
We would like to thank the reviewers for their detailed reading of our work and constructive comments. We will take1

into account all their valuable remarks on the general presentation and readability of the paper. We now address their2

more specific concerns separately for each reviewer in order of appearance.3

Reviewer #1. We will clarify the definition of d in line 111 by defining d = maxe∈U |F(e)| in a separate equation.4

Please clarify where you assume that wS >= 1 (line 449). We use this assumption in the inequality just below where5

we can assume that (1 + 1/wS)
wS ≥ 2 since wS ≥ 1.6

Why does Alg 4 stop after at most N updates if Npred <= B (proof of Thm 2) ? Alg 4 always stops after at most N7

updates, regardless of the prediction. This is because the true instance contains N skiing days so N new constraints are8

revealed online. After the last constraint has arrived, the algorithm always stops.9

In the proof of Lem 15 between line 651 and 652, the second equality is actually an inequality. Also clarify why the prior10

inequality holds. Agreed, the second equality is an inequality. For the prior inequality, recall that S(k) is the value of11 ∑∞
l=t0

xl at time t after k big updates. Thus, S(k) =
∑t

l=t0
xl. Since we are considering an update due to a request j12

acknowledged at time t0 by the predicted solution, it must be that t(j) ≤ t0 hence we have that
∑t

l=t(j) xl ≥
∑t

l=t0
xl.13

Noting this, we can lower bound the first line replacing
∑t

l=t(j) xl by
∑t

l=t0
xl = S(k).14

Reviewer #2. I am not sure I would call the approach black box in the strict sense, as there is still a fair amount15

of tailor made analysis for each setting (and the algorithm modification, although intuitive, still requires a deep16

understanding of the problem). The term black-box was used to underline the fact that the designed algorithms do17

not make any assumption on the quality of the prediction and use it in a “black-box manner”. We will clarify this18

by avoiding the term black-box in the final version of the paper. Moreover, we agree that modifying the primal dual19

algorithm requires a deep understanding of the algorithm itself. However, for all problems we considered, only the20

additive term in the update of the primal variables needs to be modified (in a similar vein). Hence it is true that the21

approach is not a black box in the strict sense but the basic idea of the framework is a great help in obtaining the result.22

Covering problems are generally very well understood in the online literature. Are there any interesting covering23

problems left for others to apply this technique? There are actually a lot of covering problems that are solved via24

the online primal-dual technique like for instance the weighted caching and load balancing problems (see [4] in our25

bibliography). In addition to that, we suspect that our work might also provide insights not only for covering problems26

but also for packing problems. A concrete example of that is the revenue maximization in ad auctions problem which27

also has an optimal e
e−1 -competitive algorithm and whose dual is similar to the TCP acknowledgement problem (see28

[5]). Moreover, another interesting direction may be to incorporate predictions into the primal dual technique when it29

is used to solve covering problems where the objective function is non linear (e.g. convex). We will add a separate30

paragraph discussing these future directions in the final version of the paper.31

Reviewer #3. how do you recover optimal integral solutions, from the fractional solutions you get with your32

algorithms? We did not emphasize this point since it already appeared in previous literature (except for the Bahncard33

problem). However, we agree that this is a very crucial point and deserves more emphasis. To obtain our results, we34

only modify the algorithm that builds the fractional solution but not the rounding scheme. For the ski rental, Bahncard35

and TCP acknowledgement problems it is possible to round (randomly) the solution in an online manner such that the36

expected cost of the integral solution obtained is equal to the cost of the fractional solution. The rounding scheme for37

ski rental and TCP can be found in the reference [5] and in Lemma 14 of our paper for the Bahncard problem. For set38

cover a multiplicative O(log n) factor is lost during the rounding due to the integrality gap of the linear program. The39

rounding scheme for the online set cover problem is described by Alon et al. in [1].40

do standard datasets exist for benchmarking online algorithms, likely with data coming from real industrial applications?41

To the best of our knowledge there are no standard datasets to benchmark online algorithms. In the new field of learning42

augmented online algorithms the only datasets used so far were Brighkite and CitiBikeNYC by Lykouris and Vassilvitskii43

in [19]. The aforementioned datasets were not used in our work because the access requests were too sparse to model44

the TCP requests of a large server. Although we could not find a real dataset we would like to underline that our artificial45

dataset was created to mimic a real TCP packet instance following common assumptions regarding packet distribution46

as noted in [11,20,22,30].47

could the authors benefit from distribution errors coming from the predictors? We would like to emphasize that the48

main challenge that we address is to design a learning augmented algorithm which uses the prediction without any49

assumption on its quality and on the type of prediction errors. That being said, once additional assumptions are made, it50

is very possible that one can twist our results to obtain better guarantees. We believe that this is an intriguing direction51

with possibly interesting results. However, this direction is complementary to the area of learning augmented algorithms52

as it approaches the problem under a stochastic optimization point of view.53

https://snap.stanford.edu/data/loc-Brightkite.html
https://www.citibikenyc.com/system-data

