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Abstract

We investigate the problem of regression where one is allowed to abstain from pre-
dicting. We refer to this framework as regression with reject option as an extension
of classification with reject option. In this context, we focus on the case where
the rejection rate is fixed and derive the optimal rule which relies on thresholding
the conditional variance function. We provide a semi-supervised estimation pro-
cedure of the optimal rule involving two datasets: a first labeled dataset is used
to estimate both regression function and conditional variance function while a
second unlabeled dataset is exploited to calibrate the desired rejection rate. The
resulting predictor with reject option is shown to be almost as good as the optimal
predictor with reject option both in terms of risk and rejection rate. We additionally
apply our methodology with kNN algorithm and establish rates of convergence for
the resulting kNN predictor under mild conditions. Finally, a numerical study is
performed to illustrate the benefit of using the proposed procedure.
Keywords: Regression; Regression with reject option; kNN; Predictor with reject
option.

1 Introduction

Confident prediction is a fundamental problem in statistical learning for which numerous efficient
algorithms have been designed, e.g., neural-networks, kernel methods, or k-Nearest-Neighbors (kNN)
to name a few. However, even state-of-art methods may fail in some situations, leading to bad
decision-making. Obvious damageable incidences of an erroneous decision may occur in several
fields such as medical diagnosis, where a wrong estimation can be fatal. In this work, we provide a
novel statistical procedure designed to handle these cases. In the specific context of regression, we
build a prediction algorithm that allows to abstain from predicting when the doubt is too important. As
a generalization of the classification with reject option setting [5, 6, 7, 13, 15, 18, 25], this framework
is naturally referred to as regression with reject option. In the spirit of [7], we opt here for a strategy
where the predictor can abstain up to a fraction ε ∈ (0, 1) of the data. The merit of this approach is
that it allows human action on the proportion of the data where the prediction is too difficult while
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standard machine learning algorithms can be exploited to perform the predictions on the other fraction
of the data. The difficulty to address a prediction is then automatically evaluated by the procedure.
From this perspective, this strategy may improve the efficiency of the human intervention.

In this paper, we investigate the regression problem with reject option when the rejection (or ab-
stention) rate is controlled. Specifically, we provide a statistically principled and computationally
efficient algorithm tailored to this problem. We first formally define the regression with reject option
framework, and explicitly exhibit the optimal predictor with bounded rejection rate in Section 2.
This optimal rule relies on a thresholding of the conditional variance function. This result is the
bedrock of our work and suggests the use of a plug-in approach. We propose in Section 3 a two-step
procedure which first estimates both the regression function and the conditional variance function
on a first labeled dataset and then calibrates the threshold responsible for abstention using a second
unlabeled dataset. Under mild assumptions, we show that our procedure performs as well as the
optimal predictor both in terms of risk and rejection rate. We emphasize that our procedure can be
exploited with any off-the-shell estimator. As an example we apply in Section 4 our methodology
with the kNN algorithm for which we derive rates of convergence. Finally, we perform numerical
experiments in Section 5 which illustrate the benefits of our approach. In particular, it highlights the
flexibility of the proposed procedure.

Rejection in regression is extremely rarely considered in the literature, an exception being [26] that
views the reject option from a different perspective. There, the authors used the reject option from
the side of ε-optimality, and therefore ensures that the prediction is inside a ball with radius ε around
the regression function with high probability. Their methodology is intrinsically associated with
empirical risk minimization procedures. In contrast, our method is applicable to any estimation
procedure. Closer related works to ours appears in classification with reject option literature [2, 5, 6,
7, 13, 15, 18, 25]. In particular, the present work can be viewed as an extension of the classification
with reject option setting. Indeed, from a general perspective, the present contribution brings a
deeper understanding of the reject option. Importantly, the conditional variance function appears
to capture the main feature behind the abstention decision. In [7], the authors also provide rates of
convergence for plug-in type approaches in the case of bounded rejection rate. However, their rates
of convergence holds only under some margin type assumption [1, 19] and a smoothness assumption
on the considered estimator. On the contrary, we do not require these assumptions to get valid rates
of convergence.

2 Regression with reject option

In this section we introduce the regression with reject option setup and derive a general form of
the optimal rule in this context. We additionally highlight the case of fixed rejection rate as our
main framework. First of all, before we proceed, let us introduce some preliminary notation. Let
(X,Y ) be a random couple taking its values in Rd × R: here X denotes a feature vector and Y is
the corresponding output. We denote by P the joint distribution of (X,Y ) and by PX the marginal
distribution of the featureX . Let x ∈ Rd, we introduce the regression function f∗(x) = E [Y |X = x]
as well as the conditional variance function σ2(x) = E

[
(Y − f∗(X))2|X = x

]
. We will give due

attention to these two functions in our analysis. In addition, we denote by ‖·‖ the Euclidean on Rd.
Finally, | · | stands for the cardinality when dealing with a finite set.

2.1 Predictor with reject option

Let f be some measurable real-valued function which must be viewed as a prediction function.
A predictor with reject option Γf associated to f is defined as being any function that maps Rd
onto P (R) such for all x ∈ Rd, the output Γf (x) ∈ {∅, {f(x)}}. We denote by Υf the set of all
predictors with reject option that relies on f . Hence, in this framework, there are only two options
for a particular x ∈ Rd: whether the predictor with reject option outputs the empty set, meaning
that no prediction is produced for x; or the output Γf (x) is of size 1 and the prediction coincides
with the value f(x). The framework of regression with reject option naturally brings into play two
important characteristics of a given predictor Γf . The first one is the rejection rate that we denote by
r (Γf ) = P (|Γf (X)| = 0) and the second one is the L2 error when prediction is performed

Err (Γf ) = E
[
(Y − f(X))2 | |Γf (X)| = 1

]
.
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The ultimate goal in regression with reject option is to build a predictor Γf with a small rejection rate
that achieves a small conditional L2 error as well. A natural way to make this happen is to embed
these quantities into a measure of performance. To this end, let consider the following risk

Rλ (Γf ) = E
[
(Y − f(X))21{|Γf (X)|=1}

]
+ λ r (Γf ) ,

where λ ≥ 0 is a tuning parameter which is responsible for compromising error and rejection rate:
larger λ’s result in predictors Γf with smaller rejection rates, but with larger errors. Hence, λ can be
interpreted as the price to pay for using the reject option. Note that the above risk Rλ has already
been considered by [13] in the classification framework.

Minimizing the riskRλ, we derive an explicit expression of an optimal predictor with reject option.
Proposition 2.1. Let λ ≥ 0, and consider

Γ∗λ ∈ arg minRλ(Γf ) ,

where the minimum is taken over all predictors with rejection option Γf ∈ Υf and all measurable
functions f . Then we have that

1. The optimal predictor with rejected option Γ∗λ can be written as

Γ∗λ(X) =

{
{f∗(X)} if σ2(X) ≤ λ
∅ otherwise .

(1)

2. For any λ < λ′, the following holds

Err (Γ∗λ) ≤ Err (Γ∗λ′) and r (Γ∗λ) ≥ r (Γ∗λ′) .

Interestingly, this result shows that the oracle predictor relies on thresholding the conditional variance
function σ2. We believe that this is an important remark that provides an essential characteristic of
the reject option in regression but also in classification. Indeed, it has been shown that the optimal
classifier with reject option for classification is obtained by thresholding the function f∗ (see for
instance [13]). However, in the binary case where Y ∈ {0, 1}, one has σ2(x) = f∗(x)(1− f∗(x)),
and then thresholding σ2 and f∗ are equivalent.
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The second point of the proposition shows that the error
and the rejection rate of the optimal predictor are working
in two opposite directions w.r.t. λ and then a compromise
is required. We illustrate this aspect with the airfoil
dataset, and the kNN predictor (see Section 5) in the con-
tiguous Figure 1. The two curves correspond to the evalua-
tion of the error Err(Γ̂λ) (blue-solid line) and the rejection
rate r(Γ̂λ) (red-dashed line) as a function of λ. In general
any choice of the parameter λ is difficult to interpret. In-
deed, one of the major drawbacks of this approach is that
any fixed λ (or even an “optimal” value of this parameter)
does not allow to control neither of the two parts of the
risk function. Especially, the rejection rate can be arbitrary
large.

For this reason, we investigate in Section 2.2 the setting
where the rejection rate is fixed. We understand this rejec-
tion rate as a budget one has beforehand.

2.2 Optimal predictor with fixed rejection rate

In this section, we introduce the framework where the rejection rate is fixed or at least bounded. That
is to say, for a given predictor with reject option Γf and a given rejection rate ε ∈ (0, 1), we ask that
Γf satisfies following constraint r (Γf ) ≤ ε. This kind of constraint has also been considered by [7]
in the classification setting. Our objective becomes to solve the constrained problem2:

Γ∗ε ∈ arg min{Err (Γf ) : r (Γf ) ≤ ε} . (2)
2By abuse of notation, we refer to Γ∗

λ as the solution of the penalized problem and to Γ∗
ε as the solution of

the constrained problem.
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In the same vein as Proposition 2.1, we aim at writing an explicit expression of Γ∗ε , referred in
what follows to as ε-predictor. However, this expression is not well identified in the general case.
Therefore, we make the following mild assumption on the distribution of σ2(X), which translates the
fact that the function σ2 is not constant on any set with non-zero measure w.r.t. PX .
Assumption 2.2. The cumulative distribution function Fσ2 of σ2(X) is continuous.

Let us denote by F−1
σ2 the generalized inverse of the cumulative distribution Fσ2 defined for all

u ∈ (0, 1) as F−1
σ2 (u) = inf{t ∈ R : Fσ2(t) ≥ u}. Under Assumption 2.2 and from Proposition 2.1,

we derive an explicit expression of the ε-predictor Γ∗ε given by (2).

Proposition 2.3. Let ε ∈ (0, 1), and let λε = F−1
σ2 (1−ε). Under Assumption 2.2, we have Γ∗ε = Γ∗λε .

As an immediate consequence of the above proposition and properties on quantile functions is that

r (Γ∗ε) = P (|Γ∗ε(X)| = 0) = P
(
σ2(X) ≥ λε

)
= P

(
Fσ2(σ2(X)) ≥ 1− ε

)
= ε ,

and then the ε-predictor has rejection rate exactly ε. The continuity Assumption 2.2 is a sufficient
condition to ensure that this property holds true. Besides, from this assumption, the ε-predictor can
be expressed as follows

Γ∗ε(x) =

{
{f∗(x)} if Fσ2(σ2(x)) ≤ 1− ε
∅ otherwise .

(3)

Finally, as suggested by Proposition 2.1 and 2.3, the performance of a given predictor with reject
option Γf is measured through the riskRλ when λ = λε. Then, its excess risk is given by

Eλε (Γf ) = Rλε(Γf )−Rλε(Γ∗ε) ,

for which the following result provides a closed formula.
Proposition 2.4. Let ε ∈ (0, 1). For any predictor Γf , we have

Eλε (Γf ) = EX
[
(f∗(X)− f(X))21{|Γf (X)|=1}

]
+ EX

[
|σ2(X)− λε|1{|Γf (X)|6=|Γ∗ε(X)|}

]
.

The above excess risk consists of two terms that translates two different aspect of the regression with
reject option problem. The first one is related to the L2 risk of the prediction function f and is rather
classical in the regression setting. On contrast, the second is related to the reject option problem. It is
dictated by the behavior of the conditional variance σ2 around the threshold λε.

3 Plug-in ε-predictor with reject option

We devote this section to the study of a data-driven predictor with reject option based on the plug-in
principle that mimics the optimal rule derived in Proposition 2.3.

3.1 Estimation strategy

Equation (3) indicates that a possible way to estimate Γ∗ε relies on the plug-in principle. To be
more specific, Eq. (3) suggests that estimating f∗ and σ2, as well as the cumulative distribution Fσ2

would be enough to get an estimator of Γ∗ε . To build such predictor, we first introduce a learning
sample Dn = {(Xi, Yi), i = 1, . . . , n} which consists of n independent copies of (X,Y ). This
dataset helps us to construct estimators f̂ and σ̂2 of the regression function f∗ and the conditional
variance function σ2 respectively. In this paper, we focus on estimator σ̂2 which relies on the
residual-based methods [11]. Based on Dn, the estimator σ̂2 is obtained by solving the regression
problem of the output variable (Y − f̂(X))2 on the input variable X . Estimating the last quantity
Fσ2 is rather simple by replacing cumulative distribution function by its empirical version. Since this
term only depends on the marginal distribution PX , we estimate it using a second unlabeled dataset
DN = {Xn+1, . . . , Xn+N} composed of N independent copies of X . This is an important feature
of our methodology since unlabeled data are usually easy to get. The dataset DN is assumed to be
independent of Dn. We set

F̂σ̂2(·) =
1

N

N∑
i=1

1{σ̂2(Xn+i)≤·} ,
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as an estimator for Fσ2 . With this notation, the plug-in ε-predictor is the predictor with reject option
defined for each x ∈ Rd as

Γ̂ε(x) =

{{
f̂(x)

}
if F̂σ̂2(σ̂2(x)) ≤ 1− ε

∅ otherwise .
(4)

It is worth noting that the proposed methodology is flexible enough to rely upon any off-the-shelf
estimators of the regression function f∗ and the conditional variance function σ2.

3.2 Consistency of plug-in ε-predictors

In this part, we investigate the statistical properties of the plug-in ε-predictors with reject option. This
analysis requires an additional assumption on the following quantity

Fσ̂2(·) = PX
(
σ̂2(X) ≤ ·|Dn

)
.

Assumption 3.1. The cumulative distribution function Fσ̂2 of σ̂2(X) is continuous.

This condition is analogous to Assumption 2.2 but deals with the estimator σ̂2(X) instead of the true
conditional variance σ2(X). This difference makes Assumption 3.1 rather weak as the estimator
σ̂2(X) is chosen by the practitioner. Moreover, we can make any estimator satisfy this condition by
providing a smoothed version of it. We illustrate this strategy with kNN algorithm in Section 4. Next
theorem is the main result of this section, it establishes the consistency of the predictor Γ̂ε to the
optimal one.

Theorem 3.2. Let ε ∈ (0, 1). Assume that σ2 is bounded, f̂ is a consistent estimator of f∗ w.r.t. the
L2 risk, and σ̂2 is a consistent estimator of σ2 w.r.t. the L1 risk. Under Assumptions 2.2- 3.1, the
followings hold

E
[
Eλε

(
Γ̂ε

)]
−→

n,N→+∞
0, and E

[
|r(Γ̂ε)− ε|

]
≤ CN−1/2 ,

where C > 0 is an absolute constant.

This theorem establishes the fact that the plug-in ε-predictor behaves asymptotically as well as
the optimal ε-predictor both in terms of risk and rejection rate. The convergence of the rejection
rate requires only Assumption 3.1 which is rather weak and can even be removed following the
process detailed in Section 4.2. In particular, the theorem shows that the rejection rate of the plug-in
ε-predictor is of level ε up to a term of order O(N−1/2). This rate is similar to the one obtained in
the classification setting [7]. It relies on the difference between the cumulative distribution Fσ̂2 and
its empirical counterpart F̂σ̂2 that is controlled using Dvoretzky-Kiefer-Wolfowitz Inequality [17].
Interestingly, this result applies to any consistent estimators of f∗ and σ2.

The estimation of regression function f∗ is widely studied and suitable algorithm such as random
forests, kernel procedures, or kNN estimators can be used, see [3, 10, 20, 22, 23]. The estimation of
the conditional variance function which relies on the residual-based methods has also been extensively
studied based on kernel procedures, see for instance [9, 11, 12, 14, 21]. In the next section, we
derive rates of convergence in the case where both estimators f̂ and σ̂2 rely on the kNN algorithm.
In particular, we establish rates of convergence for σ̂2 in sup norm (see Proposition D.5 in the
supplementary material).

4 Application to kNN algorithm: rates of convergence

The plug-in ε-predictor Γ̂ε relies on estimators of the regression and the conditional variance functions.
In this section, we consider the specific case of kNN based estimations. We refer to the resulting
predictor as kNN predictor with reject option. Specifically, we establish rates of convergence for
this procedure. In addition, since kNN estimator of σ2 violates Assumption 3.1, applying our
methodology to kNN has the benefit of illustrating the smoothing technique to make this condition
be satisfied.
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4.1 Assumptions

To study the performance of the kNN predictor with reject option in the finite sample regime, we
assume that X belongs to a regular compact set C ⊂ Rd, see [1]. Besides, we make the following
assumptions.
Assumption 4.1. The functions f∗ and σ2 are Lipschitz.
Assumption 4.2 (Strong density assumption). We assume that the marginal distribution PX admits a
density µ w.r.t to the Lebesgue measure such that for all x ∈ C, we have 0 < µmin ≤ µ(x) ≤ µmax.

These two assumptions are rather classical when we deal with rate of convergence and we refer the
reader to the baseline books [10, 23]. In particular, we point out that the strong density assumption
has been introduced in the context of binary classification for instance in [1]. The last assumption
that we require highlights the behavior of σ2 around the threshold λε.
Assumption 4.3 (α-exponent assumption). We say that σ2 has exponent α ≥ 0 (at level λε) with
respect to PX if there exists c∗ > 0 such that for all t > 0

PX
(
0 < |σ2(X)− λε| ≤ t

)
≤ c∗tα .

This assumption has been first introduced in [19] and is also referred as Margin assumption in the
binary classification setting, see [16]. For α > 0, Assumption 4.3 ensures that the random variable
σ2(X) can not concentrate too much around the threshold λε. It allows to derive faster rates of
convergence. Note that, if α = 0 there is no assumption.

4.2 kNN predictor with reject option

For any x ∈ Rd, we denote by (X(i,n)(x), Y(i,n)(x)), i = 1, . . . n the reordered data according to
the `2 distance in Rd, meaning that ‖X(i,n)(x)− x‖ < ‖X(j,n)(x)− x‖ for all i < j in {1, . . . , n}.
Note that Assumption 4.2 ensures that ties occur with probability 0 (see [10] for more details). Let
k = kn be an integer. The kNN estimator of f∗ and σ2 are then defined, for all x, as follows

f̂(x) =
1

kn

kn∑
i=1

Y(i,n)(x) and σ̂2(x) =
1

kn

kn∑
i=1

(
Y(i,n)(x)− f̂(X(i,n)(x))

)2

.

Conditional on Dn, the cumulative distribution function Fσ̂2 is not continuous and then Assump-
tion 3.1 does not hold. To avoid this issue, we introduce a random perturbation ζ distributed according
to the Uniform distribution on [0, u] that is independent from every other random variable where
u > 0 is a (small) fixed real number that will be specified later. Then, we define the random variable
σ̄2(X, ζ) := σ̂2(X) + ζ. It is not difficult to see that, conditional on Dn the cumulative distribution
Fσ̄2 of σ̄2(X, ζ) is continuous. Furthermore, by the triangle inequality, the consistency of σ̂2 implies
the consistency of σ̄2 provided that u tends to 0. Therefore, we naturally define the kNN predictor
with reject option as follows.

Let (ζ1, . . . , ζN ) be independent copies of ζ and independent of every other random variable. We set

F̂σ̄2(.) =
1

N

N∑
i=1

1{σ̂2(Xn+i)+ζi≤·} ,

and the kNN ε-predictor with reject option is then defined for all x and ζ as

Γ̂ε(x, ζ) =

{{
f̂(x)

}
if F̂σ̄2(σ̄2(x, ζ)) ≤ 1− ε

∅ otherwise .

4.3 Rates of convergence

In this section, we derive the rates of convergence of the kNN ε-predictor in the following framework.
We assume that Y is bounded or that Y satisfies

Y = f∗(X) + σ(X)ξ , (5)
where ξ is independent of X and distributed according to a standard normal distribution. Note that
these assumptions covers a broad class of applications. Under these assumptions, we can state the
following result.
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Theorem 4.4. Grant Assumptions 2.2, 4.1, 4.2, and 4.3. Let ε ∈ (0, 1), if kn ∝ n2/(d+2), and
u ≤ n−1/(d+2), then the kNN ε-predictor Γ̂ε satisfies

E
[
Eλε

(
Γ̂ε

)]
≤ C

(
n−2/(d+2) + log(n)(α+1)n−(α+1)/(d+2) +N−1/2

)
,

where C > 0 is a constant which depends on f∗, σ2, c0, c∗, α, C, and on the dimension d.

Each part of the above rate describes a given feature of the problem. The first one relies on the
estimation error of the regression function. The second one, which depends in part on the parameter
α from Assumption 4.3, is due to the estimation error in sup norm of the conditional variance
E
[(

supx∈C
∣∣σ̂2(x)− σ2(x)

∣∣)] ≤ C log(n)n−1/(d+2) stated in Proposition D.5 in the supplementary
material. Notice that for α = 1, the second term is of the same order (up to logarithmic factor) as the
term corresponding to the estimation of the regression function. The last term is directly linked to the
estimation of the threshold λε. Lastly, for α > 1, we observe, provided that the size of the unlabeled
sample N is sufficiently large, that this rate is the same as the rate of f̂ in L2 norm which is then the
best situation that we can expect for the rejection setting.

5 Numerical experiments

In this section, we present numerical experiments to illustrate the performance of the plug-in ε-
predictor. The construction process of this predictor is described in Section 3.1 and relies on
estimators of the regression and the conditional variance functions. The code used for the implementa-
tion of the plug-in ε-predictor can be found at https://github.com/ZaouiAmed/Neurips2020_
RejectOption. For this experimental study, we consider the same algorithm for both estimation
tasks and build three plug-in ε-predictors based respectively on support vector machines (svm),
random forests (rf), and kNN (knn) algorithms. Besides, to avoid non continuity issues, we add the
random perturbation ζ ∼ U [0, 10−10] to all of the considered methods as described in Section 4.2.
The performance is evaluated on two benchmark datasets: QSAR aquatic toxicity and Airfoil Self-
Noise coming from the UCI database. We refer to these two datasets as aquatic and airfoil
respectively. For all datasets, we split the data into three parts (50 % train labeled, 20 % train
unlabeled, 30 % test). The first part is used to estimate both regression and variance functions, while
the second part is used to compute the empirical cumulative distribution function. Finally, for each
ε ∈ {i/10, i = 0, . . . , 9} and each plug-in ε-predictor, we compute the empirical rejection rate r̂ and
the empirical error Êrr on the test set. This procedure is repeated 100 times and we report the average
performance on the test set alongside its standard deviation. We employ the 10-fold cross-validation
to select the parameter k ∈ {5, 10, 15, 20, 30, 50, 70, 100, 150} of the kNN algorithm. For random
forests and svm procedures, we used respectively the R packages randomForest and e1071 with
default parameters.

5.1 Datasets

The datasets used for the experiments are briefly described bellow:
QSAR aquatic toxicity has been used to develop quantitative regression QSAR models to predict
acute aquatic toxicity towards the fish Pimephales promelas. This dataset is composed of n = 546
observations for which 8 numerical features are measured. The output takes its values in [0.12, 10.05].
Airfoil Self-Noise is composed of n = 1503 observations for which 5 features are measured. This
dataset is obtained from a series of aerodynamic and acoustic tests. The output is the scaled sound
pressure level, in decibels. It takes its values in [103, 140].

Since the variance function plays a key role in the construction of the plug-in ε-predictor, we display
in Figure 2 the histogram of an estimate of σ2(X) produced by the random forest algorithm. More
specifically, for each i = 1, . . . , n, we evaluate σ̂2(Xi) by 10-fold cross-validation and build the
histogram of (σ̂2(Xi))i=1,...,n thereafter. Left and right panels of Figure 2 deal respectively with the
aquatic and airfoil datasets and reflect two different situations where the use of reject option is
relevant. The estimated variance in the airfoil dataset is typically large (about 40% of the values
are larger than 10) and then we may have some doubts in the associated prediction. According to the
aquatic dataset, main part of the estimated values σ̂2 is smaller than 1 and then the use of the reject
option may seem less significant. However, in this case, the predictions produced by the plug-in
ε-predictors would be very accurate.
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Figure 2: Histogram of the estimates of σ2(X)

5.2 Results

We present the obtained results in Figure 3 and Table 1. We make a focus on the values of ε ∈
{0, 0.2, 0.5, 0.8}. As a general picture, the results are reflecting our theory: the empirical errors of the
plug-in ε-predictors are decreasing w.r.t. ε for both datasets and their empirical rejection rates are very
close to their expected values. Indeed, Table 1 displays how precise is the estimation of the rejection
rate whatever the method used. This is in accordance with our theoretical findings. Moreover, the
empirical errors of the plug-in ε-predictors based on the random forests and kNN algorithms are
decreasing w.r.t. ε for both datasets. As expected, the use of the reject option improves the prediction
precision. As an illustration, for airfoil dataset and the predictor based on random forests, the error
is divided by 2 if we reject 50% of the data. However, we discover that the decrease for the prediction
error is not systematic. In the case of plug-in ε-predictor based on the svm algorithm and with the
aquatic dataset, we observe a strange curve for the error rate (see Figure 3-left). We conjecture
that this phenomenon is due to a poor estimation of the variance. Indeed, in Figure 4, we present the
performance of some kind of hybrid plug-in ε-predictors: we still use the svm algorithm to estimate
the regression function; the variance function estimation is done based on svm (dashed line), random
forests (dotted line), and kNN (dash-dotted line). From Figure 4, we observe that the empirical error
Êrr is now decreasing w.r.t. ε for the hybrid predictors based on svm and random forests, and that the
performance is quite good.

Table 1: Performances of the three plug-in ε-predictors on the real datasets aquatic, and airfoil.

aquatic airfoil
svm rf knn svm rf knn

1-ε Êrr 1 − r̂ Êrr 1 − r̂ Êrr 1 − r̂ Êrr 1 − r̂ Êrr 1 − r̂ Êrr 1 − r̂

1 1.38 (0.18) 1.00 (0.00) 1.34 (0.18) 1.00 (0.00) 2.29 (0.27) 1.00 (0.00) 11.81 (1.03) 1.00 (0.00) 14.40 (1.04) 1.00 (0.00) 35.40 (2.05) 1.00 (0.00)
0.8 1.08 (0.17) 0.81 (0.05) 1.04 (0.16) 0.80 (0.05) 1.98 (0.26) 0.80 (0.04) 8.27(0.86) 0.80 (0.03) 10.26 (0.95) 0.80 (0.03) 31.13 (1.96) 0.80 ( 0.03)
0.5 0.91 (0.18) 0.50 (0.06) 0.81 (0.18) 0.50 (0.06) 1.51 (0.30) 0.50 (0.06) 5.15 (0.92) 0.50 (0.04) 7.22 (0.92) 0.50 (0.3) 22.42 (2.13) 0.50 (0.03)
0.2 1.01 (0.32) 0.19 (0.05) 0.55 (0.21) 0.20 (0.05) 0.75 (0.37) 0.19 (0.05) 2.6 (0.64) 0.20 (0.03) 4.00 (0.74) 0.20 (0.03) 17.27 (3.00) 0.19 (0.03)

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

aquatic

1 − ε

E
rr

svm
rForest
knn

0.0 0.2 0.4 0.6 0.8 1.0

5
10

15
20

25
30

35

airfoil

1 − ε

E
rr

svm
rForest
knn

Figure 3: Visual description of the performance of three plug-in ε-predictors on the aquatic, and
airfoil datasets.
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Figure 4: Additional description of the performance of the plug-in procedure on aquatic dataset.

6 Conclusion

We generalized the use of the reject option to the regression setting. We investigated the particular
setting where the rejection rate is bounded. In this framework, an optimal rule is derived, it relies on
thresholding of the variance function. Based on the plug-in principle, we derived a semi-supervised
algorithm that can be applied on top of any off-the-shelf estimators of both regression and variance
functions. One of the main features of the proposed procedure is that it precisely controls the
probability of rejection. We derived general consistency results on rejection rate and on excess risk.
We also established rates of convergence for the predictor with reject option when the regression
and the variance functions are estimated by kNN algorithm. In future work, we plan to apply our
methodology to the high-dimensional setting, taking advantage of sparsity structure of the data.

Broader impact

Approaches based on reject option may be helpful at least from two perspectives. First, when human
action is limited by time or any other constraint, reject option is an efficient tool to prioritize the
human action. On the other hand, in a world where automatic decisions need to be balanced and
considered with caution, abstaining from prediction is one way to prevent from damageable decision-
making. In particular, human is more likely able to detect anomalies such as bias in data. In a manner
of speaking, the use of the reject option compromises between human and machines! Our numerical
and theoretical analyses support this idea, in particular because our estimation of the rejection rate is
accurate.

While the rejection rate has to be fixed according to the considered problem, it appears that the main
drawback of our approach is that border instances may be automatically treated while they would
have deserved a human consideration. From a general perspective, this is a weakness of all methods
based on reject option. This inconvenience is even stronger when the conditional variance function is
poorly estimated.

References
[1] J.-Y. Audibert and A. Tsybakov. Fast learning rates for plug-in classifiers. Annals of Statistics,

35(2):608–633, 2007.

[2] P. Bartlett and M. Wegkamp. Classification with a reject option using a hinge loss. Journal of
Machine Learning Research, 9:1823–1840, 2008.

[3] G. Biau and L. Devroye. Lectures on the Nearest Neighbor Method. Springer Series in the Data
Sciences. Springer New York, 2015.

[4] S. Bobkov and M. Ledoux. One-dimensional empirical measures, order statistics and Kan-
torovich transport distances. 2016. to appear in the Memoirs of the American Mathematical
Society.

[5] C. Chow. An optimum character recognition system using decision functions. IRE Transactions
on Electronic Computers, (4):247–254, 1957.

9



[6] C. Chow. On optimum error and reject trade-off. IEEE Transactions on Information Theory,
16:41–46, 1970.

[7] C. Denis and M. Hebiri. Consistency of plug-in confidence sets for classification in semi-
supervised learning. Journal of Nonparametric Statistics, 2019.

[8] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer,
New York, 1996.

[9] J. Fan and Q. Yao. Efficient estimation of conditional variance functions in stochastic regression.
Biometrika, 85(3):645–660, 1998.
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Supplementary material

This supplementary material is organized as follows. Section A provides all proofs of results related to
the optimal predictors (that is, Propositions 2.1, 2.3 2.4). In Sections B and C we prove Theorem 3.2
that establishes the consistency and Theorem 4.4 that states the rates of convergence of the plug-in
ε-predictor Γ̂ε respectively. We further establish several finite sample guarantees on kNN estimator
in Section D. To help readability of the paper, we provide in Section E some technical tools that are
used for the proofs.

A Proofs for optimal predictors

Proof of Proposition 2.1. By definition ofRλ, we have for any predictor with reject option Γf

Rλ (Γf ) = E
[
(Y − f(X))21{|Γf (X)|=1}

]
+ λP(|Γf (X)| = 0)

= E
[
(Y − f∗(X) + f∗(X)− f(X))21{|Γf (X)|=1}

]
+ λP(|Γf (X)| = 0)

= E
[
(Y − f∗(X))21{|Γf (X)|=1}

]
+ E

[
(f∗(X)− f(X))21{|Γf (X)|=1}

]
+2E

[
(Y − f∗(X))(f∗(X)− f(X))1{|Γf (X)|=1}

]
+ λP(|Γf (X)| = 0) .

Since
E
[
(Y − f∗(X))(f∗(X)− f(X))1{|Γf (X)|=1}

]
= 0 ,

and
E
[
(Y − f∗(X))21{|Γf (X)|=1}

]
= E

[
σ2(X)1{|Γf (X)|=1}

]
,

we deduce,
Rλ(Γf ) = E

[
(f∗(X)− f(X))21{|Γf (X)|=1}

]
+ E

[
σ2(X)1{|Γf (X)|=1} + λ(1− 1{|Γf (X)|=1})

]
= E

[{
(f∗(X)− f(X))2 + (σ2(X)− λ)

}
1{|Γf (X)|=1}

]
+ λ . (6)

Clearly, on the event {|Γf (X)| = 1}, the mapping f 7→ (f∗(X)− f(X))2 +
(
σ2(X)− λ

)
achieves

its minimum at f = f∗. Then, it remains to consider the minimization of
Γ 7→ E

[{
(σ2(X)− λ)

}
1{|Γ(X)|=1}

]
+ λ ,

on the set Υf∗ , which leads to {|Γ(X)| = 1} = {σ2(X) ≤ λ}. Putting all together, we get

{|Γ∗λ(X)| = 1} = {σ2(X) ≤ λ} and on this event Γ∗λ(X) = {f∗(X)} ,
and point 1. of Proposition 2.1 is proven. For the second point, we observe that for 0 < λ < λ′,

{|Γ∗λ(X)| = 1} = {σ2(X) ≤ λ} ⊂ {σ2(X) ≤ λ′} = {|Γ∗λ′(X)| = 1} .
From this inclusion, we deduce r(Γ∗λ′) ≤ r(Γ∗λ). Furthermore, using the relation {|Γ∗λ(X)| = 1} =
{σ2(X) ≤ λ} and if we denote by aλ = P (|Γ∗λ(X)| = 1) we have

Err (Γ∗λ)−Err (Γ∗λ′) =
1

aλ
E
[
(Y − f∗(X))21{σ2(X)≤λ}

]
− 1

aλ′
E
[
(Y − f∗(X))21{σ2(X)≤λ′}

]
=

(
1

aλ
− 1

aλ′

)
E
[
(Y − f∗(X))21{σ2(X)≤λ}

]
− 1

aλ′
E
[
(Y − f∗(X))21{λ<σ2(X)≤λ′}

]
. (7)

By definition of σ2(X), we can write

E
[
(Y − f∗(X))21{σ2(X)≤λ}

]
= E

[
1{σ2(X)≤λ}E

[
(Y − f∗(X))2|X

]]
= E

[
1{σ2(X)≤λ}σ

2(X)
]
≤ λaλ,

and then (
1

aλ
− 1

aλ′

)
E
[
(Y − f∗(X))21{σ2(X)≤λ}

]
≤ λ

(
1− aλ

aλ′

)
.

In the same way, we obtain
1

aλ′
E
[
(Y − f∗(X))21{λ≤σ2(X)≤λ′}

]
≥ λ

aλ′
(aλ′ − aλ) = λ

(
1− aλ

aλ′

)
.

From Equation (7), we then get Err (Γ∗λ) ≤ Err (Γ∗λ′).

11



Proof of Proposition 2.3. First of all, observe that for any ε ∈ (0, 1), if we set λε = F−1
σ2 (1 − ε),

then the optimal predictor Γ∗λ given by (1) with λ = λε is such that,

r
(
Γ∗λε
)

= P
(
σ2(X) ≥ λε

)
= P

(
Fσ2(σ2(X)) ≥ 1− ε

)
= ε .

We need to prove that any predictor Γf such that r (Γf ) = ε′ with ε′ ≤ ε, satisfies Err (Γf ) ≥
Err

(
Γ∗λε
)
. To this end, consider Γ∗λε′ with λε′ = F−1

σ2 (1− ε′). On one hand, by optimality of Γ∗λε′
(cf. point 1. of Proposition 2.1), we have

Err (Γf )− Err
(

Γ∗λε′

)
=

1

1− ε′
(
Rλε′ (Γf )−Rλε′

(
Γ∗λε′

))
≥ 0 .

On the other hand, since ε′ ≤ ε implies λε ≤ λε′ , point 2. of Proposition 2.1 reads as

Err
(
Γ∗λε
)
≤ Err

(
Γ∗λε′

)
.

Combining these two facts gives the desired result.

Proof of Proposition 2.4. First, from Equation (6), we have the following decomposition

Rλε(Γf ) = E
[{

(f∗(X)− f(X))2 + σ2(X)− λε
}
1{|Γf (X)|=1}

]
+ λε

= E
[
(f∗(X)− f(X))21{|Γf (X)|=1}

]
+ E

[
(σ2(X)− λε)1{|Γf (X)|=1}

]
+ λε .

Therefore, we deduce

E (Γf ) = E
[
(f∗(X)− f(X))21{|Γf (X)|=1}

]
+E

[(
σ2(X)− λε

) {
1{|Γf (X)|=1} − 1{|Γ∗ε(X)|=1}

}]
,

and the result follows from the fact that all non zero values of 1{|Γf (X)|=1} − 1{|Γ∗ε(X)|=1} equal the
sign of

(
σ2(X)− λε

)
due to the fact that {|Γ∗ε(X)| = 1} =

{
σ2(X)− λε ≤ 0

}
.

B Proof of the consistency results: Theorem 3.2

The consistency of Γ̂ε consists in the introduction of a pseudo oracle ε-predictor Γ̃ε defined for all
x ∈ Rd by

Γ̃ε(x) =

{{
f̂(x)

}
if σ̂2(x) ≤ F−1

σ̂2 (1− ε)
∅ otherwise .

(8)

This predictor differs from Γ̂ε in that it knows the marginal distribution PX and then it has rejection
rate exactly ε. Then, we consider the following decomposition

E
[
Eλε

(
Γ̂ε

)]
= E

[
Rλε(Γ̂ε)−Rλε(Γ̃ε)

]
+ E

[
Eλε

(
Γ̃ε

)]
, (9)

and show that both terms in the r.h.s. go to zero.

• Step 1. E
[
Eλε

(
Γ̃ε

)]
→ 0. We use Proposition 2.4 and get the following result.

Proposition B.1. Let ε ∈ (0, 1). Under Assumptions 2.2 and 3.1, the following holds

E
[
Eλε

(
Γ̃ε

)]
≤ E

[
(f̂(X)− f∗(X))2

]
+ E

[
|σ̂2(X)− σ2(X)|

]
+ CE [|Fσ̂2(λε)− Fσ2(λε)|] ,

where C > 0 is constant which depends on the upper bounds of σ2 and λε.

Proof of Proposition B.1. Let ε ∈ (0, 1). First, we recall our notation Fσ̂2(·) = PX
(
σ̂2(X) ≤ ·|Dn

)
and λε = F−1

σ2 (1− ε). We also introduce λ̃ε = F−1
σ̂2 (1− ε) for the pseudo-oracle counterpart of λε.

A direct application of Proposition 2.4 yields

E
(

Γ̃ε

)
≤ EX

[(
f̂(X)− f∗(X)

)2
]

+ EX
[
|σ2(X)− λε|1{|Γ̃ε(X)|6=|Γ∗ε(X)|}

]
. (10)

We first observe that if σ2(X) ≤ λε and σ̂2(X) ≥ λ̃ε, we have either of the two cases
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• λ̃ε ≥ λε and then |σ2(X)− λε| ≤ |σ̂2(X)− σ2(X)|;

• λ̃ε ≤ λε and then either |σ2(X)− λε| ≤ |σ̂2(X)− σ2(X)| or σ̂2(X) ∈ (λ̃ε, λε).

Similar reasoning holds in the case where σ2(X) ≥ λε and σ̂2(X) ≤ λ̃ε. Therefore

E
[
|σ2(X)− λε|1{|Γ̃ε(X)|6=|Γ∗ε(X)|}|Dn

]
≤ E

[
|σ2(X)− λε|1{|σ2(X)−λε|≤|σ̂2(X)−σ2(X)|}|Dn

]
+ 1{λε≤λ̃ε}E

[
|σ2(X)− λε|1{λε≤σ̂2(X)≤λ̃ε}|Dn

]
+ 1{λ̃ε≤λε}E

[
|σ2(X)− λε|1{λ̃ε≤σ̂2(X)≤λε}|Dn

]
.

From the above inequality, since σ2 is bounded, there exists a constant C > 0 such that

E
[
|σ2(X)− λε|1{|Γ̃ε(X)|6=|Γ∗ε(X)|}

]
≤ E

[
|σ̂2(X)− σ2(X)|

]
+ CE

[
|Fσ̂2(λ̃ε)− Fσ̂2(λε)|

]
.

Now, from Assumptions 2.2 and 3.1, we have that Fσ2(λε) = 1 − ε = Fσ̂2(λ̃ε). Therefore, we
deduce that

E
[
|σ2(X)− λε|1{|Γ̃ε(X)|6=|Γ∗ε(X)|}

]
≤ E

[
|σ̂2(X)− σ2(X)|

]
+ CE [|Fσ2(λε)− Fσ̂2(λε)|] .

Putting this into Equation (10) gives the result in Proposition B.1.

Since f̂ and σ̂2 are consistent w.r.t. the L2 and L1 risks respectively, the first two terms in the bound
of Proposition B.1 converge to zero. It remains to study the convergence of the last term. To this end,
we prove that

E [|Fσ2(λε)− Fσ̂2(λε)|] = E
[
|1{σ2(X)≤λε} − 1{σ̂2(X)≤λε}|

]
≤ P

(
|σ2(X)− σ̂2(X)| ≥ |σ2(X)− λε|

)
.

Hence, for any β > 0, using Markov’s Inequality we have

E [|Fσ2(λε)− Fσ̂2(λε)|] ≤ P
(
|σ2(X)− λε| ≤ β

)
+ P

(
|σ2(X)− σ̂2(X)| ≥ β

)
≤ P

(
|σ2(X)− λε| ≤ β

)
+

E
[
|σ̂2(X)− σ2(X)|

]
β

.

Combining this last inequality with Proposition B.1 and the consistency of f̂ and σ̂2 w.r.t. the L2 and
L1 risks respectively implies that for all β > 0

lim sup
n,N→+∞

E
[
Eλε

(
Γ̃ε

)]
≤ CP

(
|σ2(X)− λε| ≤ β

)
.

Since the above inequality holds for all β > 0, under Assumption 2.2, we deduce that

E
[
Eλε

(
Γ̃ε

)]
→ 0 ,

and then this step of the proof is complete.

• Step 2. E
[
Rλε(Γ̂ε)−Rλε(Γ̃ε)

]
→ 0. Thanks to Equation (6), we have that

Rλε(Γ̂ε)−Rλε(Γ̃ε) = EX
[{

(f∗(X)− f̂(X))2 + (σ2(X)− λε)
}(

1{|Γ̂ε(X)|=1} − 1{|Γ̃ε(X)|=1}
)]

.

Therefore, since σ2 is bounded, there exists a constant C > 0 such that

E
[
|Rλε(Γ̂ε)−Rλε(Γ̃ε)|

]
≤ 2E

[
(f∗(X)− f̂(X))2

]
+ CE

[
|1{|Γ̂ε(X)|=1} − 1{|Γ̃ε(X)|=1}|

]
≤ 2E

[
(f∗(X)− f̂(X))2

]
+ CAε , (11)
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where

Aε = E
[
|1{|Γ̂ε(X)|=1} − 1{|Γ̃ε(X)|=1}|

]
= E

[∣∣1{F̂σ̂2 (σ̂2(X))≥1−ε} − 1{Fσ̂2 (σ̂2(X))≥1−ε}
∣∣] .

(12)
Considering the fact that f̂ is consistent w.r.t. the L2 risk, it remains to treat the term Aε. We have

Aε ≤ P
(
|F̂σ̂2(σ̂2(X))− Fσ̂2(σ̂2(X))| ≥ |Fσ̂2(σ̂2(X))− (1− ε)|

)
,

and then, for all β > 0, the following holds

Aε ≤ P
(
|Fσ̂2(σ̂2(X))− (1− ε)| < β

)
+ P

(
|F̂σ̂2(σ̂2(X))− Fσ̂2(σ̂2(X))| ≥ β

)
. (13)

Under Assumption 3.1, the random variable Fσ̂2(σ̂2(X)) is uniformly distributed on [0, 1] condition-
ally on Dn. Therefore, we deduce that

P
(
|Fσ̂2(σ̂2(X))− (1− ε)| < β

)
= E

[
PX
(
|Fσ̂2(σ̂2(X))− (1− ε)| < β

)
|Dn

]
= E [2β|Dn] = 2β . (14)

According to the second term in the r.h.s. of Equation (13). we have that

P
(
|F̂σ̂2(σ̂2(X))− Fσ̂2(σ̂2(X))| ≥ β

)
≤ P

(
sup
x∈R
|F̂σ̂2(x)− Fσ̂2(x)| ≥ β

)
= E

[
PDN

(
sup
x∈R
|F̂σ̂2(x)− Fσ̂2(x)| ≥ β|Dn

)]
,

where PDN is the probability measure w.r.t. the dataset DN . Since, conditionally on Dn, F̂σ̂2

is the empirical counterpart of the continuous cumulative distribution function Fσ̂2 , applying the
Dvoretzky-Kiefer-Wolfowitz Inequality [17], we deduce that

P
(
|F̂σ̂2(σ̂2(X))− Fσ̂2(σ̂2(X))| ≥ β

)
≤ 2 exp(−2Nβ2) . (15)

Putting (14) and (15) into Eq. (13), we have that for all β > 0

Aε ≤ 2
(
β + exp

(
−2Nβ2

))
. (16)

Since Equation (16) holds for all β > 0, we have that Aε → 0 as N,n → +∞. Hence, from the
above inequality we get the desired result in Step 2:

E
[∣∣∣Rλε(Γ̂ε)−Rλε(Γ̃ε)∣∣∣]→ 0 .

Combining Step 1 and Step 2 yields the convergence: E
[
Eλε

(
Γ̂ε

)]
→ 0 as N,n→ +∞.

• Bound on E
[
r(Γ̂ε)

]
. To finish the proof of Theorem 3.2, it remains to control the rejection rate

E
[
r(Γ̂ε)

]
and show that it satisfies E

[∣∣∣r(Γ̂ε)− ε∣∣∣] ≤ CN−1/2 for some constant C > 0. We
observe that

E
[∣∣∣r(Γ̂ε)− ε∣∣∣] = E

[∣∣∣r(Γ̂ε)− r(Γ̃ε)∣∣∣] ≤ Aε ,
where Aε is given by Eq. (12). Repeating the same reasoning as in Step 2 above, we bound Aε as in
Eq. (13), and get from Dvoretsky-Kiefer-Wolfowitz Inequality (see Equation (15)), that for all β > 0,

P
(
|F̂σ̂2(σ̂2(X))− Fσ̂2(σ̂2(X))| ≥ β

)
≤ 2 exp(−2Nβ2) ,

and from Equation (14),

P
(
|Fσ̂2(σ̂2(X))− (1− ε)| < β

)
= 2β .

These two bounds combined the classical peeling argument of [1] (see Lemma E.1 below) imply the
desired result:

Aε ≤ CN−1/2 . (17)
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C Proof of rates of convergence: Theorem 4.4

In this section, we follow the same strategy as in Section B but here we care about rates of convergence.
Moreover, we have to pay attention to the randomness we introduced in the predictor because of the
use of kNN. As in Section B, we introduce some pseudo-oracle predictor. However, this one needs
to depend on the randomness we introduced in the definition of Γ̂ε(x, ζ). Define the pseudo-oracle
ε-predictor Γ̃ε for all x ∈ Rd and ζ ∈ [0, u] as3

Γ̃ε(x, ζ) =

{{
f̂(x)

}
if σ̄2(x, ζ) ≤ F−1

σ̄2 (1− ε)
∅ otherwise .

To study the excess risk E
[
Eλε

(
Γ̂ε

)]
of our predictor, we also consider a similar decomposition as

in Eq. (9) and treat each of the two terms separately.

• Step 1. Study of E
[
Eλε

(
Γ̃ε

)]
. We establish the following result.

Proposition C.1. Assume that Assumptions 4.2 and 4.3 are fulfilled for some α ≥ 0, then the
following inequality holds

E
[
Eλε

(
Γ̃ε

)]
≤ E

[(
f∗(X)− f̂(X)

)2
]

+ C

(
E

[(
sup
x∈C

∣∣σ̂2(x)− σ2(x)
∣∣)1+α

]
+ u1+α

)
,

where C > 0 depends only on c∗ and α.

Proof. Let ε ∈ (0, 1). We recall that λε = F−1
σ2 (1− ε) and λ̃ε = F−1

σ̄2 (1− ε). Since ζ is distributed
according to a Uniform distribution on [0, u], we observe that∣∣σ̄2(X, ζ)− σ2(X)

∣∣ ≤ sup
x∈C

∣∣σ2(x)− σ̂2(x)
∣∣+ u := ĥu .

Hence, according to Theorem 2.12 in [4] (recalled in Lemma E.2), we have that conditionally on Dn∣∣∣λ̃ε − λε∣∣∣ ≤ ĥu .

Furthermore, since X and ζ are independent, we can use Proposition 2.4 and get

E
[
Eλε

(
Γ̃ε

)]
≤ E

[(
f̂(X)− f∗(X)

)2
]

+ E
[
|σ2(X)− λε|1{|Γ̃ε(X,ζ)|6=|Γ∗ε(X)|}

]
.

On the event
{
|Γ̃ε(X, ζ)| 6= |Γ∗ε(X)

}
, we note that

|σ2(X)− λε| ≤ |σ̄2(X, ζ)− σ2(X)|+ |λ̃ε − λε| .

Therefore, conditional on Dn, we deduce the following

E(X,ζ)

[
|σ2(X)− λε|1{|Γ̃ε(X,ζ)|6=|Γ∗ε(X)|}

]
≤ E(X,ζ)

[
|σ2(X)− λε|1{|σ2(X)−λε|≤|σ̄2(X,ζ)−σ2(X)|+|λ̃ε−λε|}

]
≤ EX

[
|σ2(X)− λε|1{|σ2(X)−λε|≤2ĥu}

]
≤ 2ĥuPX

(
|σ2(X)− λε| ≤ 2ĥu

)
.

Finally, applying Assumption 4.3, we deduce that there exists a constant C > 0 such that

E
[
|σ2(X)− λε|1{|Γ̃ε(X,ζ)|6=|Γ∗ε(X)|}

]
≤ C

(
E
[
sup
x∈C

∣∣σ2(x)− σ̂2(x)
∣∣1+α

]
+ u1+α

)
,

which ends the proof.

3The only difference between Γ̃ε(x, ζ) and Γ̃ε(x) given in (8) is the dependency in ζ that is hidden inside σ̄2.
To avoid useless additional notation, we write Γ̃ε for both pseudo-oracles.
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Based on Proposition C.1, the control of E
[
Eλε

(
Γ̃ε

)]
requires a bound on E

[(
f∗(X)− f̂(X)

)2
]

and on E
[
supx∈C

∣∣σ2(x)− σ̂2(x)
∣∣1+α

]
. The first of these two terms relies on estimation of the

regression function with kNN algorithm and is rather well studied. In particular, thanks to Proposi-
tion D.4 we have with the choice kn ∝ n2/(d+2)

E
[(
f̂(X)− f∗(X)

)2
]
≤ Cn−2/(d+2) , (18)

where C > 0 is a constant which depends on f∗, c0, C, and d. Then it remains to bound the
second term which is the purpose of Proposition D.5 that relies on the rate of convergence of the
kNN estimator of the conditional variance σ̂2 in supremum norm. This result says that under our
assumptions and for the choice kn ∝ n2/(d+2), we have that

E

[(
sup
x∈C

∣∣σ̂2(x)− σ2(x)
∣∣)1+α

]
≤ C log(n)(α+1)n−(α+1)/(d+2) ,

for a constantC > 0 that depends on f∗, σ2, c0, C, and on the dimension d. Putting this last inequality
and Eq. (18) into the upper bound on the excess risk of Γ̃ε from Proposition C.1 we show that when
we set u = un ≤ n−1/(d+2) we can write

E
[
Eλε

(
Γ̃ε

)]
≤ C

(
n−2/(d+2) + log(n)(α+1)n−(α+1)/(d+2)

)
,

where C > 0 is a constant which depends on f∗, σ2, c0, c∗, α, C, and on the dimension d. This ends
the first step of the proof.

• Step 2. Study of E
[
Rλε(Γ̂ε)−Rλε(Γ̃ε)

]
. Since X and ζ are independent, as in Step 2 of the

proof of Theorem 3.2 (cf. Eq. (11)), we get

E
[∣∣∣Rλε(Γ̂ε)−Rλε(Γ̃ε)∣∣∣] ≤ 2E

[(
f∗(X)− f̂(X)

)2
]

+ CAε ,

where Aε is defined similarly as in Equation (12) with a small modification due to the random
perturbation we made on σ̂2. Similarly we have

Aε ≤ P
(
|F̂σ̄2(σ̄2(X, ζ))− {Fσ̄2(σ̄2(X, ζ))| ≥ |Fσ̄2(σ̄2(X, ζ))− (1− ε)|

)
.

Therefore using the same arguments as in Step 2 of the proof of Theorem 3.2 to get (17), it is easy to
see that there exists C > 0 such that Aε ≤ CN−1/2. Then, we deduce

E
[∣∣∣Rλε(Γ̂ε)−Rλε(Γ̃ε)∣∣∣] ≤ 2E

[(
f∗(X)− f̂(X)

)2
]

+ CN−1/2.

Finally, an application of Theorem D.4 yields

E
[∣∣∣Rλε(Γ̂ε)−Rλε(Γ̃ε)∣∣∣] ≤ C (n−2/(d+2) +N−1/2

)
,

where C > 0 is a constant which depends on f∗, c0, C, and d. This ends Step 2 of the proof.

Lastly, we combine the results in Step 1 and Step 2, together with the decomposition

E
[
Eλε

(
Γ̂ε

)]
= E

[
Rλε(Γ̂ε)−Rλε(Γ̃ε)

]
+ E

[
Eλε

(
Γ̃ε

)]
,

and get the desired bound on the excess risk.

D Rate of convergence for kNN estimator

In this section , we focus on rates of convergence of kNN for the estimation of the regression function
f∗ and the conditional variance function σ2. The proofs techniques are largely inspired by those
in [3, 10], though we provide some additional steps to build for instance finite sample bounds for the
sup norm in the problem of conditional variance estimation.
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D.1 Regression function estimation

We provide the rate of convergence of the kNN estimator of f∗ in the regression model for which
we make the following assumptions. We assume that f∗ is Lipschitz (Assumption 4.1) and that
Assumption 4.2 are fulfilled. We recall that from Assumption 4.2, we have that PX is supported on a
compact set C. Furthermore, we also assume that Y − f∗(X) satisfies a uniform noise condition:
there exists c0 > 0 such that

sup
x∈C

E [exp(λ (Y − f∗(X))) | X = x] ≤ exp(c20λ
2), for |λ| ≤ 1

c0
. (19)

This assumption is rather weak and requires that conditional on X is sub-exponential uniformly over
C (see [24]). Using the same notation as in Section 3, we recall that the kNN estimator f̂ of f is
defined as follows

f̂(x) =
1

kn

kn∑
i=1

Y(i,n)(x) .

The purpose of the appendix is to provide rates of convergence for the kNN estimator f̂ under the
above assumption. To this end we require two auxiliary lemmata, which provide a control respectively
with high probability and in expectation on the distance between a feature point and its neighbors
uniformly over C.
Lemma D.1. Assume Assumptions 4.1-4.2 hold. Then there exist C1 > 0, which depends only on

C, µmin, and on d and C2 > 0, which depends on C and on d, such that for all t ≥
(

log(n)kn
C1n

)1/d

,
we have

P

(
sup
x∈C

1

kn

kn∑
i=1

∥∥X(i,n)(x)− x
∥∥ ≥ t) ≤ C2 exp

(
log(n)− C1t

dn/kn
)
.

Proof. For any a ∈ R, let us denote by bac the largest integer which is smaller or equal to a. Consider
some x ∈ C. Following the same arguments as in proof of Theorem 6.2 in [10], we split the data
X1, . . . , Xn into kn + 1 folds such that the first kn folds have the same size b nkn c and the last fold
contains the remaining data if there are. We denote X̃x

j the nearest neighbor of x in the jth fold and
then obviously

kn∑
i=1

∥∥X(i,n)(x)− x
∥∥ ≤ kn∑

j=1

∥∥∥X̃x
j − x

∥∥∥ .

Let B̄2(a, r) be the closed Euclidean ball in Rd centered in a with radius r > 0. Since C is compact,
we have C ⊂ B̄2(0, R) for some R > 0, and therefore there exists an ε-net Cε of C w.r.t. ‖.‖ such that
|Cε| ≤

(
3R
ε

)d
. In particular, for all x ∈ C there exists xε ∈ Cε such that ‖x− xε‖ ≤ ε. Then, for all

x ∈ C and all j ∈ {1, . . . , kn}, there exists xε ∈ Cε such that∥∥∥X̃x
j − x

∥∥∥ ≤ ∥∥∥X̃x
j − xε

∥∥∥+ ε . (20)

Besides, we observe that ∥∥∥X̃x
j − xε

∥∥∥ ≤ ∥∥∥X̃xε
j − xε

∥∥∥+ 2ε . (21)

Indeed, if
∥∥∥X̃xε

j − xε
∥∥∥+ 2ε <

∥∥∥X̃x
j − xε

∥∥∥ we can write∥∥∥X̃xε
j − x

∥∥∥+ ε ≤
∥∥∥X̃xε

j − xε
∥∥∥+ 2ε

<
∥∥∥X̃x

j − xε
∥∥∥ ≤ ∥∥∥X̃x

j − x
∥∥∥+ ε ,

which contradicts the fact that X̃x
j is the nearest neighbor of x in the jth fold. Hence, from

Equations (20) and (21), we deduce that

sup
x∈C

1

kn

kn∑
i=1

∥∥X(i,n)(x)− x
∥∥ ≤ 3ε+ sup

x∈Cε

1

kn

kn∑
j=1

∥∥∥X̃x
j − x

∥∥∥ .
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From the above inequality, we obtain that for t > 6ε,

P

(
sup
x∈C

1

kn

kn∑
i=1

∥∥X(i,n)(x)− x
∥∥ ≥ t) ≤ P

 sup
x∈Cε

1

kn

kn∑
j=1

∥∥∥X̃x
j − x

∥∥∥ ≥ t/2
 . (22)

Our goal becomes to bound r.h.s. of the above inequality. Using union bound, we deduce that for all
t > 6ε

P

 sup
x∈Cε

1

kn

kn∑
j=1

∥∥∥X̃x
j − x

∥∥∥ ≥ t/2
 ≤ ∑

x∈Cε

P

 1

kn

kn∑
j=1

∥∥∥X̃x
j − x

∥∥∥ ≥ t/2


≤
∑
x∈Cε

kn∑
j=1

P
(∥∥∥X̃x

j − x
∥∥∥ ≥ t/2) . (23)

For each x ∈ Cε and j ∈ {1, . . . , kn}, by definition of X̃x
j and since (Xi)i=1,...,n are i.i.d., we have

P
(∥∥∥X̃x

j − x
∥∥∥ ≥ t/2) = P

(∥∥∥X(1,b nkn c)
− x
∥∥∥ ≥ t/2) = (P (‖X1 − x‖ ≥ t/2))

bn/knc . (24)

On one hand, observe that for t ≥ 4R, (P (‖X1 − x‖ ≥ t/2) = 0. On the other hand for t ≤ 4R,
using the elementary inequality log(1− a) ≤ −a for all a ∈ [0, 1), we have that

(P (‖X1 − x‖ ≥ t/2))
bn/knc ≤ exp

(
−
⌊
n

kn

⌋
P (‖X1 − x‖ ≤ t/2)

)
,

which yields, thanks to Assumption 4.2, there exists C > 0 which depends on µmin and d such that

(P (‖X1 − x‖ ≥ t/2))
bn/knc ≤ exp

(
−Ctdbn/knc

)
.

We finally deduce from Equation (22), (23), and (24), that for all t ≥ 6ε

P

(
sup
x∈C

1

kn

kn∑
i=1

∥∥X(i,n)(x)− x
∥∥ ≥ t) ≤ kn|Cε| exp

(
−Ctdbn/knc

)
.

Choosing ε = ( kn
6dCn

)1/d, we get that for t ≥ ( knCn )1/d,

P

(
sup
x∈C

1

kn

kn∑
i=1

∥∥X(i,n)(x)− x
∥∥ ≥ t) ≤ C2 exp

(
log(n)− C1t

dn/kn
)
,

which yields the expected result.

The second lemma establishes a control in expectation of the uniform distance.
Lemma D.2. Under Assumption 4.2, there exist C > 0, which depends only on C, µmin, and on d
such that

E

[(
sup
x∈C

1

kn

kn∑
i=1

∥∥X(i,n)(x)− x
∥∥)p] ≤ C (kn log(n)

n

)p/d
.

Proof. Since Assumption 4.2 holds, we can use Lemma D.1. Then there exist two non negative

constants C1 and C2 such that for all t ≥
(

log(n)kn
C1n

)1/d

, we have

P

(
sup
x∈C

1

kn

kn∑
i=1

∥∥X(i,n)(x)− x
∥∥ ≥ t) ≤ C2 exp

(
log(n)− C1t

dn/kn
)
.

Therefore an application of Lemma E.3 implies directly the result.

Below, we state the main result of this section related to the rate of convergence in sup norm of the
kNN estimator of the regression function.
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Theorem D.3. Assume Assumption 4.2 is satisfied. Moreover, let p ≥ 1 and kn ∝ n2/(d+2). Then

E
[(

sup
x∈C

∣∣∣f̂(x)− f∗(x)
∣∣∣)p] ≤ C log(n)pn−p/(d+2),

where C > 0 is a constant which depends on f∗, c0, C, µmin and d.

Proof. First, we have that

f̂(x)− f∗(x) =
1

kn

kn∑
i=1

(
Y(i,n)(x)− f∗(X(i,n)(x))

)
+

1

kn

kn∑
i=1

(
f∗(X(i,n)(x))− f∗(x)

)
.

Therefore, since f∗ is L-Lipschitz, we then deduce that

sup
x∈C

∣∣∣f̂(x)− f∗(x)
∣∣∣ ≤ sup

x∈C

∣∣∣∣∣ 1

kn

kn∑
i=1

Y(i,n)(x)− f∗(X(i,n)(x))

∣∣∣∣∣+ L sup
x∈C

1

kn

kn∑
i=1

∥∥X(i,n)(x)− x
∥∥ ,

which implies that

E
[(

sup
x∈C

∣∣∣f̂(x)− f∗(x)
∣∣∣)p] ≤ 2p−1E

[(
sup
x∈C

∣∣∣∣∣ 1

kn

kn∑
i=1

Y(i,n)(x)− f∗(X(i,n)(x))

∣∣∣∣∣
)p]

+ 2p−1LpE

[(
sup
x∈C

1

kn

kn∑
i=1

∥∥X(i,n)(x)− x
∥∥)p] . (25)

Lemma D.2 provides a bound on the second term in the r.h.s. of the above inequality. Then it
remains to study the first term in the r.h.s. of Eq. (25). Let x ∈ C, and denote by Nkn(x) =
{X(1,n)(x), . . . X(kn,n)(x)} the set of the kn-nearest neighbors of x among {X1, . . . , Xn}. We
denote by B the set of all closed balls in Rd. We observe that there exists ρx > 0 such that
Nkn(x) ⊂ {B̄(x, ρx)∩ {X1, . . . , Xn}}, where B̄(x, ρx) is the closed ball centered on x with radius
ρx. Therefore

{Nkn(x), x ∈ C} ⊂ {{X1, . . . , Xn} ∩B, B ∈ B} .
Besides, since the VC-dimension of the class of balls in Rd is upper bounded by d + 2 (see for
instance Corollary 13.2 in [8]), Sauer Lemma implies that

|{{X1, . . . , Xn} ∩B, B ∈ B}| ≤ S (B, n) ≤ (n+ 1)d+2 ,

where S (B, n) denotes the shatter coefficient of B by n points from C. We then deduce that
|{Nkn(x), x ∈ C}| ≤ (n + 1)d+2, which implies in turn that there exists {x1, . . . , xJ}, with
J ≤ (n+ 1)d+2 such that

E

[(
sup
x∈C

∣∣∣∣∣ 1

kn

kn∑
i=1

Y(i,n)(x)− f∗(X(i,n)(x))

∣∣∣∣∣
)p]

≤ E

[(
max

j∈{1,...,J}

∣∣∣∣∣ 1

kn

kn∑
i=1

Y(i,n)(xj)− f∗(X(i,n)(xj))

∣∣∣∣∣
)p]

.

Notice that conditional on X1, . . . , Xn the random variables (Y(i,n)(xj)− f∗(X(i,n)(xj))i=1,...,kn
are independent with zero mean (see Proposition 8.1 in [3]). Besides from Equation (19) they are
uniformly sub-exponential over C, then we deduce from the Bernstein Inequality (see [24]) that for
all t ≥ 0 and j = 1, . . . , J ,

P

(∣∣∣∣∣ 1

kn

kn∑
i=1

Y(i,n)(xj)− f∗(X(i,n)(xj))

∣∣∣∣∣ ≥ t
)
≤ exp

(
−ckn min

(
t2

K2
,
t

K

))
,

where c > 0 is an absolute constant and K > 0 depends on c0 in Eq. (19). Set vn =
√

(d+2) log(n+1)
ckn

.
Our choice of kn ensures that vn ≤ 1, and then we deduce from the union bound that for t ∈
(Kvn,K),

P

(
max

j∈{1,...,J}

∣∣∣∣∣ 1

kn

kn∑
i=1

Y(i,n)(xj)− f∗(X(i,n)(xj))

∣∣∣∣∣ ≥ t
)
≤ exp

(
(d+ 2) log(n+ 1)− cknt2/K2

)
,
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and for t > K,

P

(
max

j∈{1,...,J}

∣∣∣∣∣ 1

kn

kn∑
i=1

Y(i,n)(xj)− f∗(X(i,n)(xj))

∣∣∣∣∣ ≥ t
)
≤ exp ((d+ 2) log(n+ 1)− cknt/K) .

Considering these two cases, we can derive an exponential bound on the term
P
(

maxj∈{1,...,J}

∣∣∣ 1
kn

∑kn
i=1 Y(i,n)(xj)− f∗(X(i,n)(xj))

∣∣∣ ≥ t) for all t ≥ Kvn, therefore
we can use similar arguments as in Lemma E.3 and conclude that

E

[(
sup
x∈C

∣∣∣∣∣ 1

kn

kn∑
i=1

Y(i,n)(x)− f∗(X(i,n)(x))

∣∣∣∣∣
)p]

≤ E

[(
max

j∈{1,...,J}

∣∣∣∣∣ 1

kn

kn∑
i=1

Y(i,n)(xj)− f∗(X(i,n)(xj))

∣∣∣∣∣
)p]

≤ C
(

log(n)

kn

)p/2
. (26)

Combining the above inequality, Equation (25), and Lemma D.2, gives the desired result.

To conclude this section, we also provide the rate of convergence of the kNN estimator in L2-norm

Theorem D.4. Assume Assumption 4.2 is satisfied and let kn ∝ n2/(d+2), then

E
[(
f̂(X)− f∗(X)

)2
]
≤ Cn−2/(d+2) ,

where C > 0 is a constant which depends on f∗, c0, C, and d.

The proof of this result is provided in [10] for d ≥ 3 (see Theorem 6.2). However, a small change
implies that the same proof holds for all d under Assumption 4.2.

D.2 Conditional variance function estimation

We provide the rate of convergence of the kNN estimator of σ2. This proof is largely inspired by [3],
though we are interested here in finite sample bounds.

Proposition D.5. Grant Assumptions 4.1 and 4.2. Let kn ∝ n2/(d+2), the following holds

E

[(
sup
x∈C

∣∣σ̂2(x)− σ2(x)
∣∣)1+α

]
≤ C log(n)(α+1)n−(α+1)/(d+2) ,

for all α ≥ 0, where C > 0 is a constant which depends on f∗, σ2, c0, C, and on the dimension d.

Proof. First, we define the function σ̃2 by

σ̃2(x) =
1

kn

kn∑
i=1

(
Y(i,n)(x)− f∗(X(i,n)(x))

)2
, ∀x ∈ Rd .

The function σ̃2 is the pseudo-estimator of σ2 that would be used in the case where the function f∗ is
known. By the triangle inequality, we have that for all x ∈ C,∣∣σ̂2(x)− σ2(x)

∣∣ ≤ ∣∣σ̂2(x)− σ̃2(x)
∣∣+
∣∣σ̃2(x)− σ2(x)

∣∣ .
Now, we observe that

σ̂2(x)− σ̃2(x) =

1

kn

kn∑
i=1

(
f∗(X(i,n)(x))− f̂(X(i,n)(x))

)(
2(Y(i,n)(x)− f∗(X(i,n)(x))) + f∗(X(i,n)(x))− f̂(X(i,n)(x))

)
.
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Therefore, we deduce

sup
x∈C

∣∣σ̂2(x)− σ2(x)
∣∣ ≤ sup

x∈C

∣∣σ̃2(x)− σ2(x)
∣∣+

(
sup
x∈C

∣∣∣f̂(x)− f∗(x)
∣∣∣)2

+

2 sup
x∈C

∣∣∣f̂(x)− f∗(x)
∣∣∣ sup
x∈C

∣∣∣∣∣ 1

kn

kn∑
i=1

(Y(i,n)(x)− f∗(X(i,n)(x))

∣∣∣∣∣ .
From the above inequality, using the fact that (a+b+c)p ≤ 3p−1(ap+bp+cp) for p ≥ 1, a, b, c ∈ R
and applying the Cauchy-Schwartz Inequality, we obtain

E

[(
sup
x∈C

∣∣σ̂2(x)− σ2(x)
∣∣)1+α

]
≤

C1E

[(
sup
x∈C

∣∣σ̃2(x)− σ2(x)
∣∣)1+α

]
+ C2E

[(
sup
x∈C

∣∣∣f̂(x)− f∗(x)
∣∣∣)2(1+α)

]

+C3

{
E

[(
sup
x∈C

∣∣∣f̂(x)− f∗(x)
∣∣∣)2(1+α)

]}1/2
E

(sup
x∈C

∣∣∣∣∣ 1

kn

kn∑
i=1

(Y(i,n)(x)− f∗(X(i,n)(x))

∣∣∣∣∣
)2(1+α)


1/2

,

where C1, C2 and C3 are non negative reals. We finish the proof of the proposition by bounded the
above l.h.s. This relies on controls of estimation error of kNN for the regression function f∗ and
the conditional variance function σ2. Observe that when Y is either bounded or satisfies the model
conditions in Eq. (5), we have that the random variables Y − f∗(X) and (Y − f∗(X))2 − σ2(X)
satisfy the uniform noise condition (19). Indeed, while this fact is clear for Y − f∗(X), it also holds
true for (Y − f∗(X))2 − σ2(X) since, conditionally on X , this random variable is either bounded
(since σ2 is bounded as well) or sub-exponential. Therefore, the result of Theorem D.3 applies for
the kNN estimators σ̃2 and f̂ . Furthermore, using the result in Eq. (26), we deduce from the above
inequality

E

[(
sup
x∈C

∣∣σ̂2(x)− σ2(x)
∣∣)1+α

]
≤ C log(n)(α+1)n−(α+1)/(d+2) ,

where C > 0 is a constant which depends on f∗, σ2, c0, C, and the dimension d.

E Technical tools

In this section, we state several results that may help for readability of the paper. The first result is a
direct application of the classical peeling argument of [1].
Lemma E.1 (Lemma 1 in [7]). Let X be a real random variable, (Xn)n≥1 be a sequence of real
random variables and t0 ∈ R. Assume that there exist C1 > 0 and γ0 > 0 such that

PX (|X − t0| ≤ δ) ≤ C1δ
γ0 , ∀δ > 0 ,

and a sequence of positive numbers an tends towards infinity, C2, C3 some positive constants such
that

PXn (|Xn −X| ≥ δ|X) ≤ C2 exp
(
−C3anδ

2
)
, ∀δ > 0, ∀n ∈ N.

Then, there exists C > 0 depending only on C1, C2 and C3, such that

|E [1Xn≥t0 − 1X≥t0 ] | ≤ Ca−γ0/2n .

The next result describes the representation of∞-Wasserstein distance (W∞) on the real line. Let
Z∞(R) be the collection of all compactly supported probability measures on R.
Lemma E.2 (Theorem 2.12 in [4]). Let µ and ν be probability measures in Z∞(R) with respective
distribution functions F and G. Then, W∞(µ, ν) := sup0<t<1 |F−1(t) − G−1(t)| is the infimum
over all h ≥ 0 such that

G(x− h) ≤ F (x) ≤ G(x+ h) for all x ∈ R.
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The following result provides a bound on moments of a positive random variable provided a tail
control.
Lemma E.3. Let a ≥ 1, let b, c be two non negative real numbers, and let m ∈ N. Consider Z a
positive random variable such that

P (Z ≥ t) ≤ c exp (a− btm) ,

for all t ≥ (a/b)1/m. Then for all p ≥ 1, there exists a constant C > 0 such that

E [Zp] ≤ C(a/b)p/m .

Proof. Using the following equality which holds for any positive random variable Z, and any p ≥ 1

E [Zp] =

∫ +∞

0

P (Z ≥ t) ptp−1dt , (27)

and the condition in Lemma E.3, we deduce

E [Zp] ≤
∫ u

0

ptp−1dt+ c

∫ +∞

u

exp (a− btm)ptp−1dt , (28)

where u = (a/b)1/m and where we used the trivial inequality P (Z ≥ t) ≤ 1 to bound the first term
in the r.h.s. Since (a′)m − (b′)m ≥ (a′ − b′)m for all a′, b′ ∈ R such that a′ ≥ b′ ≥ 0, we can write
that

exp (a− btm) ≤ exp (−(t− u)mb) ,

which yields∫ +∞

u

exp (a− btm)ptp−1dt ≤
∫ +∞

u

exp (−(t− u)mb) ptp−1dt

≤ 1

u

∫ +∞

u

exp (−(t− u)mb) ptpdt

=
p

u

(
1

b

)1/m ∫ +∞

0

e−v
m

(
v

(
1

b

)1/m

+ u

)p
dv ,

where we consider the changing of variable v = ((t− u)mb)1/m in the last equality. Finally, using
that (a′ + b′)p ≤ 2p−1((a′)p + (b′)p) for all p ≥ 1, a′, b′ ∈ R and given that u ≥ (1/b)1/m, we
show from the above inequality that∫ +∞

u

exp (a− btm)ptp−1dt ≤ C1

(
1

b

)p/m ∫ +∞

0

vpe−v
m

dv + C2u
p

∫ +∞

0

e−v
m

dv

≤ C3u
p ,

for positive constants C1, C2, C3. Inject this into Eq.(28) leads to the result.
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