjT2NhaK2PqLLAT/gb/Bys1HoYkPBh7vzTAzz48F18Z1P52V1bX1jc3MVnZ7Z3dvP3dwWNNRohhWWSQi1fCpRsElVg03AhuxQhr6Auv+4Gri14eoNI/knRnF2A5pT/KAM2qsdDvsqE6u4BbdKcgy8eakUM5/fN9/jc8qndx7qxuxJERpmKBaNz03Nu2UKsOZwHG2lWiMKRvQHjYtlTRE3U6np47JiVW6JIiULWnIVP09kdJQ61Ho286Qmr5e9Cbif14zMcFlO+UyTgxKNlsUJIKYiEz+Jl2ukBkxsoQyxe2thPWposzYdLI2BG/x5WVSKxW982LpxqZRhhkycATHcAoeXEAZrqECVWDQgwd4gmdHOI/Oi/M6a11x5jN5+APn7QcU/5IT</latexit>

1/4
<latexit sha1_base64="bjDgElywKnwyQw4CI+OIuy5xbjM=">AAAB6nicbVDLSgNBEOz1lRhfUY9eBoPgKe5GRY8BLx4TNA9IljA7mSRDZmeXmV4hLPkELx4U8eoXefMHxM9w8jhoYkFDUdVNd1cQS2HQdT+dldW19Y1MdjO3tb2zu5ffP6ibKNGM11gkI90MqOFSKF5DgZI3Y81pGEjeCIY3E7/xwLURkbrHUcz9kPaV6AlG0Up33tlFJ19wi+4UZJl4c1Iok+r3VzZzWenkP9rdiCUhV8gkNabluTH6KdUomOTjXDsxPKZsSPu8ZamiITd+Oj11TE6s0iW9SNtSSKbq74mUhsaMwsB2hhQHZtGbiP95rQR7134qVJwgV2y2qJdIghGZ/E26QnOGcmQJZVrYWwkbUE0Z2nRyNgRv8eVlUi8VvfNiqWrTKMMMWTiCYzgFD66gDLdQgRow6MMjPMOLI50n59V5m7WuOPOZQ/gD5/0HEwCP7Q==</latexit>

128
<latexit sha1_base64="yHt/Yp878DgB3aW40/EhaT3wjFc=">AAAB6nicbZC5TgMxEIbH4QrhCkdHYxEhUUW7oSAdkSigDIIcUrKKvI43seL1rmwvUljlEWgoQIiWmqfgCegoeROco4CEX7L06f9n5JnxY8G1cZwvlFlaXlldy67nNja3tnfyu3t1HSWKshqNRKSaPtFMcMlqhhvBmrFiJPQFa/iDi3HeuGNK80jemmHMvJD0JA84JcZaN26p3MkXnKIzEV4EdwaF84/778v3g7TayX+2uxFNQiYNFUTrluvExkuJMpwKNsq1E81iQgekx1oWJQmZ9tLJqCN8bJ0uDiJlnzR44v7uSEmo9TD0bWVITF/PZ2Pzv6yVmKDspVzGiWGSTj8KEoFNhMd74y5XjBoxtECo4nZWTPtEEWrsdXL2CO78yotQLxXd02Lp2ilUKjBVFg7hCE7AhTOowBVUoQYUevAAT/CMBHpEL+h1WppBs559+CP09gOf95ET</latexit>

1/12
<latexit sha1_base64="cDKhMWjXY/+ZUJHg3HvWu4v3nGc=">AAAB63icbVDLSgNBEOyNj8T4inr0MhgET3E3QfQY8OIxAfOAZAmzk9lkyMzsMjMrhCW/4MWDIl79IW/+gPgZziY5aGJBQ1HVTXdXEHOmjet+OrmNza3tfGGnuLu3f3BYOjpu6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNMbjO/80CVZpG8N9OY+gKPJAsZwSaTvEuvOiiV3Yo7B1on3pKU66j5/VXIXzUGpY/+MCKJoNIQjrXueW5s/BQrwwins2I/0TTGZIJHtGepxIJqP53fOkPnVhmiMFK2pEFz9fdEioXWUxHYToHNWK96mfif10tMeOOnTMaJoZIsFoUJRyZC2eNoyBQlhk8twUQxeysiY6wwMTaeog3BW315nbSrFa9WqTZtGnVYoACncAYX4ME11OEOGtACAmN4hGd4cYTz5Lw6b4vWnLOcOYE/cN5/AH+1kCY=</latexit>

p
3/36

<latexit sha1_base64="42G6gznLas3caLf8g+r4Bu8Fwvc=">AAAB8nicbVDJSgNBEO2JS2Lcoh69NAbBU5xJcDkGvHhMwCwwGUJPp5M06ekeu2uEMOQzvHhQxKtf480fED/DznLQxAcFj/eqqKoXxoIbcN1PJ7O2vrGZzW3lt3d29/YLB4dNoxJNWYMqoXQ7JIYJLlkDOAjWjjUjUShYKxzdTP3WA9OGK3kH45gFERlI3ueUgJX8jrnXkFYm55XLbqHoltwZ8CrxFqRYxfXvr1z2otYtfHR6iiYRk0AFMcb33BiClGjgVLBJvpMYFhM6IgPmWypJxEyQzk6e4FOr9HBfaVsS8Ez9PZGSyJhxFNrOiMDQLHtT8T/PT6B/HaRcxgkwSeeL+onAoPD0f9zjmlEQY0sI1dzeiumQaELBppS3IXjLL6+SZrnkVUrluk2jiubIoWN0gs6Qh65QFd2iGmogihR6RM/oxQHnyXl13uatGWcxc4T+wHn/AV1Rk5I=</latexit>

1/36
<latexit sha1_base64="XRe+ucc+hptnRdcRWmab/bIutqo=">AAAB63icbVDLSgNBEOz1lRhfUY9eBoPgKe4m+DgGvHhMwDwgWcLsZDYZMjO7zMwKYckvePGgiFd/yJs/IH6Gs0kOmljQUFR1090VxJxp47qfztr6xuZWLr9d2Nnd2z8oHh61dJQoQpsk4pHqBFhTziRtGmY47cSKYhFw2g7Gt5nffqBKs0jem0lMfYGHkoWMYJNJ3kX1ql8suWV3BrRKvAUp1VDj+yufu6z3ix+9QUQSQaUhHGvd9dzY+ClWhhFOp4VeommMyRgPaddSiQXVfjq7dYrOrDJAYaRsSYNm6u+JFAutJyKwnQKbkV72MvE/r5uY8MZPmYwTQyWZLwoTjkyEssfRgClKDJ9Ygoli9lZERlhhYmw8BRuCt/zyKmlVyl61XGnYNGowRx5O4BTOwYNrqMEd1KEJBEbwCM/w4gjnyXl13uata85i5hj+wHn/AYjPkCw=</latexit>

�2�813�9
<latexit sha1_base64="aIYn3wgCWLvmaeOG16UztUPGBC4=">AAAB9XicbVC7TgJBFL2Loogv1NJmIjGxgexCIXYkNpaYyCOBhcwOA0yYnd3MzGrIZlu/wUILjbEy8V/s/BB7h0eh4Elu7sk592buHC/kTGnb/rJSa+vpjc3MVnZ7Z3dvP3dw2FBBJAmtk4AHsuVhRTkTtK6Z5rQVSop9j9OmN76c+s1bKhULxI2ehNT18VCwASNYG6lbKHXjQsVJyqZdJL1c3i7aM6BV4ixIvrrx+C3e79O1Xu6z0w9I5FOhCcdKtR071G6MpWaE0yTbiRQNMRnjIW0bKrBPlRvPrk7QqVH6aBBIU0Kjmfp7I8a+UhPfM5M+1iO17E3F/7x2pAcVN2YijDQVZP7QIOJIB2gaAeozSYnmE0MwkczcisgIS0y0CSprQnCWv7xKGqWiUy6Wrk0aVZgjA8dwAmfgwDlU4QpqUAcCEh7gGV6sO+vJerXe5qMpa7FzBH9gffwAQk6Uug==</latexit>

�2�413�9
<latexit sha1_base64="f6nqjXUsn/jJ/WBxqTaN1XQjYQ8=">AAAB9XicbVC7SgNBFL0bTYzxFbW0GQyCTcJuIqhdwMYygnlA3ITZySQZMju7zMwqYdnWb7DQQhErwX+x80PsnTwKTTxwuYdz7mXuHC/kTGnb/rJSK6vpzFp2PbexubW9k9/da6ggkoTWScAD2fKwopwJWtdMc9oKJcW+x2nTG11M/OYtlYoF4lqPQ+r6eCBYnxGsjdQpljtx8cRJKqadJ918wS7ZU6Bl4sxJoZp5/Bbv9+laN/950wtI5FOhCcdKtR071G6MpWaE0yR3EykaYjLCA9o2VGCfKjeeXp2gI6P0UD+QpoRGU/X3Rox9pca+ZyZ9rIdq0ZuI/3ntSPfP3JiJMNJUkNlD/YgjHaBJBKjHJCWajw3BRDJzKyJDLDHRJqicCcFZ/PIyaZRLTqVUvjJpVGGGLBzAIRyDA6dQhUuoQR0ISHiAZ3ix7qwn69V6m42mrPnOPvyB9fEDPB6Utg==</latexit>

M 0
<latexit sha1_base64="PRRkk3bdLpm47d5ZGl2QZGABB9c=">AAAB+HicbVC7TsMwFHXKq5RHw2NjiagQTFVSBtioxAALUpHoQ2qjynFuWquOE9kOUhv1S1gYQIiFgW/gC9gY+RPctAO0HOlKR+fc6+t7vJhRqWz7y8gtLa+sruXXCxubW9tFc2e3IaNEEKiTiEWi5WEJjHKoK6oYtGIBOPQYNL3B5cRv3oOQNOJ3ahiDG+IepwElWGmpaxbTTvZIKsAf3xyPu2bJLtsZrEXizEjp4mP0ffW2n9a65mfHj0gSAleEYSnbjh0rN8VCUcJgXOgkEmJMBrgHbU05DkG6abZzbB1pxbeCSOjiysrU3xMpDqUchp7uDLHqy3lvIv7ntRMVnLsp5XGigJPpoiBhloqsSQqWTwUQxYaaYCKo/qtF+lhgonRWBR2CM3/yImlUys5puXJrl6pVNEUeHaBDdIIcdIaq6BrVUB0RlKAH9ISejZHxaLwYr9PWnDGb2UN/YLz/AFPllzs=</latexit>

p
3/12

<latexit sha1_base64="t4w+QCJVQozg3JafCGNcl2ihvJE=">AAAB8nicbVDLSgNBEJz1lRhfUY9eBoPgKe4miB4DXjwmYB6wWcLsZDYZMjuzzvQKYclnePGgiFe/xps/IH6Gk8dBEwsaiqpuurvCRHADrvvprK1vbG7l8tuFnd29/YPi4VHLqFRT1qRKKN0JiWGCS9YEDoJ1Es1IHArWDkc3U7/9wLThSt7BOGFBTAaSR5wSsJLfNfcasurkwqv0iiW37M6AV4m3IKUabnx/5XOX9V7xo9tXNI2ZBCqIMb7nJhBkRAOngk0K3dSwhNARGTDfUkliZoJsdvIEn1mljyOlbUnAM/X3REZiY8ZxaDtjAkOz7E3F/zw/heg6yLhMUmCSzhdFqcCg8PR/3OeaURBjSwjV3N6K6ZBoQsGmVLAheMsvr5JWpexVy5WGTaOG5sijE3SKzpGHrlAN3aI6aiKKFHpEz+jFAefJeXXe5q1rzmLmGP2B8/4DVDeTjA==</latexit>

Figure 3: The noise-tolerant memory component M ′.

will double, while if the correct output is −1 then these weights will multiply by −2. That means
that v2 will have an output of approximately 2−243−3/2 if this has never been changed, and an output
of approximately 2−123−3/2 if it has. Meanwhile, vr will have an output of −2 if it was changed
when the correct output was −1 and a value of 2 otherwise. More formally, we have the following.

Lemma 4 (Editing memory using noisy SGD). Let γ = 2716/3 · 324, and L(x) = x2 for all x. Next,
let t0, T ∈ Z+ and 0 < ε, ε′ such that ε ≤ 2−1343−11, ε′ ≤ 2−1233−11. Also, let (f?, G) be a neural
net such that G contains M ′ as a subgraph with v5 as G’s output vertex, v0 as the constant vertex,
and no edges from vertices outside this subgraph to vertices in the subgraph other than vc and v′c.
Now, assume that this neural net is trained using noisy SGD with learning rate γ and loss function L
for T − 1 time steps, and then evaluated on an input, and the following hold:

1. The sample label is always ±1.

2. The net gives an output that is in [1/2− ε′, 1/2 + ε′] on step t for every t < T .

3. For every t < t0, vc gives an output of 2 and v′c gives an output of 0 on step t.

4. If t0 ≤ T then vc and v′c both give outputs of 0 on step t0.

5. For every t > t0, v′c gives an output of 2 and vc gives an output of 0 on step t.

6. For each edge in the graph, the sum of the absolute values of the noise terms applied to that
edge over the course of the training process is at most ε.

7. The derivatives of the loss function with respect to the weights of all edges leaving this
subgraph are always 0.

Then during the training process, v2 gives an output in [2−253−3/2, 2−233−3/2] on step t for all
t ≤ t0 and an output in [2−133−3/2, 2−113−3/2] on step t for all t > t0. Also, on step t, vr
gives an output of −2 if t > t0 and the sample label was −1 on step t0 and an output of 2
otherwise. Thirdly, on step t0 the edge from v4 to v5 provides an input to the output vertex in
[2−2423−29 − 2−2013−27ε, 2−2423−29 + 2−2013−27ε], and for all t 6= t0, the edge from v4 to v5
provides an input of 0 to the output vertex on step t.

Proof. First of all, we define the target weight of an edge to be what we would like its weight to be.
More precisely, the target weights of (vc, v4), (v′c, v4), and (v1, vr) are defined to be equal to their
initial weights at all time steps. The target weights of the edges on the path from v0 to v5 are defined
to be equal to their initial weights until step t0. After step t0, these edges have target weights that
are equal to double their initial weights if the sample label at step t0 was 1 and −2 times their initial
weights if the sample label at step t0 was −1.

Next, we define the primary distortion of a given edge at a given time to be the sum of all noise
terms added to its weight by noisy SGD up to that point. Then, we define the secondary distortion
of an edge to be the difference between its weight, and the sum of its target weight and its primary
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distortion. By our assumptions, the primary distortion of any edge always has an absolute value of at
most ε. We plan to prove that the secondary distortion stays reasonably small by inducting on the
time step, at which point we will have established that the actual weights of the edges stay reasonably
close to their target weights.

Now, for all vertices v and v′, and every time step t, let w(v,v′)[t] be the weight of the edge from v to
v′ at the start of step t, yv[t] be the output of v on step t, dv[t] be the derivative of the loss function
with respect to the output of v on step t, and d′v[t] be the derivative of the loss function with respect to
the input of v on step t. Next, consider some t < t0 and assume that the secondary distortion of every
edge in M ′ is 0 at the start of step t. In this case, v1 has an activation in [(1/4− ε)3, (1/4 + ε)3], so
vr has an activation of 2 and the derivative of the loss function with respect to w(v1,vr) is 0. Also, the
activation of v2 is between 2−253−3/2 and 2−233−3/2. On another note, the total input to v4 on step
t is

w27
(v0,v1)[t]

w9
(v1,v2)[t]

w3
(v2,v3)[t]

w(v3,v4)[t] + w(vc,v4)[t]yvc[t] + w(v′c,v4)[t]yv′c[t]

≤
(

1

4
+ ε

)27
(√

3

12
+ ε

)9(
1

12
+ ε

)3
(√

3

36
+ ε

)
+
(
−2−813−9 + ε

)
· 2

≤ 2−803−9e(144+48
√
3)ε − 2−803−9 + 2ε

≤ 3ε

On the flip side, the total input to v4 on step t is at least(
1

4
− ε
)27

(√
3

12
− ε
)9(

1

12
− ε
)3
(√

3

36
− ε
)

+ (−2−813−9 − ε) · 2

≥ 2−803−9e−2(144+48
√
3)ε − 2−803−9 − 2ε

≥ −3ε

So, |yv4[t]| = 0, and the edge from v4 to v5 provides an input of 0 to the output vertex on step t. The
derivative of this contribution with respect to the weights of any of the edges in M ′ is also 0. So, if all
of the secondary distortions are 0 at the beginning of step t, then all of the secondary distortions will
still be 0 at the end of step t. The secondary distortions start at 0, so by induction on t, the secondary
distortions are all 0 at the end of step t for every t < min(t0, T ). This also implies that the edge
from v4 to v5 provides an input of 0 to the output, yvr[t] = 2, and vv2[t] ∈ [2−253−3/2, 2−233−3/2]
for every t < t0.

Now, consider the case where t = t0 ≤ T . In this case, vr has an activation of 2 and the derivative
of the loss function with respect to w(v1,vr) is 0 for the same reasons as in the last case. Also, the
activation of v2 is still between 2−253−3/2 and 2−233−3/2.

On this step, the total input to v4 is
w27

(v0,v1)[t]
w9

(v1,v2)[t]
w3

(v2,v3)[t]
w(v3,v4)[t] + w(vc,v4)[t]yvc[t] + w(v′c,v4)[t]yv′c[t]

≤
(

1

4
+ ε

)27
(√

3

12
+ ε

)9(
1

12
+ ε

)3
(√

3

36
+ ε

)
+ 0

≤ 2−803−9e(144+48
√
3)ε

≤ 2−803−9 + 2−743−7ε

On the flip side, the total input to v4 is at least(
1

4
− ε
)27

(√
3

12
− ε
)9(

1

12
− ε
)3
(√

3

36
− ε
)

+ 0

≥ 2−803−9e−2(144+48
√
3)ε

≥ 2−803−9 − 2−743−7ε
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So, yv4[t] ∈ [(2−803−9−2−743−7ε)3, (2−803−9 +2−743−7ε)3], and the edge from v4 to v5 provides
an input in [2−2423−29 − 2−2353−26ε, 2−2423−29 + 2−2353−26ε] to the output vertex on step t0. If
t0 < T then the net gives an output in [1/2− ε′, 1/2 + ε′], so dv5[t] is in [−1− 2ε′,−1 + 2ε′] if the
sample label is 1 and in [3− 2ε′, 3 + 2ε′] if the sample label is −1. That in turn means that d′v5[t] is

in [ 3
3√2
2 (−1− 4ε′), 3

3√2
2 (−1 + 4ε′)] if the sample label is 1 and in [ 3

3√2
2 (3− 8ε′), 3

3√2
2 (3 + 8ε′)] if

the sample label is −1. Either way, the derivatives of the loss function with respect to w(vc,v4) and
w(v′c,v4) are both 0.

Also, for each 0 ≤ i < 5, the derivative of the loss function with respect to w(vi,vi+1) is

w81
(v0,v1)[t]

w27
(v1,v2)[t]

w9
(v2,v3)[t]

w3
(v3,v4)[t]

w(v4,v5) ·
34−i

w(vi,vi+1)
· d′v[5]

which is between 2−2403−29 · (1− 7200ε) · 34−i/2 · d′v[5] and 2−2403−29 · (1 + 7200ε) · 34−i/2 · d′v[5]
So, if the sample label is 1, then on this step gradient descent increases the weight of each edge on
the path from v0 to v5 by an amount that is within 3600ε + 2ε′ of its original value. If the sample
label is −1, then on this step gradient descent decreases the weight of each edge on this path by an
amount that is within 10800ε+ 6ε′ of thrice its original value. Either way, it leaves the weight of the
edge from v1 to vr unchanged. So, all of the secondary distortions will be at most 10800ε+ 6ε′ at
the end of step t0 if t0 < T .

Finally, consider the case where t > t0 and assume that the secondary distortion of every edge in
M ′ is at most 10800ε+ 6ε′ at the start of step t. Also, let ε′′ = 10801ε+ 6ε′, and y0 be the sample
label from step t0. In this case, v1 has an activation between (1/2− ε′′)3y0 and (1/2 + ε′′)3y0, so vr
has an activation of 2y0 and the derivative of the loss function with respect to w(v1,vr) is 0. Also, the
activation of v2 is between 2−133−3/2 and 2−113−3/2. On another note, the total input to v4 on step
t is

w27
(v0,v1)[t]

w9
(v1,v2)[t]

w3
(v2,v3)[t]

w(v3,v4)[t] + w(vc,v4)[t]yvc[t] + w(v′c,v4)[t]yv′c[t]

≤
(y0

2
+ ε′′y0

)27(√3y0
6

+ ε′′y0

)9 (y0
6

+ ε′′y0
)3(√3y0

18
+ ε′′y0

)
+ (−2−413−9 + ε′′) · 2

≤ 2−403−9e(72+24
√
3)ε′′ − 2−403−9 + 2ε′′

≤ 3ε′′

On the flip side, the total input to v4 on step t is at least(y0
2
− ε′′y0

)27(√3y0
6
− ε′′y0

)9 (y0
6
− ε′′y0

)3(√3y0
18
− ε′′y0

)
+ (−2−413−9 − ε′′) · 2

≥ 2−403−9e−2(72+24
√
3)ε′′ − 2−403−9 − 2ε′′

≥ −3ε′′

So, yv4[t] = 0, and the edge from v4 to v5 provides an input of 0 to the output vertex on step t. The
derivatives of this contribution with respect to the weights of any of the edges in M ′ are also 0. So,
if all of the secondary distortions are at most 10800ε + 6ε′ at the beginning of step t, then all of
the secondary distortions will still be at most 10800ε + 6ε′ at the end of step t. We have already
established that the secondary distortions will be in that range at the end of step t0, so by induction
on t, the secondary distortions are all at most 10800ε+ 6ε′ at the end of step t for every t0 < t < T ′.
This also implies that the edge from v4 to v5 provides an input of 0 to the output, yvr[t] = 2y0 and
vv2[t] ∈ [2−133−3/2, 2−113−3/2] for every t > t0.

Now that we have established that we can use M ′ to store information in a noise tolerant manner,
our next order of business is to show that we can make the computation component noise-tolerant.
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This is relatively simple because all of its vertices always have inputs of absolute value at least 2, so
changing these inputs by less than 1/2 has no effect. We have the following.

Lemma 5 (Backpropagation-proofed noise-tolerant circuit emulation). Let h : {0, 1}m → {0, 1}m′
be a function that can be computed by a circuit made of AND, OR, and NOT gates with a total of
b gates. Also, consider a neural net with m input16 vertices v′1, ..., v

′
m, and choose real numbers

y(0) < y(1). It is possible to add a set of at most b new vertices to the net, including output vertices
v′′1 , ..., v

′′
m′ , along with edges leading to them such that for any possible addition of edges leading

from the new vertices to old vertices, if the net is trained by noisy SGD, the output of v′i is either less
than y(0) or more than y(1) for every i in every timestep, and for every edge leading to one of the new
vertices, the sum of the absolute values of the noise terms applied to that edge over the course of the
training process is less than 1/12, then the following hold:

1. The derivative of the loss function with respect to the weight of each edge leading to a
new vertex is 0 in every timestep, and no paths through the new vertices contribute to the
derivative of the loss function with respect to edges leading to the v′i.

2. In any given time step, if the output of v′i encodes xi with values less than y(0) and values
greater than y(1) representing 0 and 1 respectively for each i17, then the output of v′′j encodes
hj(x1, ..., xm) for each j with −2 and 2 encoding 0 and 1 respectively.

Proof. In order to do this, we will add one new vertex for each gate and each input in a circuit that
computes h. When the new vertices are used to compute h, we want each vertex to output 2 if the
corresponding gate or input outputs a 1 and −2 if the corresponding gate or input outputs a 0. In
order to do that, we need the vertex to receive an input of at least 3/2 if the corresponding gate
outputs a 1 and an input of at most −3/2 if the corresponding gate outputs a 0. No vertex can ever
give an output with an absolute value greater than 2, and by assumption none of the edges leading to
the new vertices will have their weights changed by 1/12 or more by the noise. As such, any noise
terms added to the weights of edges leading to a new vertex will alter its input by at most 1/6 of
its in-degree. So, as long as its input without these noise terms has the desired sign and an absolute
value of at least 3/2 plus 1/6 of its in-degree, it will give the desired output.

In order to make one new vertex compute the NOT of another new vertex, it suffices to have an edge
of weight −1 to the vertex computing the NOT and no other edges to that vertex. We can compute an
AND of two new vertices by having a vertex with two edges of weight 1 from these vertices and an
edge of weight −2 from the constant vertex. Similarly, we can compute an OR of two new vertices
by having a vertex with two edges of weight 1 from these vertices and an edge of weight 2 from the
constant vertex. For each i, in order to make a new vertex corresponding to the ith input, we add a
vertex and give it an edge of weight 4/(y(1) − y(0)) from the associated v′i and an edge of weight
−(2y(1) + 2y(0))/(y(1) − y(0)) from the constant vertex. These provide an overall input of at least 2
to the new vertex if v′i has an output greater than y(1) and an input of at most −2 if v′i has an output
less than y(0).

This ensures that if the outputs of the v′i encode binary values x1, ..., xm appropriately, then each of
the new vertices will output the value corresponding to the output of the appropriate gate or input. So,
these vertices compute h(x1, ..., xm) correctly. Furthermore, since the input to each of these vertices
is outside of (−3/2, 3/2), the derivatives of their activation functions with respect to their inputs are
all 0. As such, the derivative of the loss function with respect to any of the edges leading to them is
always 0, and paths through them do not contribute to changes in the weights of edges leading to the
v′i.

Now that we know that we can make the memory component and computation component work, it is
time to put the pieces together. We plan to have the net simply memorize each sample it receives
until it has enough information to compute the function. More precisely, if there is an algorithm that
needs T samples to learn functions from a given distribution, our net will have 2nT copies of M ′

16Note that these will not be the n data input of the general neural net that is being built; these input vertices
take both the data inputs and some inputs from the memory component.

17This time we can use the same values of y(0) and y(1) for all v′i because we just need them to be between
whatever the vertex encodes 0 as and whatever it encodes 1 as for all vertices.
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corresponding to every combination of a timestep 1 ≤ t ≤ T , an input bit, and a value for said bit.
Then, in step t it will set the copies of M ′ corresponding to the inputs it received in that time step.
That will allow the computation component to determine what the current time step is, and what
the inputs and labels were in all previous times steps by checking the values of the copies of v2 and
vr. That will allow it to either determine which copies of M ′ to set next, or attempt to compute the
function on the current input and return it. This design works in the following sense.

Lemma 6. For each n > 0, let tn be a positive integer such that tn = ω(1) and tn = O(nc) for
some constant c. Also, let hn : {0, 1}(n+1)tn+n → {0, 1} be a function that can be computed in time
polynomial in n. Then there exists a polynomial sized neural net (Gn, f) such that the following holds.
Let γ = 2716/3 · 324, δ ∈ [−1/(n2tn), 1/(n2tn)]tn×|E(Gn)| (i.e., each weight at each time step has a
precision error of 1/(n2tn)), x(i) ∈ {0, 1}n for all 0 ≤ i ≤ tn, and y(i) ∈ {0, 1} for all 0 ≤ i < tn.
Then if we use perturbed stochastic gradient descent with noise δ, loss function L(x) = x2, and
learning rate γ to train (Gn, f) on (2x(i) − 1, 2y(i) − 1) for 0 ≤ i < tn and then run the resulting
net on 2xt,n − 1, we will get an output within 1/2 of 2h

(
x(0), y(0), x(1), y(1), ..., x(tn)

)
− 1 with

probability 1− o(1).

Proof. We construct Gn as follows. We start with a graph consisting of n input vertices. Then, we
take 2ntn copies of M ′, merge all of the copies of v0 to make a constant vertex, and merge all of the
copies of v5 to make an output vertex. We assign each of these copies a distinct label of the form
M ′t′,i,z , where 0 ≤ t′ < tn, 0 < i ≤ n, and z ∈ {0, 1}. We also add edges of weight 1 from the
constant vertex to all of the control vertices. Next, for each 0 ≤ t′ < tn, we add an output control
vertex voc[t′]. For each such t′, we add an edge of weight 1 from the constant vertex to voc[t′] and an
edge of weight 3

√
4/4− 2−2433−29n from voc[t′] to the output vertex. Then, we add a final output

control vertex voc[tn]. We do not add an edge from the constant vertex to voc[tn], and the edge from
voc[tn] to the output vertex has weight 49/100.

Finally, we use the construction from the previous lemma to build a computation component. This
component will get input from all of the input vertices and every copy of vr and v2 in any of the
copies of T ′, interpreting anything less than 2−213−3/2 as a 0 and anything more than 2−153−3/2 as
a 1. This should allow it to read the input bits, and determine which of the copies of M ′ have been
set and what the sample outputs were when they were set. For each control vertex from a copy of T ′
and each of the first n output control vertices, the computation component will contain a vertex with
an edge of weight 1/2 leading to that vertex. It will contain two vertices with edges of weight 1/2
leading to voc[tn]. This should allow it to set each control vertex or output control vertex to 0 or 2,
and to set voc[tn] to −2, 0, or 2.

The computation component will be designed so that in each time step it will do the following,
assuming that its edge weights have not changed too much and the outputs of the copies of vr and
v2 are in the ranges given by lemma 4. First, it will determine the smallest 0 ≤ t ≤ tn such that
M ′(t′,i,z) has not been set for any t′ ≥ t, 0 < i ≤ n, and z ∈ {0, 1}. That should equal the current
timestep. If t < tn, then it will do the following. For each 0 < i ≤ n, it will use the control vertices
to set M ′(t,i,[x′i+1]/2), where x′i is the value it read from the ith input vertex. It will keep the rest of
the copies of M ′ the same. It will also attempt to make voc[t] output 2 and the other output control
vertices output 0. If t = tn, then for each 0 ≤ t′ < t and 1 ≤ i ≤ n, the computation component
will set x?(t

′)
i to 1 if M ′(t′,i,1) has been set, and 0 otherwise. It will set y?(t

′) to 1 if either M ′(t′,1,0)
or M ′(t′,1,1) has been set in a timestep when the sample label was 1 and 0 otherwise. It will also
let x?(tn) be the values of x(tn) inferred from the input. Then it will attempt to make voc[tn] output
4h(x?(0), y?(0), ..., x?(tn))− 2 and the other output control vertices output 0. It will not set any of
the copies of M ′ in this case.

In order to prove that this works, we start by setting ε = min(2−1343−11, 277315/n) and ε′ =
2−1233−11. The absolute value of the noise term applied to every edge in every time step is at most
1/n2tn, so the sums of the absolute values of the noise terms applied to every edge over the course of
the algorithm are at most ε if n > 26736. For the rest of the proof, assume that this holds.

Now, we claim that for every 0 ≤ t′ < tn, all of the following hold:

26



1. Every copy of vr or v2 in the memory component outputs a value that is not in
[2−213−3/2, 2−153−3/2] on timestep t′.

2. For every copy of M ′, there exists t0 such that its copies of vc and v′c take on values
satisfying lemma 4 for timesteps 0 through t′.

3. The net gives an output in [1/2− ε′, 1/2 + ε′] on timestep t′.

4. The weight of every edge leading to an output control vertex ends step t′ with a weight that
is within ε of its original weight.

5. For every t′′ > t′, the weight of the edge from voc[t′′] to the output vertex has a weight
within ε of its original weight at the end of step t′.

In order to prove this, we use strong induction on t′. So, let 0 ≤ t′ < tn, and assume that this holds
for all t′′ < t′. By assumption, the conditions of lemma 4 were satisfied for every copy of M ′ in the
first t′ timesteps. So, the outputs of the copies of vr and v2 encode information about their copies
of M ′ in the manner given by this lemma. In particular, that means that their outputs are not in
[2−213−3/2, 2−153−3/2] on timestep t′. By the previous lemma, the fact that this holds for timesteps
0 through t′ means that the computation component will still be working properly on step t′, it will
be able to interpret the inputs it receives correctly, and its output vertices will take on the desired
values. The assumptions also imply that every copy of vc or v′c took on values of 0 or 2 in step t′′
for every t′′ < t′. That means that the derivatives of the loss function with respect to the weights of
the edges leading to these vertices was always 0, so their weights at the start of step t′ were within ε
of their initial weights. That means that the inputs to these copies will be in [−4ε, 4ε] for ones that
are supposed to output 1 and in [2− 4ε, 2 + 4ε] for ones that are supposed to output 2. Between this
and the fact that the computation component is working correctly, we have that for each (t′′, i, z),
the copies of vc and v′c in M ′(t′′,i,z) will have taken on values satisfying the conditions of lemma 4 in

timesteps 0 through t′ with t0 set to t′′ if x(t
′′)

i = z and tn + 1 otherwise.

Similarly, the fact that the weights of the edges leading to the output control vertices stay within
ε of their original values for the first t′ − 1 steps implies that voc[t′′] outputs 2 and all other output
control vertices output 0 on step t′′ for all t′′ ≤ t′. That in turn implies that the derivatives of the loss
function with respect to these weights were 0 for the first t′ + 1 steps, and thus that their weights
are still within ε of their original values at the end of step t′. Now, observe that there are exactly
n copies of M ′ that get set in step t′, and each of them provide an input to the output vertex in
[2−2423−29 − 2−2013−27ε, 2−2423−29 + 2−2013−27ε]. Also, voc[t′] provides an input to the output
in [ 3
√

4/2 − 2−2423−29n − 2ε, 3
√

4/2 − 2−2423−29n + 2ε] on step t′, and all other vertices with
edges to the output vertex output 0 in this time step. So, the total input to the output vertex is within
2−2013−27εn+ 2ε ≤ ε′/3 of 3

√
4/2. So, the net gives an output in [1/2− ε′, 1/2 + ε′] on step t′, as

desired. This also implies that the derivative of the loss function with respect to the weights of the
edges from all output vertices except voc[t′] to the output vertex are 0 on step t′. So, for every t′′ > t′,
the weight of the edge from voc[t′′] to the output vertex is still within ε of its original value at the end
of step t′. This completes the induction argument.

This means that on step tn, all of the copies of vr and vc will still have outputs that encode whether or
not they have been set and what the sample output was on the steps when they were set in the manner
specified in lemma 4, and that the computation component will still be working. So, the computation
component will set x?(t

′) = x(t
′) and y?(t

′) = y(t
′) for each t′ < tn. It will also set x?(tn) = x(tn),

and then it will compute h
(
x(0), y(0), x(1), y(1), ..., x(tn)

)
correctly. Call this expression y′. All

edges leading to the output control and control vertices will still have weights within ε of their original
values, so it will be able to make voc[tn] output 4y′ − 2, all other output control vertices output 0, and
none of the copies of M ′ provide a nonzero input to the output vertex. The output of voc[tn] is 0 in all
timesteps prior to tn, so the weight of the edge leading from it to the output vertex at the start of step
tn is within ε of its original value. So, the output vertex will receive a total input that is within 2ε of
49
50 (2y′ − 1), and give an output that is within 6ε of 493

503 (2y′ − 1). That is within 1/2 of 2y′ − 1, as
desired.
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This allows us to prove that we can emulate an arbitrary algorithm by using the fact that the output of
any efficient algorithm can be expressed as an efficiently computable function of its inputs and some
random bits. More formally, we have the following (re-statement of Theorem 2).
Theorem 5. For each n > 0, let PX be a probability measure on {0, 1}n, and PF be a probability
measure on the set of functions from {0, 1}n to {0, 1}. Also, let B1/2 be the uniform distribution on
{0, 1}, tn be polynomial in n, and δ ∈ [−1/n2tn, 1/n

2tn]tn×|E(Gn)|, x(i) ∈ {0, 1}n. Next, define
αn such that there is some algorithm that takes tn samples (xi, F (xi)) where the xi are independently
drawn from PX and F ∼ PF , runs in polynomial time, and learns (PF , PX ) with accuracy α. Then
there exists γ > 0, and a polynomial-sized neural net (Gn, f) such that using perturbed stochastic
gradient descent with noise δ, learning rate γ, and loss function L(x) = x2 to train (Gn, f) on
tn samples ((2xi − 1, 2ri − 1), 2F (xi) − 1) where (xi, ri) ∼ PX × B1/2 learns (PF , PX ) with
accuracy α− o(1).

Proof. Let A be an efficient algorithm that learns (PF , PX ) with accuracy α, and tn be a polynomial
in n such that A uses fewer than tn samples and random bits with probability 1 − o(1). Next,
define hn{0, 1}(n+1)tn+tn+n→{0,1} such that the algorithm outputs hn(z1, ..., ztn , b1, ..., btn , x

′) if
it receives samples z1, ..., ztn , random bits b1, ..., btn and final input x′. There exists a polynomial
t?n such that A computes hn(z1, ..., ztn , b1, ..., btn , x

′) in t?n or fewer steps with probability 1− o(1)
given samples z1, ..., ztn generated by a function drawn from (PF , PX ), random bits b1, ..., btn ,
and x′ ∼ PX . So, let h′n(z1, ..., ztn , b1, ..., btn , x

′) be hn(z1, ..., ztn , b1, ..., btn , x
′) if A computes

it in t?n or fewer steps and 0 otherwise. h′n can always be computed in polynomial time, so by the
previous lemma there exists a polynomial sized neural net (Gn, f) that gives an output within 1/2 of
2h′n((x1, y1), ..., (xtn , ytn), b1, ..., btn , x

′)−1 with probability 1−o(1) when it is trained using noisy
SGD with noise ∆, learning rate 2716/3324, and loss function L on ((2xi − 1, 2bi − 1), 2F (xi)− 1)
and then run on 2x′ − 1. When the (xi, yi) are generated by a function drawn from (PF , PX ), and
x′ ∼ PX , using A to learn the function and then compute it on x′ yields h′n(z1, ..., ztn , b1, ..., btn , x

′)
with probability 1− o(1). Therefore, training this net with noisy SGD in the manner described learns
(PF , PX ) with accuracy α− o(1).

Remark 12. Like in the noise free case it would be possible to emulate a metaalgorithm that learns
any function that can be learned from nc samples in nc time instead of an algorithm for a specific
distribution. However, unlike in the noise free case there is no easy way to adapt the metaalgorithm
to cases where we do not have an upper bound on the number of samples needed.
Remark 13. Throughout the learning process used by the last theorem and lemma, every control
vertex, output control vertex, and vertex in the computation component always takes on a value where
the activation function has derivative 0. As such, the weights of any edges leading to these vertices
stay within ε of their original values. Also, the conditions of lemma 4 are satisfied, so none of the
edge weights in the memory component go above ε′ more than double their original values. That
leaves the edges from the output control vertices to the output vertex. Each output vertex only takes
on a nonzero value once, and on that step it has a value of 2. The derivative of the loss function with
respect to the input to the output vertex is at most 12, so each such edge weight changes by at most
24γ + ε over the course of the algorithm. So, none of the edge weights go above a constant (i.e.,
2242325) during the training process.

4.3 Additional comments on the emulation

The previous result uses choices of a neural net and SGD parameters that are in many ways unrea-
sonable. This choice of activation function is not used in practice, many of the vertices do not have
edges from the constant vertex, and the learning rate is deliberately chosen to be so high that it keeps
overshooting the minima. If one wanted to do something normal with a neural net trained by SGD
one is unlikely to do it that way, and using it to emulate an algorithm is much less efficient than just
running the algorithm directly, so this is unlikely to come up.

In order to emulate a learning algorithm with a more reasonable neural net and choice of parameters,
we will need to use the following ideas in addition to the ideas from the previous result. First of all,
we can control which edges tend to have their weights change significantly by giving edges that we
want to change a very low starting weight and then putting high weight edges after them to increase
the derivative of the output with respect to them. Secondly, rather than viewing the algorithm we are
trying to emulate as a fixed circuit, we will view it as a series of circuits that each compute a new
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output and new memory values from the previous memory values and the current inputs. Thirdly, a
lower learning rate and tighter restrictions on how quickly the network can change prevent us from
setting memory values in one step. Instead, we initialize the memory values to a local maximum so
that once we perturb them, even slightly, they will continue to move in that direction until they take
on the final value. Fourth, in most steps the network will not try to learn anything, so that with high
probability all memory values that were set in one step will have enough time to stabilize before the
algorithm tries to adjust anything else. Finally, once we have gotten to the point that the algorithm is
ready to approximate the function, its estimates will be connected to the output vertex, and the output
will gradually become more influenced by it over time as a basic consequence of SGD.

5 Proofs of negative results

5.1 Proof of Theorem 3

Recall that for a sample set S(t)
m = {X(t)

1 , . . . , X
(t)
m },

P̂
S

(t)
m

=
1

m

m∑
i=1

δ
X

(t)
i

(10)

and

W (t) = W (t−1) − EX∼P̂
S
(t)
m

Gt−1(W (t−1)(X), F (X)) + Z(t), t = 1, . . . , T. (11)

Proof of Theorem 3. Consider running the descent algorithm on either true data labelled with F or
random data labelled with random labels, i.e.,

W
(t)
H = W

(t−1)
H − E

(X,Y )∼D(t)
H,m

Gt−1(W (t−1)(X), Y ) + Z(t), t = 1, . . . , T, (12)

where

D
(t)
H,m(x, y) =

{
P
S

(t)
m

(x)(1/2) if H = ?,

P
S

(t)
m

(x)δF (X)(y) if H = F.
(13)

Denote by Q(t)
H the probability distribution of W (t)

H and let S(≤t)
m := (S

(1)
m , . . . , S

(t)
m ). We then have

the following.

P{W (T )
F (X) = F (X)} ≤ P{W (T )

? (X) = F (X)}+ E
F,S

(≤T )
m

d(Q
(T )
F , Q

(T )
? |F, S(≤T )

m )TV (14)

= 1/2 + E
F,S

(≤T )
m

d(Q
(T )
F , Q

(T )
? |F, S(≤T )

m )TV . (15)

For t ∈ [T + 1] H,h ∈ {F, ?}, define

W
(t−1)
H,h = W

(t−1)
H −

(
E
(X,Y )∼D(t)

h,m

Gt−1(W
(t−1)
H (X), Y )

)
+ Z(t), (16)

and denote by Q(t−1)
H,h the distribution of W (t−1)

H,h . Note that the above corresponds to taking one step
using the data from h after t− 1 steps using the data from H .

Using the triangular and Data-Processing inequalities, we have

d(Q
(t)
F , Q

(t)
? |F, S(≤t)

m )TV (17)

≤ d(Q
(t−1)
F,F , Q

(t−1)
?,F |F, S(≤t)

m )TV + d(Q
(t−1)
?,F , Q

(t−1)
?,? |F, S(≤t)

m )TV (18)

≤ d(Q
(t−1)
F , Q

(t−1)
? |F, S(<t)

m )TV + d(Q
(t−1)
?,F , Q

(t−1)
?,? |F, S(≤t)

m )TV (19)

= d(Q
(t−1)
F , Q

(t−1)
? |F, S(<t)

m )TV (20)

+ TV (E
(X,Y )∼D(t)

m,F

Gt−1(W
(t−1)
? (X), Y ) + Z(t),E

(X,Y )∼D(t)
m,?

Gt−1(W
(t−1)
? (X), Y ) + Z(t)|F, S(≤t)

m ).

(21)
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Let t be fixed, S = (X,Y ), g(S) := Gt−1(W
(t−1)
? (X), Y ), D· = D

(t)
· . We have by Pinsker’s

inequality18,

TV (ES∼Dm,F
g(S) + Z(t),ES∼Dm,?g(S) + Z(t)|F, S(≤t)

m , Z(<t)) ≤ 1

2σ
‖ES∼Dm,F

g(S)− ES∼Dm,?g(S)‖2,
(22)

and by Cauchy-Schwarz,

EFTV (ES∼Dm,F
g(S) + Z(t),ES∼Dm,?

g(S) + Z(t)|F, S(≤t)
m , Z(<t)) (23)

≤ 1

2σ
(EF ‖ES∼Dm,F

g(S)− ES∼Dm,?
g(S)‖22)1/2. (24)

We now investigate a single component e ∈ E(G) in the above norm, i.e.,

EF (ES∼Dm,F
ge(S)− ES∼Dm,?

ge(S))2. (25)

We have

EF (ES∼Dm,F
ge(S)− ES∼Dm,?

ge(S))2 = EF (ES∼Dm,?
ge(S)(1−Dm,F (S)/Dm,?(S)))2 (26)

= EF 〈ge, (1−Dm,F /Dm,?)〉2Dm,?
(27)

= EF 〈g⊗2e , (1−Dm,F /Dm,?)
⊗2〉D2

m,?
(28)

= 〈g⊗2e ,EF (1−Dm,F /Dm,?)
⊗2〉D2

m,?
(29)

≤ [(ES∼Dm,?
ge(S)2)‖EF (1−Dm,F /Dm,?)

⊗2‖D2
m,?

] (30)

= (ES∼Dm,?ge(S)2)(ES,S′ [EF (1−Dm,F (S)/Dm,?(S))(1−DF,m(S′)/Dm,?(S
′))]2)1/2 (31)

= (ES∼Dm,?ge(S)2)(EF,F ′ [ES∼Dm,?(1−Dm,F (S)/Dm,?(S))(1−DF ′,m(S)/Dm,?(S))]2)1/2

(32)

= (ES∼Dm,?
ge(S)2)CP (m, t)1/2 (33)

where (28) uses a tensor lifting to bring the expectation over F on the second component before using
the Cauchy-Schwarz inequality, and where (31) uses replicates, i.e., (EZ)2 = EZ1Z2 for Z,Z1, Z2

i.i.d., with

CP (m, t) := EF,F ′ [ES∼D(t)
m,?

(1− 2δF (X)(Y ))(1− 2δF ′(X)(Y ))]2 (34)

= EF,F ′ [EX∼P
S
(t)
m

F (X)F ′(X)]2. (35)

Therefore, we have

EFTV (E
(X,Y )∼D(t)

m,F

Gt−1(W
(t−1)
? (X), Y ) + Z(t),E

(X,Y )∼D(t)
m,?
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(36)

≤ 1

σ
(E
S∼D(t)

m,?
‖G(W

(t−1)
? (X), Y )‖22)1/2CP (m, t)1/4 (37)

and

TV (E
(X,Y )∼D(t)

m,F

Gt−1(W
(t−1)
? (X), Y ) + Z(t),E

(X,Y )∼D(t)
m,?

Gt−1(W
(t−1)
? (X), Y ) + Z(t))

(38)

≤ 1

σ
E
S

(≤t)
m ,Z(<t)(ES∼D(t)

m,?
‖Gt−1(W

(t−1)
? (X), Y )‖22)1/2CP (m, t)1/4. (39)

Defining the expected gradient norm as

GN(m, t) := E
S∼D(t)

m,?
‖Gt−1(W

(t−1)
? (X), Y )‖22. (40)

18One can get an additional 1/π factor by exploiting the Gaussian distribution more tightly.
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we get

E
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(≤T )
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(T )
F , Q

(T )
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m )TV ≤
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σ
·
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m
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≤ 1

σ
·
T∑
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EZ(<t)(E
S

(≤t)
m
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S

(≤t)
m
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=
1

σ
·
T∑
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S
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m

GN(m, t))1/2 · (ESmCP (m, 1)1/2)1/2

(43)

and thus
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E
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?
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(45)
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CP 1/4

m ·
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(EZ(<t)E
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(<t)
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E
S∼D(t)

?
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(46)

Finally note that

CPm = EF,F ′ESm
[EX∼PSm

F (X)F ′(X)]2 = 1/m+ (1− 1/m)CP∞. (47)

Proof of Corollary 2. GN is trivially bounded by A2E, so

E
F,S

(≤T )
m

d(Q
(T )
F , Q

(T )
? |F, S(≤T )

m )TV ≤
A

σ
E1/2T (1/m+ (1− 1/m)CP∞)1/4. (48)

5.1.1 Strengthening of Theorem 3 for parities

We now show the tighter bound with the term CP1/2 rather than CP1/4 for parities, which implies the
following result that is a variant of the lower-bound from [Kea98] with slightly different exponents.

Theorem 6. For each n > 0, let (f, g) be a neural net of polynomial size in n. Run gradient
descent on (f, g) with less than 2n/10 time steps, a learning rate of at most 2n/10, Gaussian noise
with variance at least 2−n/10 and overflow range of at most 2n/10. For all sufficiently large n, this
algorithm fails at learning parities with accuracy 1/2 + 2−n/10.

We first need the following inequalities.

Lemma 7. Let n > 0 and f : Bn+1 → R. Also, let X be a random element of Bn and Y be a
random element of B independent of X . Then∑

s⊆[n]
(Ef(X,Y )− Ef(X, ps(X)))2 ≤ Ef2(X,Y )

Proof. For each x ∈ Bn, let g(x) = f(x, 1)− f(x, 0).
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∑
s⊆[n]

(E[f(X,Y )]− E[f(X, ps(X))])2 (49)

=
∑
s⊆[n]

(
2−n−1

∑
x∈Bn

(f(x, 0) + f(x, 1)− 2f(x, ps(x)))

)2

(50)

=
∑
s⊆[n]

(
2−n−1

∑
x∈Bn

g(x)(−1)ps(x)

)2

(51)

= 2−2n−2
∑

x1,x2∈Bn,s⊆[n]
g(x1)(−1)ps(x1) · g(x2)(−1)ps(x2) (52)

= 2−2n−2
∑

x1,x2∈Bn

g(x1)g(x2)
∑
s⊆[n]

(−1)ps(x1)(−1)ps(x2) (53)

= 2−2n−2
∑
x∈Bn

2ng2(x) (54)

= 2−n−2
∑
x∈Bn

[f(x, 1)− f(x, 0)]2 (55)

≤ 2−n−1
∑
x∈Bn

f2(x, 1) + f2(x, 0) (56)

= E[f2(X,Y )] (57)
where we note that the equality from (51) to (54) is Parserval’s identity for the Fourier-Walsh basis
(here we used Boolean outputs for the parity functions).

Note that by the triangular inequality the above implies
VarFEXf(X,F (X)) ≤ 2−nEX,Y f

2(X,Y ). (58)
As mentioned earlier, this is similar to Theorem 1 in [SSS17] which requires in addition the function
to be the gradient of a 1-Lipschitz loss function.

We also mention the following corollary of Lemma 7 that results from Cauchy-Schwarz.
Corollary 3. Let n > 0 and f : Bn+1 → R. Also, let X be a random element of Bn and Y be a
random element of B independent of X . Then∑

s⊆[n]
|E[f((X,Y ))]− E[f((X, ps(X)))]| ≤ 2n/2

√
E[f2((X,Y ))].

In other words, the expected value of any function on an input generated by a random parity function
is approximately the same as the expected value of the function on a true random input.

Proof of Theorem 6. We follow the proof of Theorem 3 until (26), where we use instead Lemma 7,
to write (for m =∞)

EF (ES∼Dm,F
ge(S)− ES∼Dm,?

ge(S))2 ≤ 2−nES∼Dm,?
g2e(Z) (59)

where 2−n is the CP for parities. Thus in the case of parities, we can remove a factor of 1/2 on the
exponent of the CP. Further, the Cauchy-Schwartz inequality in (42) is no longer needed, and the
junk-flow can be defined in terms of the sum of gradient norms, rather than taking norms squared and
having a root on the sum; this does not however change the scaling of the junk-flow. The theorem
follows by plugging the parameters of the statement.

6 Some challenging functions

6.1 Parities

We start with the well-known problem of learning parities, which corresponds to PX being uniform
on {+1,−1}n and PF being uniform on the set of parity functions defined by P = {ps : s ⊆ [n]},
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Figure 4: Two images of 132 = 169 squares colored black with probability 1/2. The left (right)
image has an even (odd) number of black squares. The experiment illustrates the incapability of deep
learning to learn the parity.

where ps : {+1,−1}n → {+1,−1} is such that

ps(x) =
∏
i∈s

xi.

So nature picks S uniformly at random in 2[n], and with access to P but not to S, the problem is to
learn which set S was chosen from samples (X, pS(X)) as defined in previous section.

Note that without noise or with low enough noise, this is not a hard problem. Even exact learning of
the set S (with high probability) can be achieved with an algorithm that builds a basis from enough
samples (e.g., n+ Ω(log(n))) and solves the resulting system of linear equations to reconstruct S.

This seems however far from how deep learning proceeds. For instance, descent algorithms are
“memoryless” in that they update the weights of the NN at each step but do not a priori explicitly
remember the previous steps. Since each sample (say for SGD) gives very little information about the
true S, it thus seems unlikely for SGD to make any progress on a polynomial time horizon. However,
it is not trivial to argue this formally if we allow the NN to be arbitrarily large and with arbitrary
initialization (albeit of polynomial complexity), and in particular inspecting the gradient will typically
not suffice. In fact, we showed that this is wrong, and SGD can learn the parity function with a proper
initialization — See Section 4.

As discussed in Section 2, in the case of parities, our negative result for any initialization can be
converted into a negative result for random initialization. We believe however that the randomness
in a random initalization would actually be enough to account for any small randomness added
subsequently in the algorithm steps. Namely, that one cannot learn parities with GD/SGD in poly-
time with a random initialization.

To illustrate the phenomenon, we consider the following data set and numerical experiment in PyTorch
[PGC+17]. The elements in X are images with a white background and either an even or odd number
of black dots, with the parity of the dots determining the label — see Figure 4. The dots are drawn by
building a k × k grid with white background and activating each square with probability 1/2.

We then train a neural network to learn the parity label of these images with a random initalization.
The architecture is a 3 hidden linear layer perceptron with 128 units and ReLU non linearities trained
using binary cross entropy. The training19 and testing dataset are composed of 1000 images of
grid-size k = 13. We used PyTorch implementation of SGD with step size 0.1 and i.i.d. rescaled
uniform weight initialization [HZRS15].

Figure 5 show the evolution of the training loss, testing and training errors. As can be seen, the net
can learn the training set but does not generalize better than random guessing.

6.2 Community detection and connectivity

Parities are not the most common type of functions used to generate real signals, but they
are central to the construction of good codes (in particular the most important class of codes,
i.e., linear codes, that rely heavily on parities). We mention now a few specific examples of

19We pick samples from a pre-set training set v.s. sampling fresh samples; these are not expected to behave
differently.
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Figure 5: Training loss (left) and training/testing errors (right) for up to 80 SGD epochs.

functions that we believe would be also difficult to learn with deep learning. Connectivity is
another notorious example discussed in the Perceptron book of Minsky-Papert [MP87]. In that
vain, we provide here a different and concrete question related to connectivity and community
detection. We then give another example of low cross-predictability distribution in arithmetic learning.

Consider the problem of determining whether or not some graphs are connected. This could be
difficult because it is a global property of the graph, and there is not necessarily any function of
a small number of edges that is correlated with it. Of course, that depends on how the graphs are
generated. In order to make it difficult, we define the following probability distribution for random
graphs.

Definition 8. Given n,m, r > 0, letAER(n,m, r) be the probability distribution of n-vertex graphs
generated by the following procedure. First of all, independently add an edge between each pair of
vertices with probability m/n (i.e., start with an Erdős-Rényi random graph). Then, randomly select
a cycle of length less than r and delete one of its edges at random. Repeat this until there are no
longer any cycles of length less than r.

Now, we believe that deep learning with a random initialization will not be able to learn to
distinguish a graph drawn from AER(n, 10 ln(n),

√
ln(n)) from a pair of graphs drawn from

AER(n/2, 10 ln(n),
√

ln(n)), provided the vertices are randomly relabeled in the latter case. That
is, deep learning will not distinguish between a patching of two such random graphs (on half of the
vertices) versus a single such graph (on all vertices). Note that a simple depth-first search algorithm
would learn the function in poly-time. More generally, we believe that deep learning would not solve
community detection on such variants pruned-SBM models20 (with edges allowed between the clus-
ters as in a stochastic block model with similar loop pruning), as connectivity v.s. disconnectivity21 is
an extreme case of community detection.

The key issue is that no subgraph induced by fewer than
√

ln(n) vertices provides significant
information on which of these cases apply. Generally, the function computed by a node in the net
can be expressed as a linear combination of some expressions in small numbers of inputs and an
expression that is independent of all small sets of inputs. The former cannot possibly be significantly
correlated with the desired output, while the later will tend to be uncorrelated with any specified
function with high probability. As such, we believe that the neural net would fail to have any nodes
that were meaningfully correlated with the output, or any edges that would significantly alter its
accuracy if their weights were changed. Thus, the net would have no clear way to improve.

6.3 Arithmetic learning

Consider trying to teach a neural net arithmetic. More precisely, consider trying to teach it the
following function. The function takes as input a list of n numbers that are written in base n and are

20It would be interesting to investigate the approach of [CLB17] on such models.
21Another similar example is to consider a single cycle v.s. two disjoint cycles on half of the vertices.
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n digits long, combined with a number that is n+ 1 digits long and has all but one digit replaced by
question marks, where the remaining digit is not the first. Then, it returns whether or not the sum
of the first n numbers matches the remaining digit of the final number. So, it would essentially take
expressions like the following, and check whether there is a way to replace the question marks with
digits such that the expression is true.

120

+112

+121

=??0?

Here, we can define a class of functions by defining a separate function for every possible ordering
of the digits. If we select inputs randomly and map the outputs to R in such a way that the average
correct output is 0, then this class will have a low cross predictability. Obviously, we could still
initialize a neural net to encode the function with the correct ordering of digits. However, if the net is
initialized in a way that does not encode the digit’s meanings, then deep learning will have difficulties
learning this function comparable to its problems learning parity. Note that one can sort out which
digit is which by taking enough samples where the expression is correct and the last digit of the sum
is left, using them to derive linear equation in the digits (mod n), and solving for the digits.

We believe that if the input contained the entire alleged sum, then deep learning with a random
initialization would also be unable to learn to determine whether or not the sum was correct. However,
in order to train it, one would have to give it correct expressions far more often than would arise
if it was given random inputs drawn from a probability distribution that was independent of the
digits’ meanings. As such, our notion of cross predictability does not apply in this case, and the
techniques we use in this paper do not work for the version where the entire alleged sum is provided.
The techniques instead apply to the above version, and GD-based deep learning cannot learn this
arithmetic that is efficiently learnable by other means.
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