
A Proofs for the structural results

In this appendix we provide proofs for the structural results in the paper. We first provide the proof
of Lemma 1. In Appendix A.2 we focus on results relating to realizability. Then in Appendix A.3
we turn to the separation results of Proposition 1 and Proposition 2. Finally in Appendix A.4 we
provide details about the connection to the Bellman and Witness rank.

A.1 Proof of Lemma 1

Proof of Lemma 1. Fix h and V : X ! [0, 1]. We drop the dependence on h from the notation, with
x, a always corresponding to states and actions at time h and x0 corresponding to an action at time
h+ 1. Observe that as cM is a low rank MDP, we have

8x, a : E
h
V (x0

) | x, a, cM
i
=

⌧
b�(x, a),

Z
bµ(x0

)V (x0
)

�
=:

D
b�(x, a), ✓

E

Combining with (1), we have that for any policy ⇡:

E
h���
D
b�(x, a), ✓

E
� E [V (x0

) | x, a,M]

��� | ⇡,M
i

= E
h���E

h
V (x0

) | x, a, cM
i
� E [V (x0

) | x, a,M]

��� | ⇡,M
i

 E
h���
D
b�(x, a), bµ(·)

E
� T (· | x, a)

���
TV

| ⇡,M
i
 ".

A.2 On realizability

Proposition 4. Fix M 2 N, n  M/2, and any algorithm. There exists a low rank MDP over M
states with rank 2 and horizon 2 such that, if the algorithm collects n trajectories and outputs a
policy b⇡, then with probability at least 1/8, b⇡ is at least 1/8-suboptimal for the MDP.

The result shows that if the low rank MDP has M states, then we require n = ⌦(M) samples to find
a near-optimal policy with moderate probability. Thus low rank structure alone is not sufficient to
obtain sample complexity guarantees that are independent of the number of states.

In fact the proof yields a slightly stronger conclusion, as the embedding µ? is actually known to the
algorithm in the construction. Thus, even when µ? is known, we require some inductive bias on �? to
obtain sample complexity scaling independently with the number of states.

Proof of Proposition 4. The result is obtained by embedding a binary classification problem into a
low rank MDP and appealing to a standard binary classification lower bound argument. We construct
a family of one-step transition operators, all of which have rank 2. The state space at the current
time is of size M and there are two actions A := {0, 1}. From each (x, a) pair we transition
deterministically either to xg or xb, and we receive reward 1 from xg and reward 0 from xb.

Formally, we denote the states as {x1, . . . , xM} and index each instance by a binary vector v 2
{0, 1}M , which specifies the good action for each state. The transition operator is

Tv(· | xj , a) =

⇢
xg if a = vj
xb if a 6= vj

There are therefore 2
M instances. Note that as there are only two states at the next time, we trivially

see that that transition operator of each instance is rank 2 and the low rank MDP representation is:

�?
v(xj , a) = (1{a = vj},1{a 6= vj}) and µ?

v(x
0
) = (1{x0

= xg},1{x0
= xb}).

Note that µ?
= µ?

v does not actually depend on the instance index v, so µ? is known to the algorithm
for the purposes of the lower bound.

The starting distribution is uniform over [M], so that in n episodes, the agent collects a dataset
{(x(i), a(i), y(i)}ni=1 where x(i) ⇠ unif(x1, . . . , xM), a(i) is chosen by the agent and y(i) denotes
whether the agent transitions to xg or xb. Information theoretically, this is equivalent to obtaining n
samples from the following data generating process: sample j 2 unif([M]) and reveal vj .

14

In this latter process, we can apply a standard binary classification lower bound argument. Let Pv

denote the data distribution where indices j are sampled uniformly at random and labeled by vj . Let
P (n)
v denote the product measure where n samples are generated iid from Pv. By randomizing the

instance, for any example that does not appear in the sample, the probability of error is 1/2. Therefore
the probability of error for any classifier bf is

max
v

E
S⇠P (n)

v
Pj⇠unif([M])[

bf(j) 6= vj] � Ev⇠unif({0,1}M)ES⇠P (n)
v

Pj⇠unif([M])[
bf(j) 6= vj]

=
1

M

MX

j=1

EvES⇠P (n)
v

1{ bf(j) 6= vj} �
1

M

MX

j=1

1

2
PS [j /2 S]

=
1

2

✓
1� 1

M

◆n

� 1

2
(1� n/M) .

The second inequality uses the fact that if j does not appear in the sample then vj ⇠ Ber(1/2).
Equivalently, we can first sample n unlabeled indices, then commit to the label just on these indices,
so that the label for any index not in the sample remains random. Thus for any classifier, there exists
some instance for which on average over the sample, the probability of error is at least 1/4 as long as
n  M/2. This also implies that with constant probability over the sample the error rate is at least 1/8,
since for any random variable Z taking values in [0, 1], we have

E[Z]  1/8 (1� P[Z > 1/8]) + P[Z � 1/8]  1/8 + P[Z � 1/8].

Taking Z = Pj [
bf(j) 6= vj], we have

P
S⇠P (n)

v

h
Pj [
bfj 6= vj] � 1/8

i
� 1

2
(1� n/M)� 1/8 � 1/8,

where the last inequality holds with n  M/2.

Now, notice that we can identify any predictor with a policy in the obvious way and also that the sub-
optimality for a policy is precisely the classification error for the predictor. With this correspondence,
we obtain the result.

A.3 Separation results

Proof of Proposition 1. Fix N and consider an MDP with horizon 2, where at stage 1 there is only one
state x and two actions a1, a2. At stage 2 there are N possible states, so that T (· | x, ai) 2 �([N])

for each i 2 {1, 2}. We define the transition operator for stage 1, called T for brevity, explicitly
in terms of its factorization. Let �(x, a1) = e1 and �(x, a2) = e2 where e1, e2 2 R2 denotes the
two standard basis elements in two dimensions. We define µ1(i) = 1/N, µ2(i) = i/(

PN
j=1 j) and

µ(i) = (µ1(i), µ2(i)) 2 R2. Thus T (x0
= i | x, a) = h�(x, a), µ(i)i, which can be easily verified

to be a valid transition operator. By construction T has rank 2.

For clarity we express T as the 2⇥N matrix.

T :=

✓
1/N 1/N . . . 1/N

1/(PN
j=1 j) 2/(PN

j=1 j) . . . N/(PN
j=1 j)

◆
.

We now show that the block MDP representation must have N latent states. Suppose the block MDP
representation is T (x0

= i | x, a) = h�B(x, a), µB(i)i. The block MDP representation requires that
for each index i the vector µB(i) is one-sparse. From this, we deduce a constraint that arises when
two states belong to the same block. If i, j belong to the same block, say block b, then for each
(x, a) 2 X ⇥A, we have

T (x0
= i | x, a) = �B(x, a)[b]µB(i)[b] =

µB(i)[b]

µB(j)[b]
· �B(x, a)[b]µB(j)[b]

=
µB(i)[b]

µB(j)[b]
· T (x0

= j | x, a)

15

In words, if states i, j at stage 2 belong to the same block, then the vectors T (x0
= i | ·), T (x0

= j | ·)
must be pairwise linearly dependent.9 Based on our construction, T (x0

= i | ·) = µ(i), which is just
the ith column of the matrix T . By inspection, all N vectors are pairwise linearly independent, and so
we can conclude that the block MDP representation must have N latent states.

Proof of Proposition 2. We consider a one step transition operator T that we instantiate to be the
slack matrix describing a certain polyhedral set. Let n be even and let Kn be the complete graph on
n vertices. To set up the notation we will work with vectors x 2 R(

n
2) that associate a weight to each

edge. We index the vectors as xu,v where u 6= v 2 [n] correspond to vertices.

A result of Edmonds (1965) states that the perfect matching polytope, which is the convex hull of
all edge-indicator vectors corresponding to perfect matchings, can be explicitly written in terms of
“odd-cut” constraints:

Pn := conv
n
1M 2 R(

n
2) | M is a perfect matching in Kn

o

=

(
x 2 R(

n
2) : x ⌫ 0, 8v :

X

u

xu,v = 1, 8U ⇢ [n], |U | odd
X

v/2U

X

u2U

xu,v � 1

)
.

This polytope has exponentially many vertices and exponentially many constraints. Formally,
there are V :=

n!
2n/2(n/2)!

vertices, corresponding to perfect matchings in Kn, and the number
of constraints is C := 2

⌦(n) corresponding to the number of odd-sized subsets of [n]. By adding
one dimension to account for the offsets in the inequality constraints, we can enumerate the vertices
v1, . . . , vV 2 R(

n
2)+1 and the constraints c1, . . . , cC 2 R(

n
2)+1, such that hci, vji � 0 for all i, j.

Then, we define the slack matrix for this polytope to be Z 2 RC⇥V
+ with entries Zi,j = hci, vji.

This slack matrix clearly has rank
�n
2

�
+ 1 = O(n2

). On the other hand, we claim that the non-
negative rank is at least 2⌦(n). This follows from (a) the fact that Pn has extension complexity
2
⌦(n) (Rothvoß, 2017), (b) the extension complexity of a polytope is exactly the non-negative rank of

its slack matrix (Yannakakis, 1991; Fiorini et al., 2013).

Next, we define the transition operator T . We associate each (x, a) pair with a constraint ci and each
x0 with a vertex vj . Then we define

T (x0 | x, a) = hci, vjiPV
k=1 hci, vki

This is easily seen to be a distribution for each (x, a) pair. We can represent T as a C ⇥ V matrix
T = DZ where D is a diagonal matrix (with strictly positive diagonal) and Z is the slack matrix
defined above.

We conclude the proof with two facts from Cohen and Rothblum (1993). First, the non-negative
rank is preserved under positive diagonal rescaling, and so the non-negative rank of T is also 2

⌦(n).
Second, for a row-stochastic matrix P , the non-negative rank is equal to the smallest number of
factors we can use to write P = RS where both R and S are row-stochastic (here factors refers to
the internal dimension). It is immediate that the simplex features representation corresponds to such
a row-stochastic factorization, and so we see that any simplex features representation of T must have
embedding dimension at least 2⌦(n).

A.4 On Bellman and Witness rank

We now state the formal version of Proposition 3. We consider the value-function/policy decom-
position studied by Jiang et al. (2017) where we approximate the value functions with a class
G : X ! [0, H] and the policies with a class ⇧ : X ! A. Given an explicit (non-stationary) reward
function Rh with range [0, 1] and the function class � of candidate embeddings, we define these two

9Note that this is equivalent to the notion of backward kinematic inseparability (Misra et al., 2020).

16

classes as:

⇧(�) :=

⇢
⇡ : xh 7! argmax

a2A
h�h(xh, a), ✓hi+Rh(xh, ah) : ✓0:H�1 2 Bd(H

p
d),�0:H�1 2 �

�
,

G(�) :=
n
g : xh 7! max

a
h�h(xh, a), ✓hi+Rh(xh, ah) : ✓0:H�1 2 Bd(H

p
d),�0:H�1 2 �

o
.

Here Bd(·) is the Euclidean ball in d dimensions with the specified radius. We have the following
proposition:
Proposition 5. The low rank MDP model with any function classes G ⇢ X ! [0, B] and ⇧ ⇢ X !
�(A) has bellman rank at most d with normalization parameter O(B

p
d). Additionally, for any

known reward function R with range [0, 1] and assuming �?
0:H�1 2 �, the optimal policy and value

function lie in (G(�),⇧(�)), and so OLIVE has sample complexity Õ
�
poly(d,H,K, log |�|, ✏�1

)
�
.

Proof of Proposition 5. The result is essentially Proposition 9 in Jiang et al. (2017), who address the
simplex representation case. We address the general case and also verify the realizability assumption.

Consider any explicitly specified non-stationary reward function Rh : X ⇥A! [0, 1] and any low
rank MDP with embedding functions �?

0:H�1, µ
?
0:H�1 and embedding dimension d. For any policies

⇡,⇡0 and any value function g : X ! R we define the average Bellman error (Jiang et al., 2017) as
E(⇡, (g,⇡0

), h) := E [g(xh)�Rh(xh, ah)� g(xh+1) | a0:h�1 ⇠ ⇡, ah = ⇡0
(xh),M] ,

We also introduce the shorthand
�((g,⇡0

), xh) := E [g(xh)�Rh(xh, ah)� g(xh+1) | xh, ah = ⇡0
(xh)] .

Then, in the low rank MDP, the average Bellman error admits a factorization as follows
E(⇡, (g,⇡0

), h) = E [�((g,⇡0
), xh) | xh ⇠ ⇡]

=

⌧
E
⇥
�?
h�1(xh�1, ah�1) | ⇡

⇤
,

Z
µ?
h�1(xh)�((g,⇡0

), xh)d(xh)

�

=: h⌫h(⇡), ⇠h((g,⇡0
))i

We also have the normalization k⌫h(⇡)k2  1 and k⇠h((g,⇡))k2  (2B + 1)
p
d. This final

calculation is based on the triangle inequality, the bounds on g and R and the normalization of µ?
h�1.

Thus for any low rank MDP and any (bounded) function class G,⇧, the Bellman rank is at most d
with norm parameter O(B

p
d).

To prove that OLIVE has low sample complexity, we need to verify that the optimal policy and
optimal value function lie in ⇧(�) and G(⇧) respectively. Then we must calculate the statistical
complexity of these two classes. Observe that we can express the Bellman backup of any function
V : X ! R as a linear function in the optimal embedding �?:

(ThV)(x, a) := E[Rh(x, a) + V (x0
) | x, a, h] = Rh(x, a) +

⌧
�?
h(x, a),

Z
µ?
h(x

0
)V (x0

)d(x0
)

�

= Rh(x, a) + h�?
h(x, a), wi .

for some vector w. Moreover, if V : X ! [0, H], we know that kwk  H
p
d. In particular, this

implies that the optimal Q function is a linear function in the true embedding functions �?
0:H�1,

and so realizability holds for G(�),⇧(�). These function classes have range B = O(H
p
d) so the

normalization parameter in the Bellman rank definition is O(Hd).

Finally, we must calculate the statistical complexity of these two classes. For ⇧(�) the Natarajan
dimension is at most Õ (H(d+ log |�|)), since for each h, we choose �h and a d-dimensional linear
classifier. Analogously the pseudo-dimension of G(�) is Õ (H(d+ log |�|)). Formally, we give a
crude upper bound on the growth function, focusing on ⇧(�). Fix h, let S be a sample of n pairs
(x, a), and let h1, h2 : S ! {0, 1} such that h1(x, a) 6= h2(x, a) for all points in the sample. Since
once we fix � 2 �, we have a linear class, we can vary ✓ to match h1, h2 on at most (n+ 1)

d subsets
T ⇢ S. Then by varying � 2 � we can match h1, h1 in total on |�|(n+ 1)

d  nO(d+log |�|) subsets.
If S is shattered, this means that 2n  nO(d+log |�|), which means that the Natarajan dimension is
O((d+ log |�|) log(d+ log |�|)). This calculation is for a fixed h, but the same argument yields the
bound of Õ(H(d+ log |�|)). Instantiating, we obtain the sample complexity bound for OLIVE.

17

For the model-based version using the witness rank, the arguments are more straightforward.
Proposition 6. The low rank MDP model with any candidate model class P has witness rank at
most d, with norm parameter O(

p
d). Additionally, for any explicitly specified reward function R

with range [0, 1] and under Assumption 1, the algorithm of Sun et al. (2019) (with witness class of all
bounded functions) has sample complexity Õ

�
poly(d,K,H, log |�||⌥|, "�1

)
�
.

Proof. Given a model M and an explicit reward function R, we use ⇡M to denote the optimal policy
for R with transitions governed by M . Then, for two models M1,M2 and a time step h the witness
model misfit, when instantiated with the test function class as all bounded functions, is defined as

W(M1,M2, h) := E [kM2(· | xh, ah)� T (· | xh, ah)kTV | a0:h�1 ⇠ ⇡M1 , ah = ⇡M2 ,M] .

Here we use the notation M(· | xh, ah) to denote the transition operator implied by M at stage h.
Recall that T is the transition operator of the true MDP. In words, the witness model misfit is the
one-step TV error between candidate model M2 and the true environment T on the data distribution
induced by executing policy ⇡M1 for h steps.

Using the backing up argument from the proof of Proposition 5, it is easy to see that the witness
model misfit admits a factorization as

W(M1,M2, h) =

⌧
E
⇥
�?
h�1(xh�1, ah�1) | ⇡M1 ,M

⇤
,

Z
µ?
h�1(xh)�(xh,M2)

�

where �(xh,M2) is the expected total variation distance between M2 and T on (xh,⇡M2(xh)).
Based on this calculation, the witness rank is at most d and the normalization parameter is at most
O(
p
d). It is more straightforward to see that realizability holds here, and so the algorithm of Sun

et al. (2019) has the stated sample complexity.

B Analysis of FLAMBE

As a reminder, FLAMBE interacts with a low rank MDP M, with time horizon H and with non-
stationary dynamics Th(xh+1 | xh, ah) = h�?

h(xh, ah), µ?
h(xh+1)i. We assume that for each h the

operators �?
h, µ

?
h embed into Rd. We use the shorthand E⇡ [·] = E [· | ⇡,M] to denote expectations

when policy ⇡ interacts with the real MDP M and bE⇡ [·] = E
h
· | ⇡, cM

i
for expectations when the

policy interacts with the estimated MDP cM, which has dynamics bT0:H�1. Note that this MDP model
changes from iteration to iteration. When necessary we will use bEj,⇡ [·] to denote the MDP model
learned in the jth iteration of FLAMBE.

The analysis of FLAMBE is based on a potential function argument. The key quantities are the second
moment matrices of the real features induced by the policies ⇢0, ⇢1, . . . at each time h. Formally, for
h 2 {0, . . . , H � 1} and j 2 [Jmax] we define

⌃h,j := �Id⇥d +

j�1X

i=0

E⇢i

⇥
�?
h(xh, ah)�

?
h(xh, ah)

>⇤ ,

where � > 0 is a small constant we will set towards the end of the proof. Note that ⌃h,j � 0 for all
h, j and that this is a cumulative (over j) second-moment matrix.

The importance of ⌃h,j is demonstrated in the next result, which establishes an accuracy guarantee
for the model bT0:H�1 learned in iteration j. The result is a corollary of Theorem 18.
Corollary 4. Fix j � 1, h 2 {1, . . . H � 1}, � 2 (0, 1), and let ⇢0, . . . , ⇢j�1 be any (possibly
data-dependent) policies, with ⌃h,j defined accordingly. Let Dh be a dataset of nj examples where
for each 0  i < j we collect n triples (xh, ah, xh+1) by rolling in with ⇢i to xh and taking ah
uniformly at random. Then with probability 1� � the output (b�h, bµh) of MLE(Dh) satisfies
����
Z

µh�1(xh)unif(ah)
���
D
b�h(xh, ah), bµh(·)

E
� Th(· | xh, ah)

���
TV

����
2

⌃h�1,j

 �d+
2 log(|�||⌥|/�)

n
.

Additionally, for any j � 1, with probability at least 1� � we have
���
D
b�0(x0, a0), bµ0(·)

E
� T (· | x0, a0)

���
2

TV
 2 log(|�||⌥|/�)

n
.

18

Proof. For shorthand, we use vh to denote the d-dimensional vector on the left hand side of the
desired bound. Then, the left hand side is

kvhk2⌃h�1,j
= � kvhk22 +

j�1X

i=0

E⇢i

h�
�?
h�1(xh�1, ah�1)

>vh
�2i

= � kvhk22 +
j�1X

i=0

E⇢i

⇣
E
h���
D
b�h(xh, ah), bµh(·)

E
� Th(· | xh, ah)

���
TV

| xh�1, ah�1

i⌘2�

 �d+
j�1X

i=0

E⇢i

���
D
b�h(xh, ah), bµh(·)

E
� Th(· | xh, ah)

���
2

TV
| ah ⇠ unif(A)

�
.

The first term appears in the desired bound, so now we focus on the second term. We have nj total
examples that form a martingale process, since ⇢i depends on all of the data collected in previous
iterations. Applying Theorem 18, we see that with probability 1� �:

j�1X

i=0

n · E⇢i

���
D
b�h(xh, ah), bµh(·)

E
� Th(· | xh, ah)

���
2

TV
| ah ⇠ unif(A)

�
 2 log(|�||⌥/�),

where the factor of n arises since we collect n examples from ⇢i. Re-arranging we obtain the first
bound. The bound for h = 0 is a direct application of Theorem 18, since we assume there is a fixed
starting state x0 with a single available action.

Now that we have established an accuracy guarantee in terms of the previous exploratory policies, we
state and prove the main technical “simulation” lemma. The following notation is helpful. Given an
MDP model b�0:H�1, bµ0:H�1 and positive definite matrices ⌃0, . . . ,⌃H�1, define

8h � 1 : errh(⌃h�1) :=

����
Z

µh�1(xh)unif(ah)
���
D
b�h(xh, ah), bµh(·)

E
� Th(· | xh, ah)

���
TV

����
2

⌃h�1

,

err0 :=

���
D
b�0(x0, a0), bµ0(·)

E
� T0(· | x0, a0)

���
2

TV
.

Further, for each h � 1, define Kh(⌃h) :=

n
(x, a) 2 X ⇥A : k�?

h(xh, ah)k2⌃�1
h
 1

o
. Let MK be

the MDP with non-stationary transition operator Th,K defined as

Th,K(xh+1 | xh, ah) =

⇢h�?
h(xh, ah), µ

?
h(xh+1)i if (xh, ah) 2 Kh(⌃h)

1{xh+1 = xabsorb} if (xh, ah) /2 Kh(⌃h)
,

where xabsorb is a special self-looping absorbing state with a single action aabsorb such that
T (xabsorb | xabsorb, aabsorb) = 1 always. The initial transition T0,K is identical to T0. The in-
tuition is that K denotes the set of “known” state-action pairs, and the MDP MK terminates any
episode that escapes the known set. In all of these definitions, we suppress the dependence on ⌃h

when it is clear from context. We always consider (xabsorb, aabsorb) to be known.

Lemma 5. Let b�0:H�1, bµ0:H�1 be an MDP model and let ⌃0:H�1 be positive definite matrices.
Assume that

8h 2 {0, . . . , H � 1} : errh(⌃h�1)  "TV.

Let f : X ⇥A! [0, 1] be any function such that f(xabsorb, aabsorb) = 0, and let ⇡ be any policy.
Then for any h 2 {0, . . . , H � 1}

E⇡ [f(xh, ah) | MK]�HK
p
"TV  bE⇡ [f(xh, ah)]  E⇡ [f(xh, ah) | MK] +HK

p
"TV

+

h�1X

h0=0

P [(xh0 , ah0) /2 Kh0 | ⇡,MK] .

This lemma establishes a sharp relationship between the learned MDP cM and an absorbing MDP
MK, defined in terms of the matrices ⌃h, which also governs the estimation error for cM. Intuitively

19

the error guarantee implies that cM closely approximates MK provided we stay within the known set
K0:H�1. Conversely the difference in value between the two MDPs can be bounded in terms of the
escaping probability, which is the third term on the right hand side of the bound.

Note also that the above lemma, with "TV = 0, can be used to compare M with MK, which yields
that for any non-negative function f and any policy ⇡:

E⇡ [f(xh, ah) | MK]  E⇡ [f(xh, ah)]  E⇡ [f(xh, ah) | MK] +

h�1X

h=0

P [(xh0 , ah0) /2 Kh0 | ⇡,MK] .

(3)

This bound actually holds for any sets Kh. We now turn to the proof of Lemma 5.

Proof. Let bVh0(x) := bE⇡[f(xh, ah) | xh0 = x] denote the value function (relative to f) in the
model and let Vh0,K(x) denote the analogous quantity in the absorbing MDP. We have the following
telescoping identity:

bE⇡[f(xh, ah)]� E⇡ [f(xh, ah) | MK] =

Z ⇣
bT0(x1 | x0, a0)� T0,K(x1 | x0, a0)

⌘
bV1(x1)

+ E⇡

h
bV1(x1)� V1,K(x1) | MK

i

=

h�1X

h0=0

E⇡

Z
(bTh0(xh0+1 | xh0 , ah0)� Th0,K(xh0+1 | xh0 , ah0))bVh0+1(xh0+1) | MK

�
.

Note that bVh(x) = Vh,K(x) at the time h where we apply function f . This means that we only
accumulate errors up to time h� 1. We now work with one of these terms. In the remainder of the
proof, unless otherwise specified, all expectations are taken by executing ⇡ in MK. By adding and
subtracting Th0 , we get two terms

Term1h0 := E
Z

(bTh0(xh0+1 | xh0 , ah0)� Th0(xh0+1 | xh0 , ah0))bVh0+1(xh0+1)

�

Term2h0 := E
Z

(Th0(xh0+1 | xh0 , ah0)� Th0,K(xh0+1 | xh0 , ah0))bVh0+1(xh0+1)

�
.

For Term1h0 , note that the expression evaluates to zero if xh0 = xabsorb since both bTh0 and Th0 agree
that xabsorb has a single self-looping action. We now bound Term1 at time h0

= 1, although exactly
the same argument applies to h0 > 0. Defining err(x1, a1) :=

��� bT1(· | x1, a1)� T1(· | x1, a1)
���
TV

and by applying Holder’s inequality, we have

Term11  E
h
1{x1 6= xabsorb}

��� bT1(· | x1, a1)� T1(· | x1, a1)
���
TV

i

 K · E [1{x1 6= xabsorb}unif(a1)err(x1, a1)]

= K · E
h
�?
0(x0, a0)1

n
k�?

0(x0, a0)k2⌃�1
0
 1

oi
·
Z

µ?
0(x1)unif(a1)err(x1, a1)

 K · E
h
k�?

0(x0, a0)k⌃�1
0

1
n
k�?

0(x0, a0)k2⌃�1
0
 1

oi
·
p

err1(⌃0)

 K
p
"TV

The first inequality is Holder’s inequality, while the second is an importance weighting argument
to replace a1 ⇠ ⇡(x1) with the uniform distribution. Next we re-write the expectation using the
low rank dynamics, and also use the fact that x1 6= xabsorb implies that the previous transition was
non-absorbing, which yields the indicator. Finally, we use the Cauchy-Schwarz inequality in the
⌃0 norm, along with the implication of the indicator and the assumed bound on err1(⌃0). This
argument applies as is to all indices h0 > 0 and for h0

= 0 we simply apply Holder’s inequality
and the definition of err0 to obtain the upper bound

p
"TV. In total, these terms account for the

HK
p
"TV terms on both sides of the lemma statement.

20

Next we turn to Term2h0 . For the first inequality in the lemma statement, we need to upper bound
�Term2h0 , but this term is easily seen to be non-positive, since bV (xabsorb) = 0 always. So this
proves the first inequality. For the second inequality, we have (again focusing on time 1)

Term21 = E
Z

T1(x2 | x1, a1)1{(x1, a1) /2 K1}bV2(x2)

�
 P [(x1, a1) /2 K1 | ⇡,MK] .

The same argument applies for all h � 1.

In the next lemma, we consider the case where ⇢j has large escaping probability, measured with
respect to the known sets Kh(⌃h,j). Recall that ⌃h,j is the second moment matrix of the true features
�?
h at time h induced by the previous roll-in policies ⇢0, . . . , ⇢j�1.

Lemma 6. Consider iteration j of FLAMBE and assume that errh(⌃h�1,j)  "TV for each h with
our current model cM. Define Rh(x, a) := 1{(x, a) /2 Kh(⌃h,j)} for each h. Then,

max
h

tr

⇣
E⇢j [�

?
h(xh, ah)�

?
h(xh, ah)]⌃

�1
h,j�1

⌘
� 1

H
max
h

n
bE⇢j [Rh(xh, ah)]�HK

p
"TV

o

Proof. For shorthand let Kh := Kh(⌃h,j) denote the known set at round j, and let MK denote the
corresponding absorbing MDP. Then, applying the second inequality in Lemma 5 we have

bE⇢j [Rh(xh, ah)]  E [Rh(xh, ah) | ⇢j ,MK] +HK
p
"TV +

h�1X

h0=0

P [(xh0 , ah0) /2 Kh0 | ⇢j ,MK]

 HK
p
"TV +

hX

h0=0

P [(xh0 , ah0) /2 Kh0 | ⇢j ,MK]

 HK
p
"TV +

hX

h0=0

P [(xh0 , ah0) /2 Kh0 | ⇢j ,M]

= HK
p
"TV +

hX

h0=0

P
h
k�?

h0(xh0 , ah0)k⌃�1
h0,j
� 1 | ⇢j ,M

i

 HK
p
"TV +

hX

h0=0

E⇢j

h
tr

⇣
�?
h0(xh0 , ah0)�?

h0(xh0 , ah0)
>
⌃

�1
h0,j

⌘i

The last step follows from Markov’s inequality. Since both matrices are positive semidefinite, the trace
terms are all non-negative. Therefore, by the pigeonhole principle, there exists some h0 2 {0, . . . , h}
for which

E⇢j

h
tr

⇣
�?
h0(xh0 , ah0)�?

h0(xh0 , ah0)
>
⌃

�1
h0,j

⌘i
� 1

H

⇣
bE⇢j [Rh(xh, ah)]�HK

p
"TV

⌘
.

This argument applies for all Rh, and so we obtain the lemma.

Next we argue that there cannot be too many iterations for which maxh
bE⇢j [Rh(xh, ah)] is large.

For notation, here we use cM(j) to denote the MDP model in iteration j and we use R(j)
h to denote

the reward functions in Lemma 6 derived from the known sets in iteration j.

Corollary 7. Assume that for each round j 2 [Jmax] and for all h we have errh(⌃h�1,j)  "TV.
Set

Jmax :=
4Hd

�K
p
"TV

· log
✓
1 +

4H

�K
p
"TV

◆
. (4)

Then there exists some j 2 [Jmax] for which maxh E
h
R(j)

h (xh, ah) | ⇢j , cM(j)
i
 2HK

p
"TV.

21

Proof. Suppose that in round j, it holds that maxh E
h
R(j)

h (xh, ah) | ⇢j , cM(j)
i
� 2HK

p
"TV.

Then, by Lemma 6, there exists some time step h for which

tr

⇣
E⇢j

⇥
�?
h(xh, ah)�

?
h(xh, ah)

>⇤
⌃

�1
h,j

⌘
� K
p
"TV.

Note that we also have ⌃h,j+1 = ⌃h,j + E⇢j

⇥
�?
h(xh, ah)�?

h(xh, ah)>
⇤
, so we are in a position to

apply the elliptical potential argument. Specifically if J is the number of iterations for which the
above inequality holds for some h, then applying Lemma 23 for each h and summing across h yields

JK
p
"TV  (1 + 1/�)dH log(1 + Jmax/d)

Plugging in our choice of Jmax, and using the fact that � < 1 we have

J <
2Hd

�K
p
"TV

log

✓
1 +

4H

�K
p
"TV

log

✓
1 +

4H

�K
p
"TV

◆◆

 2Hd

�K
p
"TV

log

1 +

✓
4H

�K
p
"TV

◆2
!
 Jmax.

This means that in Jmax iterations, we can have maxh E
h
R(j)

h (xh, ah) | ⇢j , cM(j)
i
� 2HK

p
"TV

in at most J < Jmax of them. Thus we must have one where this quantity is small, which proves the
lemma.

Next, we state a guarantee provided by Algorithm 2, which is a more convenient form of Lemma 16.
Lemma 8. Fix any iteration j, time h, function f : X ⇥A! [0, 1], policy ⇡, any ↵ > 0. Then

E
h
f(xh, ah) | ⇡, cM(j)

i
 T�

2↵
+

↵d

2T
+

↵KH

2
E
h
f(xh, ah) | ⇢j , cM(j)

i
,

where T  4d log(1 + 4/�)/� and � > 0 is the parameter to Algorithm 2.

Proof. We suppress the dependence on j. Let us first focus on ⇢preh , which is output of Algorithm 2
for some time step h. ⇢preh induces a distribution over states at time step h, and we argue that this
distribution adequately covers all possible roll-in distributions in the model cM = cM(j). Consider
any function f : X ⇥A! [0, 1], any policy ⇡, any ⌃ � 0, and ↵ > 0. Calling f⇡(xh) =

R
⇡(ah |

xh)f(xh, ah), we have

bE⇡f(xh, ah) = bE⇡

⌧
b�h�1(xh�1, ah�1),

Z
bµh�1(xh)f⇡(xh)

�

 bE⇡

���b�h�1(xh�1, ah�1)

���
⌃�1

·
����
Z
bµh�1(xh)f⇡(xh)

����
⌃

 1

2↵
bE⇡ k�h�1(xh�1, ah�1)k2⌃�1 +

↵

2

����
Z
bµh�1(xh)f⇡(xh)

����
2

⌃

.

Here we expand bTh�1 in terms of its low rank representation and then apply the Cauchy-Schwarz
inequality in the norm induced by ⌃. Finally we use the AM-GM inequality which holds for any
non-negative ↵.

We instantiate ⌃ to be the covariance matrix induced by ⇢preh . First, for any policy ⇡ we define
the h � 1 step model covariance as ⌃⇡ := bE⇡

b�h�1(xh�1, ah�1)
b�h�1(xh�1, ah�1)

>, where the
dependence on h� 1 is suppressed in the notation. Note that both the expectation and the embedding
are taken with respect to the model cM. Then, the output of Algorithm 2 is a h-step policy ⇢preh that is
defined as a mixture over T policies ⇡1, . . . ,⇡T . Using these policies, we define ⌃ as follows:

⌃ = ⌃⇢pre
h

+
Id⇥d

T
=

1

T

TX

t=1

⌃⇡t +
Id⇥d

T
.

22

As we run Algorithm 2 using bT0:h�1 we can apply Lemma 16 on the h step MDP bT0:h�1. In other
words, in Lemma 16, we set H h and fM cM. The conclusion is that T  4d log(1 + 4/�)/�,
where � is the parameter to the subroutine, and we can also bound the first term above:

bE⇡

���b�h�1(xh�1, ah�1)

���
2

⌃�1
= bE⇡�h�1(xh�1, ah�1)

>
✓
⌃⇢pre

h
+

Id⇥d

T

◆�1

�h�1(xh�1, ah�1)  T�.

Next, we turn to the second term. Expanding the definition of ⌃, we have
����
Z
bµh�1(xh)f⇡(xh)

����
2

⌃

= bE⇢pre
h

✓⌧
b�h�1(xh�1, ah�1),

Z
bµh�1(xh)f⇡(xh)

�◆2

+

��R bµh�1(xh)f⇡(xh)
��2
2

T

= bE⇢pre
h

⇣
bE [f⇡(xh) | xh�1, ah�1]

⌘2
+

��R bµh�1(xh)f⇡(xh)
��2
2

T

 bE⇢pre
h

f⇡(xh) +

��R bµh�1(xh)f⇡(xh)
��2
2

T
 bE⇢pre

h
f⇡(xh) + d/T .

The first inequality is Jensen’s inequality along with the fact that f(xh)
2  f(xh) since f : X !

[0, 1]. The second inequality is based on our normalization assumptions on µh�1, which we also
impose on bµh�1. Finally, collecting all the terms and importance weighting the last action, we obtain
the bound

bE⇡f(xh) 
T�

2↵
+

↵K

2

bE⇢pre
h �unif(A)f(xh, ah) +

↵d

2T
.

This bound applies to ⇢preh . As ⇢j is a uniform mixture of these policies and as f is non-negative, we
see that bE⇢pre

h �unif(A)f(xh, ah)  H · bE⇢jf(xh, ah), which proves the lemma.

Finally, we use the guarantee for Algorithm 2, to prove that our model cM universally approximate
the true MDP as soon as maxh E

h
R(j)

h (xh, ah) | ⇢j , cM(j)
i
 2HK

p
"TV. For the lemma, we use

the concept of a sparse reward function. R : X ⇥A! [0, 1] is called sparse if all value functions are
in [0, 1]. For example, this holds if R is only associated with state-action pairs at a single time point.
Lemma 9. Assume that for each round j 2 [Jmax] and for all h, we have errh(⌃h�1,j)  "TV, and
set Jmax as in (4). Then the final MDP model cM satisfies the following guarantee: For any sparse
reward function R : X ⇥A! [0, 1], any policy ⇡, and any ↵ > 0 we have

���V (⇡;R, cM)� V (⇡;R,M)

���  HK
p
"TV +H"escape,

where "escape := ↵H2K2p"TV +
T�
2↵ +

↵d
2T +HK

p
"TV, T  4d log(1 + 4/�)/� and � > 0 is the

parameter to Algorithm 2.

Proof. Via Corollary 7, there must be some round j for which

max
h

P
h
(xh, ah) /2 Kh(⌃h,j) | ⇢j , cM(j)

i
= max

h
E
h
R(j)

h (xh, ah) | ⇢j , cM(j)
i
 2HK

p
"TV.

We will prove the guarantee for this round j, and at the end of the proof argue that this also applies to
the final learned model.

Combining the lower bound of the simulation lemma (Lemma 5) with the planning guarantee
(Lemma 8) we see that, for any policy ⇡

P
h
(xh, ah) /2 Kh(⌃h,j) | ⇡,M(j)

K

i
 P

h
(xh, ah) /2 Kh(⌃h,j | ⇡, cM(j)

i
+HK

p
"TV

 ↵KH

2
P
h
(xh, ah) /2 Kh(⌃h,j) | ⇢j , cM(j)

i
+

T�

2↵
+

↵d

2T
+HK

p
"TV

 ↵K2H2p"TV +
T�

2↵
+

↵d

2T
+HK

p
"TV =: "escape

23

Now that we have upper bounded the escaping probability, we can turn to the approximation guarantee.
While we are not in the exact setting of Lemma 5, since we have a sparse reward function, all values
are in [0, 1] so the same argument applies. For one side of the error guarantee, since we assume that
errh(⌃h�1,j)  "TV for all iterations, we have

V (⇡;R, cM(j)
)  V (⇡;R,M(j)

K) +HK
p
"TV +

H�1X

h=0

P
h
(xh, ah) /2 Kh(⌃h,j) | ⇡,M(j)

K

i

 V (⇡;R,M) +HK
p
"TV +

H�1X

h=0

P
h
(xh, ah) /2 Kh(⌃h,j) | ⇡,M(j)

K

i

 V (⇡;R,M) +HK
p
"TV +H"escape.

Here the first inequality is Lemma 5, while the second is due to (3). For the other direction, we first
use (3) and then Lemma 5:

V (⇡;R,M)  V (⇡;R,M(j)
K) +

H�1X

h=0

P
h
(xh, ah) /2 Kh(⌃h,j) | ⇡,M(j)

K

i

 V (⇡;R, cM(j)
) +HK

p
"TV +H"escape.

This proves the result for the MDP model cM(j?) at the time j? where the exploratory policy ⇢j?

fails to achieve large reward on R(j?)
h . We now claim this applies for all iterations after j?, and in

particular it holds at the end of the algorithm. To see why, observe that ⌃h,j+1 ⌫ ⌃h,j for all j,
and so Kh(⌃h,j) ⇢ Kh(⌃h,j+1) for all rounds. Since the known set increases with j, the escaping
probability is decreasing, so it is upper bounded by "escape for all rounds after j � j?. Additionally,
we assume that errh(⌃h�1,j)  "TV for all j 2 [Jmax], so the total variation term in Lemma 5
remains bounded. Working through the proof of Lemma 5, we can see that the bound continues to
hold for all j?  j  Jmax, which proves the result.

Final steps. Let us collect all of the conditions and bounds here. At the end of the algorithm, we
have

max
⇡,R

���V (⇡;R, cM)� V (⇡;R,M)

���  HK
p
"TV +H"escape, (5)

where we may set

"escape := min
↵>0

⇢
↵H2K2p"TV +

T�

2↵
+

↵d

2T
+HK

p
"TV

�
, T  4d log(1 + 4/�)

�
,

and � > 0 is the parameter to Algorithm 2. Applying Corollary 4 and taking a union bound over all
iterations j 2 [Jmax] and all times h, we can set

"TV := �d+
2 log(JmaxH|�||⌥|/�)

n
,

where � > 0 is a parameter in the analysis. Finally, the total number of samples collected is

nHJmax, where, Jmax :=
4Hd

�K
p
"TV

· log
✓
1 +

4H

�K
p
"TV

◆

We start by optimizing for ↵ in the definition of "escape, which yields ↵ =

q
T�

2(H2K2p"TV+d/(2T)) .
Plugging into "escape and using the bound on T , we get

"escape 
p
2T� ·

⇣
HK"1/4TV +

p
d/(2T)

⌘
+HK

p
"TV

 2

p
8d log(1 + 4/�)HK"1/4TV +

p
d�.

Here we are using the fact that "TV  1, which is without loss of generality, since (5) is trivial when
"TV � 1. Now we set � = H2K2p"TV so that

"escape  16

p
d log(1 + 4/"TV)HK"1/4TV .

24

Thus, we may restate the final accuracy guarantee as

max
⇡,R

���V (⇡;R, cM)� V (⇡;R,M)

���  HK
p
"TV + 16

p
d log(1 + 4/"TV)H2K"1/4TV

 17

p
d log(1 + 4/"TV)H2K"1/4TV .

We want this to be upper bounded by ", the final accuracy parameter, which means we can take

"TV = c
"4H�8K�4d�2

log
2
(1 + 1/")

,

where c > 0 is a universal constant. Looking at the definition of "TV and Tmax, we set

� = c
"4H�8K�4d�3

log
2
(1 + 1/")

, Tmax = Õ

✓
H13d5K5

"6

◆
, n = Õ

✓
H8K4d2 log(|�||⌥|/�)

"4

◆
,

where we are ignoring logarithmic factors. This gives the final sample complexity of

Õ

✓
H22K9d7 log(|�||⌥|/�)

"10

◆
.

Finally, note that (1) is implied by the final accuracy guarantee, since we may choose R to be the
total variation distance between our model and the true transition dynamics at time h, which is clearly
a sparse reward function.

Analysis with the sampling oracle. With the sampling oracle, the argument is very similar. The
main difference is in Lemma 8, which is the only place where we use the exact planner. Instead,
we modify the proof of Lemma 8 to instead use Lemma 17 to obtain b⌃ and ⇢preh , and we do the
Cauchy-Schwarz step using b⌃. By Lemma 17 the first term is still O(T�) and for the second term we
pay an additive O(�) to translate from b⌃ to ⌃ (since the spectral norm error is O(�/d) and squared
Euclidean norm of the term involving bµh�1 is at most d). This we have an additional O(↵�) term
in the sample-based analog of Lemma 8. However, as we use the bound T  O(d log(1 + 1/�)/�)
in the remaining calculations, the new O(↵�) term is only larger than the O(↵d/T) term by a
logarithmic factor. In particular, above we have a

p
d� term in the bound for "escape, but with the

sampling oracle, we will additionally have a O(
p
T�) = O(

p
d� log(1 + 1/�)) term in this bound.

Ultimately, this only affects the final sample complexity bound in logarithmic factors. We adjust the
failure probability accordingly, using �/2 probability for invocations of Lemma 17, and �/2 for the
invocations of Corollary 4. As we invoke the planner polynomially many times, the total number of
calls to the sampling oracle is polynomial in all parameters.

B.1 Refined analysis for simplex representations.

Here we prove Theorem 3 by considering a different potential function argument and a different
instantiation of the planning algorithm that directly attempts to visit each latent state. In particular,
we instantiate Algorithm 1 with the planning routine presented in Algorithm 3. Note that this planner
does not require the parameter �, but it does assume that b�(x, a) 2 �([dLV]) for each (x, a).

The analog of ⌃h,j is the cumulative probability of hitting latent variables zh 2 Zh. Formally, we
define

ph,j(z) :=
j�1X

i=0

P [zh = z | ⇢i,M] .

We make two remarks. First ph,j is not a distribution, rather it is the sum of j probability distributions.
Second, we use ph,j to measure the coverage at time h, since zh is the latent variable that generates
xh. This indexing is different from how we use ⌃h,j to measure coverage at time h+1 in the general
case.

We now state the analog of Corollary 4.
Corollary 10. For j � 1, h 2 {0, . . . , H � 1}, � 2 (0, 1) and let ⇢0, . . . , ⇢j�1 be any (possibly
data-dependent) policies, with ph,j defined accordingly. Let Dh be a dataset of nj examples, where

25

for each 0  i < j, we collect n triples (xh, ah, xh+1) by rolling in with ⇢i to xh and taking ah
uniformly at random. Then, with probability at least 1� � the output (b�h, bµh) of MLE(Dh) satisfies
X

z2Zh

ph,j(z)E
���
D
b�(xh, ah), bµh(·)

E
� Th(· | xh, ah)

���
2

TV
| zh = z, ah ⇠ unif(A)

�
 2 log(|�||⌥|/�)

n
.

Proof. This is an immediate consequence of Theorem 18, using the definition of ph,j .

We denote the LHS of the above lemma as errh(ph,j). Now we define the known set Kh and the
absorbing MDP. In the simplex features setting, the known set Kh is instead defined in terms of
latent variables. Recall that we can augment every trajectory ⌧ with the latent variables generated
along the trajectory that is ⌧ = (z0, x0, a0, z1, x1, a1, . . . , zH�1, xH�1, aH�1). We therefore define
Kh,j := {z 2 Zh : ph,j(z) � �} where � is some parameter we will set towards the end of the
proof. The absorbing MDP MK in iteration j is defined to have transition operator that, for each
h, transitions from zh to xabsorb if zh /2 Kh,j and otherwise transitions as in M. As in the more
general analysis, xabsorb is an absorbing state with a single self-looping action aabsorb and we always
consider (xabsorb, aabsorb) to be known.

We now state the analog of Lemma 5.

Lemma 11. Let b�0:H�1, bµ0:H�1 be an MDP model with simplex features and let p0:H�1 be non-
negative vectors. Assume that errh(ph�1)  "TV for each h. Let f : X ⇥A! [0, 1] be any function
such that f(xabsorb, aabsorb) = 0 and let ⇡ be any policy. Then, for any h

E⇡ [f(xh, ah) | MK]�HK
p

"TV/�  bE⇡ [f(xh, ah)]  E⇡ [f(xh, ah) | MK] +HK
p

"TV/�

+

hX

h0=1

P [zh0 /2 Kh0 | ⇡,MK]

Proof. As in the proof of Lemma 5, we must control two terms for each h0 < h:

Term1h0 := E
Z

(bTh0(xh0+1 | xh0 , ah0)� Th0(xh0+1 | xh0 , ah0))bVh0+1(xh0+1) | ⇡,MK

�

Term2h0 := E
Z

(Th0(xh0+1 | xh0 , ah0)� Th0,K(xh0+1 | xh0 , ah0))bVh0+1(xh0+1) | ⇡,MK

�
.

For Term1h0 , as we are in MK we can ignore the trajectories where zh0 /2 Kh0 . Thus considering
h0

= 1

Term11 =

X

z2K1

P⇡[z1 = z | MK] · E⇡

Z
(bT1(x2 | x1, a1)� T1(x2 | x1, a1))bV2(x2) | z1 = z

�

 K
X

z2K1

P⇡[z1 = z | MK] · E
h��� bT1(· | x1, a1)� T1(· | x1, a1)

���
TV

| z1 = z, a1 ⇠ unif(A)

i

 K

vuut
X

z2K1

P⇡[z1 = z | MK] · E
��� bT1(· | x1, a1)� T1(· | x1, a1)

���
2

TV
| z1 = z, a1 ⇠ unif(A)

�

 K
p

err1(p1)/�  K
p

"TV/�.

Here we are using that the total variation term is non-negative, and that P⇡[z1 = z | MK]  1, while
p1(z) � � by the fact that z 2 K1. This argument applies for all h0 and yields the HK

p
"TV/� term

on both sides of the statement. For Term2h0 , we clearly have

Term2h0  P [zh0+1 /2 Kh0+1 | ⇡,MK] .

As in the proof of Lemma 5, Term2h0 � 0 which yields the lower bound.

Next we argue that if the exploratory policy ⇢j that we find has large escaping probability then we
will add some latent variable to the known set in the next iteration.

26

Lemma 12. Consider iteration j of FLAMBE and assume that errh(ph,j)  "TV for each h. Define
Rh(x, a) :=

P
z/2Kh,j

�?
h(x, a)[z]. Then

max
h

P [zh /2 Kh,j | ⇢j] �
1

H
max
h

n
bE⇢j [Rh(xh, ah)]�HK

p
"TV/�

o
.

In particular, if there exists some h such that bE⇢j [Rh(xh, ah)] � HK
p

"TV/�+HdLV�, then there
exists some h0, z /2 Kh0 such that P [zh0 = z | ⇢j] � �.

Proof. Observe that by the definition of Rh, we have

bE⇢j [Rh(xh, ah)]  E⇢j [Rh(xh, ah) | MK] +HK
p

"TV/� +

hX

h0=1

P [zh0 /2 Kh0,j | ⇢j ,MK]

= HK
p

"TV/� +

h+1X

h0=1

P [zh0 /2 Kh0,j | ⇢j ,MK] .

Both statements now follow from the pigeonhole principle.

Next we prove the analog of Lemma 9. For this, we compute ⇢preh using the planning routine
in Algorithm 3, with the planning guarantee in Lemma 15.
Lemma 13. Assume that for each round j 2 [Jmax] and for all h, we have errh(ph,j)  "TV and
set Jmax = HdLV + 1. Then the final MDP model cM satisfies the following guarantee: For any
sparse reward function R : X ⇥A! [0, 1] and any policy ⇡, we have

���V (⇡;R, cM)� V (⇡;R,M)

���  HK
p

"TV/� +H"escape,

where "escape := H2Kd2LV�+
�
H2K2dLV +HKdLV

�p
"TV/�.

Proof. First observe that by Lemma 12, in every iteration where ⇢j satisfies
maxh

bE⇢j [Rh(xh, ah)] � HK
p

"TV/�+HdLV�, we add some latent variable at some time point to
the known set. This means that this can only happen for at most HdLV iterations, and so, by the setting
of Jmax, there must be some iteration j in which maxh

bE⇢j [Rh(xh, ah)]  HK
p

"TV/�+HdLV�.
In this iteration j, we have

P
h
zh+1 /2 Kh+1,j | ⇡,M(j)

K

i
 P

h
zh+1 /2 Kh+1,j | ⇡, cM(j)

i
+HK

p
"TV/�

=

X

z2 bZh

bE⇡

h
b�h�1(xh�1, ah�1)[z]

i
· P
h
K̄h+1,j | ⇡, cM(j), bzh = i

i
+HK

p
"TV/�

 K
X

z2 bZh

bE⇡

h
b�h�1(xh�1, ah�1)[z]

i
· P
h
K̄h+1,j | cM(j), bzh = z, ah ⇠ unif(A)

i
+HK

p
"TV/�

 KdLV
X

z2 bZh

bE⇢pre
h

h
b�h�1(xh�1, ah�1)[z]

i
· P
h
K̄h+1,j | cM(j), bzh = z, ah ⇠ unif(A)

i
+HK

p
"TV/�

 HKdLVbP⇢j

⇥
K̄h+1,j

⇤
+HK

p
"TV/�  HKdLVbE⇢j [Rh(xh, ah)] +HK

p
"TV/�

 HKdLV
⇣
HK

p
"TV/� +HdLV�

⌘
+HK

p
"TV/� =: "escape

Here the first inequality is Lemma 11, while the first equality re-writes the expectation in terms of
the latent variable zh. In the second inequality we translate to taking ah uniformly via importance
weighting, while in the third, we apply Lemma 15, which lets us translate to ⇢preh . Finally, we use that
⇢j uses ⇢preh with probability 1/H and the definition of Rh. The result now follows from Lemma 11,
along with the analog of (3). As in the general case, this bound applies for all iterations after the first
one where the escaping probability for ⇢j is small.

27

Final steps. The final steps with simplex features are much more straightforward than in the general
case. First we choose � to balance the two terms in "escape. We set � = (K/dLV)

2/3"1/3TV which
yields

"escape  3H2KdLV
⇣
K2/3

(dLV"TV)
1/3
⌘
,

where we are also using the fact that "TV  1. Via Lemma 13, after Jmax = HdLV + 1 iterations,
we are guaranteed that

max
⇡,R

���V (⇡;R, cM)� V (⇡;R,M)

���  HK
p

"TV/� +H"escape  O
⇣
H3K5/3d4/3LV "1/3TV

⌘
.

For this to be at most " we should set "TV  O
�
"3H�9K�5d�4

LV

�
. Applying Corollary 10 and taking

a union over all Jmax rounds, we want to set

n =
2 log(Jmax|�||⌥|/�)

"TV
= Õ

✓
H9K5d4LV log(|�||⌥|/�)

"3

◆
.

The total sample complexity is nHJmax = Õ
⇣

H11K5d5
LV log(|�||⌥|/�)

"3

⌘
. As in the general setting,

the value function guarantee implies (1), which yields the result.

Analysis with a sampling oracle. With a sampling oracle, the only difference is in the proof
of Lemma 13. Here, we can only apply the second statement of Lemma 15, which yields an additive
O(KdLV"opt) term. By taking "opt = (H/dLV)

p
"TV/�, this additional term can be absorbed into the

other additive term at the expense of a constant. Thus we obtain the same guarantee, up to constants,
with polynomially many calls to the sampling oracle.

C Planning Algorithms

In this section, we present exploratory planning algorithms for low rank models, assuming that the
dynamics are known. Formally, we consider an H step low rank MDP fM with deterministic start
state x0, fixed action a0, and transition matrices T0, . . . , TH�1. Each transition operator Th factorizes
as Th(xh+1 | xh, ah) = h�h(xh, ah), µh(xh+1)i and we assume �0:H�1, µ0:H�1 are known. To
compartmentalize the results, we focus on exploratory planning at time H , but we will invoke these
subroutines with MDP models that have horizon h  H . This simply requires rebinding variables.

We present two types of results. One style assumes that all expectations are computed exactly. As we
are focusing purely on planning with known dynamics and rewards, this imposes a computational bur-
den, but not a statistical one, while leading to a more transparent proof. To address the computational
burden, we also consider algorithms that approximate all expectations with samples. For this, we
assume that we can obtain sample transitions from the MDP model fM in a computationally efficient
manner. Formally, the sampling oracle allows us to sample x0 ⇠ Th(· | x, a) for any x, a.

C.1 Planning with a sampling oracle

For the computational style of result, it will be helpful to first show how to optimize a given reward
function whenever the model admits a sampling oracle. As notation, we always consider an explicitly
specified non-stationary reward function R : X ⇥A⇥ {0, . . . , H � 1}! [0, 1]. Then, we define

V (⇡, R) = E
"
H�1X

h=0

R(xh, ah, h) | ⇡, fM
#
.

The next lemma is a simple application of the result of Jin et al. (2020b).
Lemma 14. Suppose that the reward function R : X ⇥A⇥ {0, . . . , H � 1} ! [0, 1] is explicitly
given and that T0:H�1 is a known low rank MDP that enables efficient sampling. Then for any ✏ > 0

there is an algorithm for finding a policy b⇡ such that with probability at least 1 � �, V (b⇡, R) �
max⇡ V (⇡, R)� ✏ in polynomial time with poly(d,H, 1/✏, log(1/�)) calls to the sampling routine.

28

Algorithm 3 Exploratory planner for simplex representations

1: Input: MDP fM = (�0:H�1, µ0:H�1) with �h(xh, ah) 2 �([dLV]), µh[z] 2 �(X).
2: for z = 1, . . . , dLV do

3: Compute ⇡z = argmax⇡ E[�H�1(xH�1, aH�1)[z] | fM,⇡]
4: end for

5: Output policy mixture ⇢ := unif({⇡z}dLV
z=1)

Proof. As we have sampling access to the MDP, we can execute the LSVI-UCB algorithm of Jin et al.
(2020b). For any n, if we execute the algorithm for n episodes, it produces n policies ⇡1, . . . ,⇡n and
guarantees

max
⇡

V (⇡, R)� 1

n

nX

i=1

V (⇡i, R)  c

r
d3H3 log(ndH/�)

n

with probability at least 1 � � where c > 0 is a universal constant. We are assured that one of the
policies ⇡1, . . . ,⇡n is at most ✏/2-suboptimal by taking n = O

�
d3H3

log(dH/(✏�))/✏2
�
.

We find this policy via a simple policy evaluation step. For each policy ⇡i, we collect
O(H2

log(n/�)/✏2) roll-outs using the generative model, where we take actions according to ⇡i. Via
a union bound, this guarantees that for each i we have bVi such that with probability at least 1� �

max
i

���bVi � V (⇡i, R)

���  ✏/4.

Therefore, if we takebi = argmaxi2[n]
bVi we are assured that V (⇡bi, R) � max⇡ V (⇡, R)� ✏ with

probability at least 1� 2�. The total number of samples required from the model are

nH

✓
1 +

H2
log(n/�)

✏2

◆
= Õ

✓
d3H6

log(1/�)

✏4

◆
.

C.2 Planning with simplex features

We first consider a simpler planning algorithm that is adapted to the simplex features representation.
The pseudocode is displayed in Algorithm 3. The planner computes a mixture policy ⇢, where com-
ponent ⇡i of the mixture focuses on activating coordinate i of the feature map �H�1(xH�1, aH�1).
Each mixture component can be computed in a straightforward manner using a dynamic programming
approach, such as LSVI. The basic guarantee for this algorithm is the following lemma.

Lemma 15 (Guarantee for Algorithm 3). If fM is an H-step low rank MDP with simplex features of
dimension dLV, then the output of Algorithm 3, ⇢, satisfies

8⇡, z 2 [dLV] : E
h
�H�1(xH�1, aH�1)[z] | fM,⇡

i
 dLVE

h
�H�1(xH�1, aH�1)[z] | fM, ⇢

i
.

Given a sampling oracle for fM, the algorithm runs in polynomial time with
poly(dLV, H, 1/"opt, log(1/�)) calls to SAMP, and with probability at least 1� �, ⇢ satisfies

8⇡, z 2 [dLV],E
h
�H�1(xH�1, aH�1)[z] | fM,⇡

i
 dLVE

h
�H�1(xH�1, aH�1)[z] | fM, ⇢

i
+ "opt.

Proof. The first result follows immediately from the non-negativity of �H�1(xH�1, aH�1)[i], the
optimality property of ⇡i and the definition of ⇢.

For the second result, by Lemma 14 we can optimize any explicitly specified reward function
using a polynomial number of samples. If we call this sampling-based planner for each of the d
reward functions, with high probability (via a union bound) the policies b⇡i are near-optimal for their
corresponding reward functions. By appropriately re-scaling the accuracy parameter in Lemma 14
we obtain the desired guarantee.

29

C.3 Elliptical planner

The next planning algorithm applies to general low rank MDP, and it is more sophisticated. It proceeds
in iterations, where in iteration t we maintain a covariance matrix ⌃t�1 and, in (2), we search for a
policy that maximizes quadratic forms with the inverse covariance ⌃

�1
t�1. With a sampling oracle this

optimization can be done via a call to Lemma 14. If this maximizing policy ⇡t cannot achieve large
quadratic forms against ⌃�1

t�1, then we halt and output the mixture of all previous policies. Otherwise,
we mix ⇡t into our candidate solution, update the covariance matrix accordingly, and advance to the
next iteration. The performance guarantee for this algorithm is as follows.

Lemma 16 (Guarantee for Algorithm 2). If fM is an H-step low rank MDP with embedding di-
mension d then for any � > 0, Algorithm 2 terminates after at most T + 1 iterations where
T  4d log(1 + 4/�)/�. Upon termination, ⇢ guarantees

8⇡ : E
h
�H�1(xH�1, aH�1)

>
(⌃⇢ + I/T)�1 �H�1(xH�1, aH�1) | fM,⇡

i
 T�.

where ⌃⇢ =
1
T

PT
t=1 ⌃⇡t .

Proof. The performance guarantee is immediate from the termination condition, using the fact that
⌃T = T · (⌃⇢ + I/T).

For the iteration complexity bound, we condense the notation and omit the dependence on H � 1,
xH�1, aH�1 in all terms. We have

�T 
TX

t=1

E
h
�>

⌃
�1
t�1� | fM,⇡t

i
=

TX

t=1

tr(⌃⇡t⌃
�1
t�1)  2d log(1 + T/d),

where the first inequality is based on the fact that we did not terminate at each iteration t 2 [T] and
the last inequality follows from a standard elliptical potential argument (e.g., Lemma 11 in Dani
et al. (2008); see Lemma 23 for a precise statement and proof). This gives an upper bound on T that
implies the one in the lemma statement, via Corollary 24.

With the sampling oracle, we modify the algorithm slightly and obtain a qualitatively similar guarantee.
The modifications are discussed in the proof.

Lemma 17. The sample-based version of Algorithm 2 has the following guarantee. Assume fM is an
H-step low rank MDP with embedding dimension d and fix � > 0, � 2 (0, 1). Then the algorithm
terminates after at most T + 1 iterations, where T  O(d log(1 + 1/�)/�). Upon termination, it
ouputs a matrix b⌃ and a policy ⇢ such that with probability at least 1� �:

8⇡ : E

�H�1(xH�1, aH�1)

>
⇣
b⌃+ I/T

⌘�1
�H�1(xH�1, aH�1) | fM,⇡

�
 O(T�),

���b⌃�
⇣
E
h
�H�1(xH�1, aH�1)�H�1(xH�1, aH�1)

> | ⇢, fM
i
+ I/T

⌘���
op
 O(�/d).

The algorithm runs in polynomial time with poly(d,H, 1/�, log(1/�)) calls to the sampling oracle.

Proof. The algorithm is modified as follows. We replace all covariances with empirical approx-
imations, obtained by calls to the sampling subroutine. We call the empirical versions b⌃t, b⌃⇡t ,
etc. Then, the policy optimization step (2) is performed via an application of Lemma 14 and so
we find an "opt-suboptimal policy ⇡t for the reward function induced by b⌃t�1. Then we use the
sampling subroutine to estimate the value of this policy, which we denote bVt(⇡t). As before, we
terminate if bVt(⇡t)  �. If we terminate in round t, we output ⇢ = unif({⇡i}t�1

i=1) and we also
output b⌃ =

1
t�1

Pt�1
i=1

b⌃⇡i . As notation, we use Vt(⇡) to denote the value for policy ⇡ on the reward
function used in iteration t, which is induced by b⌃t�1.

With poly(d,H, T, 1/"opt, log(1/�)) calls to the sampling subroutine and assuming the total number
of iterations of the algorithm T is polynomial, we can verify that with probability 1� �

max
t2[T]

max

⇢
d ·
���b⌃⇡t � ⌃⇡t

���
op

,
���bVt(⇡t)� Vt(⇡t)

��� ,max
⇡

Vt(⇡)� Vt(⇡t)

�
 "opt.

30

The first two bounds follow from standard concentration of measure arguments. The final one is
based on an application of Lemma 14.

Now, if we terminate in iteration t, we know that bVt(⇡t)  �. This implies

max
⇡

Vt(⇡)  Vt(⇡t) + "opt  bVt(⇡t) + 2"opt  � + 2"opt.

As we are interested in the reward function induced by b⌃t�1, this verifies the quality guarantee,
provided "opt = O(�).

Finally, we turn to the iteration complexity. Similarly to above, we have

T (� � 2"opt) 
TX

t=1

bVt(⇡t)� 2"opt 
TX

t=1

Vt(⇡t)� "opt

=

TX

t=1

E
h
�>b⌃�1

t�1� | fM,⇡t

i
� "opt =

TX

t=1

tr(⌃⇡t
b⌃�1
t�1)� "opt


TX

t=1

tr(b⌃⇡t
b⌃�1
t�1)  2d log(1 + T/d).

In other words, if we set "opt = O(�) then both the iteration complexity and the performance
guarantee are unchanged. The accuracy guarantee for the covariance matrix b⌃t�1 is straightforward,
since each b⌃⇡t is "opt accurate and b⌃ is the average of such matrices.

D Maximum Likelihood Estimation

In this section we adapt classical results for maximum likelihood estimation in general parametric
models. We consider a sequential conditional probability estimation setting with an instance space X
and target space Y and with a conditional density p(y | x) = f?

(x, y). We are given a function class
F : (X ⇥ Y)! R with which to model the condition distribution f?, and we assume that f? 2 F ,
so that the problem is well-specified or realizable. We are given a dataset D := {(xi, yi)}ni=1, where
xi ⇠ Di = Di(x1:i�1, y1:i�1) and yi ⇠ p(· | xi). Note that Di depends on the previous examples,
so this is a martingale process. We optimize the maximum likelihood objective

bf := argmax
f2F

nX

i=1

log f(xi, yi). (6)

The iid version of the following result is classical (c.f., Van de Geer, 2000, Chapter 7), but under-
utilized in machine learning and reinforcement learning in particular. Our adaptation is inspired
by Zhang (2006).
Theorem 18. Fix � 2 (0, 1), assume |F| <1 and f? 2 F . Then with probability at least 1� �

nX

i=1

Ex⇠Di

��� bf(x, ·)� f?
(x, ·)

���
2

TV
 2 log(|F|/�).

Remark 19. Given a class of discriminators G : (X ,Y) 7! [�1, 1], an alternative is to consider the
following (conditional) “generative adversarial” objective:

bf = argmin
f2F

max
g2G

1

n

nX

i=1

(g(xi, yi)� E[g(xi, y) | y ⇠ f(x, ·)]) .

This is the natural objective associated with the distance function induced by G (Arora et al., 2017),
and is also related to other GAN-style approaches. Owing to the realizability assumption, f? will
always have low objective value, scaling with the complexity of G. Additionally, if G is expressive
enough, one can establish a guarantee similar to Theorem 18, which can then be used in the analysis
of FLAMBE. Formally, a sufficient condition is that G contains the indicators of the Scheffe sets for
all pairs f, f 0 2 F , in which case the total variation guarantee can be obtained by standard uniform
convergence arguments. See Devroye and Lugosi (2012); Sun et al. (2019) for more details.

31

Remark 20. We also remark that the proof of Theorem 18 actually establishes convergence in the
squared Hellinger distance. We obtain the total variation guarantee simply by observing that the
squared Hellinger distance dominates the squared total variation distance.

We prove Theorem 18 in this section. We begin with a decoupling inequality. Let D denote the dataset
and let D0 denote a tangent sequence {(x0

i, y
0
i)}ni=1 where x0

i ⇠ Di(x1:i�1, y1:i�1) and y0i ⇠ p(· | x0
i).

Note here that x0
i depends on the original sequence, and so the tangent sequence is independent

conditional on D.
Lemma 21. Let D be a dataset of n examples, and let D0 be a tangent sequence. Let L(f,D) =Pn

i=1 `(f, (xi, yi)) be any function that decomposes additively across examples where ` is any
function, and let bf(D) be any estimator taking as input random variable D and with range F . Then

ED

h
exp

⇣
L(bf(D), D)� logED0 exp(L(bf(D), D0

))� log |F|
⌘i
 1

Observe that in the second term, the “loss function” takes as input D0, but the estimator takes as input
D. As such, the above inequality decouples the estimator from the loss.

Proof. Let ⇡ be the uniform distribution over F and let g : F ! R be any function. Define
µ(f) := exp(g(f))P

f exp(g(f)) , which is clearly a probability distribution. Now consider any other probability
distribution b⇡ over F :

0  KL(b⇡||µ) =
X

f

b⇡(f) log(b⇡(f)) +
X

f

b⇡(f) log

0

@
X

f 0

exp(g(f 0
))

1

A�
X

f

b⇡(f)g(f)

= KL(b⇡||⇡)�
X

f

b⇡(f)g(f) + logEf⇠⇡ exp(g(f))

 log |F|�
X

f

b⇡(f)g(f) + logEf⇠⇡ exp(g(f)).

Re-arranging, it holds that
X

f

b⇡(f)g(f)� log |F|  logEf⇠⇡ exp(g(f)).

We instantiate this bound with b⇡ = 1{ bf(D)} and g(f) = L(f,D) � logED0 exp(L(f,D0
)) to

obtain, for any D

L(bf(D), D)� logED0 exp(L(bf(D), D0
))� log |F|  logEf⇠⇡

exp (L(f,D))

ED0 exp(L(f,D0))
.

Exponentiating both sides and then taking expectation over D, we obtain

ED

h
exp(L(bf(D), D)� logED0 exp(L(bf(D), D0

))� log |F|)
i

 Ef⇠⇡ED
exp (L(f,D))

ED0 [exp(L(f,D0)) | D]
= 1.

The last equality follows since, conditional on D, the tangent sequence D0 is independent. Therefore,

ED0 [exp(L(f,D0
)) | D] =

nY

i=1

E(x0
i,y

0
i)⇠Di

[exp(`(f, (x0
i, y

0
i)))] ,

which allows us to peel off terms starting from n down to 1 and cancel them with those in the
numerator.

The next lemma translates from TV-distance to a loss function that is closely related to the KL
divergence.

32

Lemma 22. For any two conditional probability densities f1, f2 and any distribution D 2 �(X) we
have

Ex⇠D kf1(x, ·)� f2(x, ·)k2TV  �2 logEx⇠D,y⇠f2(·|x) exp

✓
�1

2
log(f2(x, y)/f1(x, y))

◆

Proof. Let us begin by relating the total variation distance, which appears on the left hand side, to
the (squared) Hellinger distance, which for densities p, q over a domain Z is defined as

H
2
(q||p) :=

Z ⇣p
p(z)�

p
q(z)

⌘2
dz.

Lemma 2.3 in Tsybakov (2008) asserts that

kp(·)� q(·)k2TV  H
2
(q||p) ·

✓
1� H

2
(q||p)
4

◆
 H

2
(q||p),

where the final inequality uses non-negativity of the Hellinger distance. Next, note that we can also
write

H
2
(q||p) =

Z
p(z) + q(z)� 2

p
p(z)q(z)dz = 2 · Ez⇠q

h
1�

p
p(z)/q(z)

i

 �2 logEz⇠q

p
p(z)/q(z) = �2 logEz⇠q exp

✓
�1

2
log(q(z)/p(z))

◆
.

Here the inequality follows from the fact that 1� x  � log(x). The result follows by applying this
argument to Ex⇠D kf1(x, ·)� f2(x, ·)k2TV.

Proof of Theorem 18. First note that Lemma 21 can be combined with the Chernoff method to obtain
an exponential tail bound: with probability 1� � we have

� logED0 exp(L(bf(D), D0
))  �L(bf(D), D) + log |F|+ log(1/�).

Now we set L(f,D) =
Pn

i=1
�1/2 · log(f?

(xi, yi)/f(xi, yi)) where D is a dataset {(xi, yi)}ni=1
(and D0

= {(x0
i, y

0
i)}ni=1 is a tangent sequence). With this choice, the right hand side is

nX

i=1

1

2
log(f?

(xi, yi)/ bf(xi, yi)) + log |F|+ log(1/�)  log |F|+ log(1/�),

since bf is the empirical maximum likelihood estimator and we are in the well-specified setting. On
the other hand, the left hand side is

� logED0

"
exp

nX

i=1

�1/2 log

f?

(x0
i, y

0
i)

bf(x0
i, y

0
i)

!!
| D
#
= �

nX

i=1

logEx,y⇠Di exp

�1/2 log

f?

(x, y)
bf(x, y)

!!

� 1

2

nX

i=1

Ex⇠Di

��� bf(x, ·)� f?
(x, ·)

���
2

TV
.

Here the first identity uses the independence of the terms, which holds because bf is independent of
the dataset D0. The second inequality is Lemma 22. This yields the theorem.

E Auxilliary Lemmas

Lemma 23 (Elliptical Potential Lemma). Consider a sequence of d⇥d positive semidefinite matrices
X1, . . . , XT with maxt tr(Xt)  1 and define M0 = �Id⇥d, . . . ,Mt = Mt�1 +Xt. Then

TX

t=1

tr(XtM
�1
t�1)  (1 + 1/�)d log(1 + T/d).

33

Proof. Observe that by concavity of the log det(·) function, we have

log(det(Mt�1))  log(det(Mt)) + tr(M�1
t (Mt�1 �Mt)).

Re-arranging and summing across all rounds t yields

TX

t=1

tr(XtM
�1
t) 

TX

t=1

log(det(Mt))� log(det(Mt�1)) = log(det(MT))� d�.

We will drop the negative term. By the spectral version of the AM-GM inequality and linearity of
trace, we upper bound the last term:

det(MT)
1/d  tr(MT)/d  1 + T/d.

Now, we must convert from M�1
t to M�1

t�1 on the left hand side. Fix a round t and let us write
Xt = V V >, which is always possible as Xt is positive semidefinite. Then by the Woodbury identity

tr(XtM
�1
t) = tr

�
V >

(Mt�1 + V V >
)
�1V

�

= tr(V >M�1
t�1V)� tr(V >M�1

t�1V (I + V >M�1
t�1V)

�1V >M�1
t�1V).

All matrices are simultaneously diagonalizable, so we may pass to a common eigendecomposition.
In particular, with the eigendecomposition V >M�1

t�1V =
Pd

i=1 �iuiu>
i , we obtain

tr(XtM
�1
t) =

dX

i=1

�i �
�2
i

1 + �i
=

dX

i=1

�i

1 + �i
� 1

1 + 1/�

dX

i=1

�i =
1

1 + 1/�
tr(XtM

�1
t�1).

The inequality follows from the fact that �i 
��V >M�1

t�1V
��
2
 1/� due to our initial conditions on

M0 and the normalization for Xt.

Corollary 24. Consider the setup of Lemma 23 and further assume that for each t, we have
tr(XtM

�1
t�1) � � > 0. Then T  2(1 + 1/�)d log(1 + 2(1 + 1/�)/�)/�.

Proof. The stated assumption and Lemma 23 implies that T  (1 + 1/�)d log(1 + T/d)/�. We claim
that if T  2(1 + 1/�)d log(1 + 2(1 + 1/�)/�)/� then a weakening of this bound is

T  (1 + 1/�)d

�
log(1 + T/d)/�  (1 + 1/�)d

�
log

✓
1 +

2(1 + 1/�) log(1 + 2(1 + 1/�)/�)

�

◆

 (1 + 1/�)d

�
log

1 +

✓
2(1 + 1/�)

�

◆2
!
 2(1 + 1/�)d

�
log

✓
1 +

2(1 + 1/�)

�

◆
.

Therefore, we have established an upper bound on T .

34

