A Gunsilius’s Algorithm

Gunsilius| (2020) provides a theoretical framework for minimal conditions for a continuous IV model
to imply non-trivial bounds (that is, bounds tighter that what can be obtained by just assuming that
the density function p(z, y | z) exists). That work also introduces two variations of an algorithm for
fitting bounds.

The basic version consists of first sampling [response functions fz, (-) and fr, (-) from a distribution
over functions — in the experiments described, a Gaussian process evaluated on a grid in the respective
spaces. The final distribution is reweighted combination of the pre-sampled [/ response functions
with weights p playing the role of the decision variables to be optimized. Hence, by construction,
the space of distributions in the response function space is absolutely continuous with respect to
the pre-defined Gaussian process. The constraints are defined by approximating an estimate of the
bivariate CDF F'(z,y| z) on a grid of values, which are approximately constrained to match the
model implied CDF in a L, sense. Large deviance bounds are then used to show the (intuitive) result
that this approximation is a probably approximately correct formulation of the original optimization
problem.

One issue with this algorithm is that [may be required to be large as it is a non-adaptive Monte Carlo
approximation in a high dimensional space. A variant is described where, every time a solution for p
is found, response function samples with low corresponding values of p are replaced (again, from
the given and non-adaptive Gaussian process). Although this now has the advantage of adapting the
Monte Carlo samples to the problem, this has convergence problems that may be severe and not easy
to diagnose.

In contrast, we formulate our adaptation of 7 as a continuous optimization problem with an estimate
of the gradient that has empirically reasonable stability, as expected from the related work in the
machine learning literature for gradient estimation. We also parameterize the distribution so that
the only constraint that we need to enforce concerns the univariate density p(y | z) (or p(y | z, z), in
the variation discussed in Appendix [G} which in principle requires no density estimation). Like the
algorithm given by Gunsilius, the space of functions is a linear combination of a fixed dictionary of
basis functions with a Gaussian distribution on the parameters, although we do not make use of the
discrete mixture reweighting on the Monte Carlo samples, which introduces instability in (Gunsilius}
2020) despite its good theoretical properties. Our formulation, like the one in (Gunsilius} 2020), can
in principle make use of more a flexible distribution such as a mixture of Gaussian copulas at the cost
of more computation, as discussed in Appendix [B] An important piece of future work is to thoroughly
assess how stable a mixture of Gaussians version our algorithm is in practice.

The proposed implementation of Gunsilius® algorithm computes Fy | o () (Y*) = Fy | do(e)(Y")
i.e., the difference in effects at two different treatment levels xf and =7 for individuals within a fixed
quantile y* € [0, 1] of the outcome variable. For example, in the expenditure dataset (see Section ,
the setting 2§ = 0.75, 27 = 0.25,y* = 0.25 would look at how much people, who spend a lot
overall (z* = 0.75) and spend comparably little on food (up to 25%), would spend on food relatively
to overall expenditure, if they spent much less overall (z7 = 0.25). The main tuning parameter in
the proposed algorithm is the penalization parameter A\, which corresponds to the tightness of the
constraint. In the proposed implementation, this parameter is fixed throughout the optimization and
must be chosen manually. In Figure[d] we show the results of Gunsilius’s algorithm for three different
levels of y* on the expenditure dataset. Small values of A result in uninformatively loose bounds
and do not always seem to converge (e.g., for y* = 0.75). As we increase A, which corresponds
to stronger enforcement of the constraint, the bounds get narrower. However, even after a long
burn-in period, we still encounter substantial “instantaneous jumps’ as well as longer-term drifts in
the bounds, which may change the qualitative conclusions (for example in the y* = 0.75 setting).
Note that this algorithm works on the empirical CDFs of all variables, i.e., they are all scaled to lie
within [0, 1].

Moreover, even after laboriously improving the performance of the algorithm using acceleration
via JAX (Bradbury et al., 2018)) and parallelized solving of the quadratic programs with CVXPY
(Diamond & Boyd, [2016)), producing an upper and lower bound for a single setting of 2, 7, ¥, A
with Gunsilius’s algorithm took longer (about 30 minutes on a quad-core Intel Core i7) than a full
set of upper and lower bounds at 15 different 2* values with our algorithm (about 20 minutes on the
same hardware).

13

I
250 500 70 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000 250 500 70 1000 1250 1500 1730 2000
iterations iterations iterations

Figure 4: We show results of Gunsilius’s algorithm for 3 different settings of y* € {0.25,0.5,0.75}.

B The Shape of p, (¢ | z,) and Conditional Effects

It is not difficult to show that our parameterization of p, (6 | z, z) enforces 6 Ll Z while allowing
for 04 Z | X, as suggested by Figure c). It follows directly by factoring a conditional density in
terms of a copula density c(-) and the required univariate marginals. That is, for some (V1, V3, V3)
for which we want to define a conditional pdf p(vs | v1,v3), we have

p(v1,v2 |v3) i= c(F(v1|v3), F'(va|v3)) p(vr |va)p(vz [v3) =
p(va|vi,v3) = c(F(v1|v3), F(vz|v3)) p(vz | vs).

Since [p(vi,vs |v3) dvr = p(va | v3), a necessary and sufficient condition for V5 1L V3 is choosing
a model marginal such that p(vs | v3) = p(ve). If ¢(F(v1 | v3), F(ve)) cannot be factored in terms of
some product hq (vy,v3)ha(v1,v2), which is typically the case, then Vo X V3 | V5.

The main apparent limitation of our p,(6;) (and the related copula) is its reliance on a parametric
form. There is a complex relationship between the shape of the response function space and the
distribution implied on that space by the unknown model M. For Y = f(X, U), it is always possible
to assume without loss of generality that U is a set of variables which are marginally standard
Gaussians: just let the transformation U] := ®~1(F;(U;))) be absorbed into f(-), where F;(-) is
the marginal CDF of U, and ®(-) is the CDF of a standard Gaussian. Moreover, assuming that any
dependence among elements of U can be explained by direct causation among them or by other latent
parents, we can also assume all members of U are independent.

However, we do not want to assume a one-to-one correspondence between elements of 6 and elements
of U: that is the whole point of using response functions. Even independent standard Gaussian
Us would not translate to marginally Gaussian 6. As an example, suppose Y = UZX + \Us. All
response functions can be written in the form fy(x) := 61z + 65, where 6; = U12 and 65 = \Us.
Hence, 6; follows a chi-squared distribution and 6, a zero-mean, but not standard, Gaussian. If
Y = U, X? 4 AU, Uy, then on top of that §; and 6 are not independent.

The solution is conceptually not complicated: just let p, (-) be as flexible as desired. For instance,
let the copula be a finite or Dirichlet process mixture of Gaussian copulas, also defining flexible
models for the marginals. The IV conditional independence structure among Z, X, 6 is still preserved.
The practical issue of course is the optimization. The algorithm of |Gunsilius| (2020) itself tries to
approach the problem by learning the reweighting of a Monte Carlo approximation to a fixed base
measure. That alone is already very computationally demanding and has convergence problems.

We set a parametric form for p,(-) for reasons beyond a compromise between flexibility and com-
putational tractability. Adopting a nonparametric model for the causal model, such as a Dirichlet
process, seems pointless because: (a) we do not perform statistical inference directly in the causal
model, but only via black-box estimators of (features of) p(x, y | z), which can be nonparametric;
(b) if we were to follow the route of performing statistical inference by directly fitting the causal
model, the corresponding estimator would have a finite representation with dimensionality given
by the data. A practical resource, sample size, limits the representational size of the estimator. The
role of nonparametrics is to provide a type of adaptive regularization, and to provide theory about
limits of parametric estimators as done by (Gunsilius| (2020). The latter has clear value in itself but it
does not demand nonparametric models to be actually implemented, while the former is out of our

14

scope: in our case, no regularization is needed for the causal model as we do not fit data based on it.
Instead, our practical resource is the computational budget: if we want to not use domain knowledge
to perform the causal analysis, we simply choose the size of) based directly on the main bottleneck,
the amount of computation available. Hence, by the time-data bounded nature of computational and
statistical inference, we lose nothing by adopting a finite representation for both 7 and 6.

The practitioner should be invited to sample from the implied function space to visualize whether the
distribution of sample paths has a desired level of variability. Getting the “exact” shape of the true
distribution is however nowhere as important as just having enough variability to avoid overconfident
bounds. How to achieve “enough variability” without aiming at a completely flexible distribution of
6 may be a compromise between computational costs and domain-dependent judgment. In particular,
given the choice of the {¢;} family by which we link the causal model to observation, we may opt
for the maximum entropy distribution that is given by the corresponding moments, the Gaussian in
case of first and second moments of p, (6 | z, z)—although this still leaves open how the mean and
covariance matrix of 6 will change with x and z.

In any case, the finite mixture of Gaussians approach can still be implemented with the reparameter-
ization trick. The relation to Gunsilius algorithm is that our “base measure” is smoothly adaptive,
leading to possibly more stable behavior in practice. The price to be paid is that each iteration in
our method would be substantially more expensive than the efficient mixture component weighting
optimization done at each iteration of Gunsilius’ method, if we were to optimize the mixture compo-
nent parameters to completion while fixing the samples. However, we do joint partial optimization
by gradient-informed small steps, taken at each sampling stage. This is one of the main distinctive
features of our class of algorithms compared to the resample/optimize alternating procedure of
Gunsilius| (2020).

To summarize, the Gaussian case, discussed in the main text, should be seen as a useful illustration,
not as a one-size-fits-all solution. Any copula for which the reparameterization trick can be used can
be automatically plugged into any instance of our class of algorithms.

Another important aspect brought by a parameterization of p,(-) is in case we have pre-treatment
covariates W to either reduce confounding, remove (direct) dependence between Z and U or Z and
Y, or just to answer questions related to conditional expected outcomes, e.g., E[Y | do(x), w] and
conditional average causal effects (CATE), E[Y | do(z), w] — E[Y | do(z'), w]. Although a response
function can straightforwardly depend on a vector of treatment variables, this makes less sense if
variables W are not direct causes of Y. And even if elements of 1 are direct causes, we may want to
treat them analogously to U: playing a role in the response function only via the distribution of 6,
instead of being explicitly in the scope of such functions.

Modeling CATE can then be done in a completely straightforward way. Nothing in the algorithm
changes if we use a probabilistic model for p(x, y | z, w) to provide the observable counterpart of the
causal model. Each configuration w defines a separate optimization problem. The corresponding
factor p(6 | z, z, w) can be set independently for each instance of w, regardless of its dimensionality.

However, a practitioner may be interested on providing information about how p(6 | z, z, w) varies
smoothly across values of w in order to impose further constraints on the response functions across
multiple w realizations. We suggest that a way of incorporating covariates W is by a multilevel
approach: define p,(,,)(¢ |, z,w), where each element of 7 may itself be a function of W, e.g.,
w1 = BT W for some parameter vector 3;. Here, p(x |z, w) and p(y | z,w) (or p(y |z, z,w)) are
the marginals to be matched. We will discuss in future work ways of making p,,(-) more flexible in
general, including the use of covariates.

C Discrete Outcomes and Discrete Features

If Y is discrete, fo(x) will be discontinuous. Theoretically this will not pose a problem as long as
the number of discontinuities is finite (Gunsilius,|2020). The main practical issue is optimization, as
eq. (6) will now not lead itself to gradient-based methods. The most immediate approximation is to
use differentiable surrogates of fy(x) that relax the constraints. In the most basic formulation, we
have the inequalities

tol_ < Blon(¥) 2] = [61(fu(w)) (o017 d d0 < ol

15

for some tolerance factors tol,tol_. Given upper and lower bounds ¢, (fy(z)), ¢, (fo(z)) on
o1(fo(x)), the relaxed constraints

tol_ < Bon(Y) |2 = [&7 (fola)) .01 2) d 9

Elg(Y) | 2] - / 6 (Jol()) p(a, 8| 2™ i dB <t

will still result in valid, but looser bounds (again, up to local optima and Monte Carlo error). If
fo(x) is non-negative (for instance, if its codomain is {0, 1}) and ¢;(+) is monotonic for non-negative
inputs (such as ¢;(r) = z and ¢;(x) = x?), it is enough to plug in bounds for fy(z) itself. We will
elaborate on that in future work. In this context, we can also formulate an alternative approach to
matching p(y | 2).

Alternative Approach to Matching p(y | z). Here we describe an alternative approximation of
eq. (B) that hinges on smoothly approximating the indicator function to render the integral well
behaved. First, instead of evaluating Pr(Y < y|Z = 2(™)) forall y €), we take a similar approach
for discretizing Y | 2(*) as we took for z("™). For a given 2(™), instead of all half-spaces Y < y, we
only consider the sets

1 n : m — -1
A = (—o0,y"™ V] with ™D = FYllz(m) (L - 1)
for [€ [L] with some fixed L € N. This results in constraints for the L-quantiles of the conditional
distributions of Y’

I—1
- < y(md) (m) .
71 /l(fe(w)_y)pn(xﬁ\z) dz df

for all m € [M] and [€ [L]. In practice, we would evaluate the integral on the right hand side
with a Monte Carlo estimate, sampling from p;,(x, 6 | 2(")) and then differentiate with respect to 7
for gradient-based optimization. Therefore, the non-differentiable (even non-continuous) indicator
function poses an issue for the optimization. We can circumvent this problem by approximating the
indicator with a smoothly differentiable function, for example

1) 1

=-——> or fr,,(f) =

L+emr 1+(‘,xp<f/)(/+%)>
NG

for p > 0. As p — o0, 0,(t) — 1(¢t < 0) pointwise on R \ {0}, i.e., we can slowly increase p
throughout the optimization to gradually approximate the constraints.

1t <t")mo,(t—1t*) for op(t):

Hence an alternative approach to implement the constraint for matching p(y | z) is

-1
-1 /O'p (fg(x) — y(m’l))pn(x,H | z(m)) dx do

for all m € [M] and | € [L], where we increase p > 0 after each optimization round.
In practice, we this approach gave less robust results than the approach described in the main text,

partly due to the additional hyperparameter schedule needed for p. Therefore, we only report results
for the approach using dictionary functions ¢; described in the main text.

D Algorithm

D.1 Additional Details of the Optimization

Smoothen LHS. Since LHS,, ; are estimated via empirical averages of ¢;(y;) for datapoints in a
given bin i € bin~! (m), “neighboring” constraints LHS,;, ; and LHS,,, 4 1; may have substantially
different values. Since our model is smooth, it can be hard to match such non-continuities with
RHS,,, ;(n). Intuitively, we expect such jumps to be artifacts of finite sample effects and not
important properties of the true data distribution. Hence we apply a spline regression to the values
{LHS,,, 1 }M_, for each [€ [L] to smoothen out larger jumps between neighboring values. In practice,
we use a cubic univariate spline for each [with a smoothing factor of 0.2.

16

Algorithm 1 Bounding the IV interventional effect at treatment level z*.

Require: dataset D = {(z;, x;,y;)}2,; number of z grid points M; constraint functions {¢;}~ ;;
response function family {fy}oco; batchsize B; initial temperature 70 > 0; temperature
increase factor av > 1; tolerances €,ps, €r1; initial Lagrange multipliers \; initial parameters 17(0);

1 2 = Fy 'l (3) form € [M)] > EFy: CDF of {z;}Y .
2: bin(i) := max{argmin,,c(p |2 — 2(M)|} fori € [N] > split data points into “z-bins”
3: LHS,,, = m > icbin—1(m) D1(yi) form € [M],1 € [L] > pre-compute LHS
4: smoothen LHS,,, ; across m for each [with spline regression > see Appendix
5: b := max{e€abs, €rel LHS} (element-wise) > set constraint tolerances
6 2™ = Pyl o (g;jl) forall j € [B],m € [M] > F | 2tm: CDF of {2 }scpin-1 (m)
7: fort = 1...T (or until convergence) do > optimization rounds
8: n® := OPTIMIZESUBPROBLEM(7(*= 1) \(t=1) 7(t=1)) 1 min, Lagrangian at fixed \, 7
9:)\l(t) < max (0,)\l(tfl) —7t=¢ (n(t))) > update Lagrangian multipliers
10: 7 o 7(t-1) > increase temperature parameter
11: return o, (n(™))

12: function OPTIMIZESUBPROBLEM(7, A, T)

13: > In here we use SGD with auto-differentiation to minimize £. Hence we only describe how
to evaluate £ in a differentiable fashion:

14: 0+ (n) == % Zle fo (z*) with 89) ~ p, (0) > c.f. Algorithmfor sampling

15: RHS,,, i (n) := % Zle o1 (fe(j) (§:§m))) >c.f. Algorithmfor sampling

16: ¢(n) :==b— |LHS — RHS(n)| > compute constraint terms

17: L(n) := Foz+(n) + Zf\if E(a(n), A, T) > Lagrangian (£ for lower/upper bound)

18: return arg min, £(7) > optimize with SGD

D.2 Augmented Lagrangian Optimization Strategy

The Augmented Lagrangian method (Hestenes) [1969) is a general method for constrained optimiza-
tion, originally proposed just for dealing with equality constraints. The benefit of this over penalty
methods is that we do not need to take the penalty parameters 7 to co in order to solve the original
constrained optimization problem, which can cause ill-conditioning (Nocedal & Wright, 2006).
However, our problem only contains inequality constraints. Thus, we consider a refinement proposed
by Nocedal & Wright| (2006) to purely handle inequality constraints using Augmented Lagrangian
methods. Specifically, we can write the inequality constrained optimization problem equivalently as
an unconstrained optimization problem with Lagrange multipliers A:

min max {ox* (n) + X" (c(n) — b)}
n A>0

To see that it is equivalent, note that the max returns o(n) when 7 satisfies the constraints (as the

maximum is obtained at A\ = 0), and oo otherwise (as the maximum is at A\ = oco). However, this is

not easy to optimize as the A jumps from O to co when passing through the constraint boundary. To

fix this, we add a term that penalizes A\ making larger changes from its previous value. Specifically,

1
i NCORDEF- PEPY
minmax {o(n) + AT (c(n) ~ b) = 5-[A = N[1*}.
where) are the Lagrange multipliers from the previous iteration and 7 is a penalty term that is
iteratively increased. Note that the max optimization can be solved in closed form for each Lagrange
multiplier),

A = max {0, \; + 7ci(n)},

17

Algorithm 2 Sampling parameter values 6 from p, (6, X | 2(™)).

1: Sample each component of w € R¥*5 i i.d. from a standard Gaussian.
. Prepend the vector (0,1/B, ..., 1) as the first row of w, resulting in w € RE+HXN
: Allow for dependencies between components by multiplying with the Cholesky factor w < L w.

2
3
4: Normalize all values by applying the standard Gaussian CDF component wise, w < g 1(w).
5

: Fix the marginals of 9,(;) by applying the inverse CDF of a (i, 0%)-Gaussian: 6@ <

;kl,ai (wjy1) for j € [K]. Here, w;; denotes the j + 1-st row of w.

¥

6: Sampling X via F:A\ !(w,) by design simply gives the pre-computed 7.

where ¢;(n) is shorthand for the I-th inequality constraint. Plugging these values into the optimization
problem, we arrive at

M-L

min £, A, 7) = 02+ () + Y €(ci(n); X 7)
=1
with
2
—Ne(n) + T if ey (n) < N
5(01(77)7)\1,7) = 2\? () 2 ()

—5k otherwise,
where 7 is increases throughout the optimization procedure. Given an approximate solution 7 of this
subproblem, we then update A according to

A+ max{0,\; — 7¢;1(n)}

foralll € [M - L] and set 7 < a7 for a fixed @ > 1. For the full optimization, we attach
temporal upper indices, i.e., at time step ¢, we have the current approximate solution n(*), the

Lagrange multipliers)\l(t) and the temperature parameter 7(*). See Algorithm [D|for a description
of the optimization scheme. While the number of optimization parameters grows quickly with the
dimensionality of 6, which may render the optimization challenging, in our experiments we did not
encounter any issues with up to 54 optimization parameters and 40 constraints.

D.3 Sampling from the Copula

A crucial step for our algorithms was baking the assumptions about p(X | Z) as well as Z 1L U
directly into our model from which we sample for Monte Carlo estimates. Algorithm 2]describes in
detail how we can obtain these samples from the copula defined in eq. (@) in a differentiable fashion
with respect to 7.

D.4 Parameter Initialization

We initialize the optimization parameters L with ones on the diagonal, zeros in the upper triangle,
and sample the lower triangle from (0, 0.05). The initialization for s and In(o3) depends on the
chosen response function family. Our guiding principle is to ensure that the initial distribution covers
a large set of possible response functions, tending towards larger o.

E Response Functions

One key advantage of our approach is that it allows us to flexibly trade off assumptions on the
response function family with more informative bounds. Due to our simple, yet expressive choice of
linear combinations of a set of basis functions, there are many natural and easy to implement options
for the response functions. In particular, we consider the following options:

1. Polynomials: 1y (x) = x*~* for k € [K]. In this work, we specifically focus on linear (K = 2),
quadratic () = 3), and cubic (/X = 4) polynomial functions.

18

2. Neural basis functions (MLP): We fit a multi-layer perceptron with K neurons in the last hidden
layer to the observed data {(x;, y;) }ien and take ¥ (x) to be the activation of the k-th neuron
in the last hidden layer. Note that the network output itself is a linear combination of these last
hidden layer activations. Hence, the underlying assumption for this approach to work well is that
the true causal effects can also be approximated well by a linear combination of the learned last
hidden layer activations, i.e., the true effect is in this sense “similar” to the estimated observed
conditional p(y | z). In practice, we train a 2-hidden layer MLP with 64 neurons in each layer,
rectified linear units as activation functions and an mean-squared-error loss for 100 epochs and a
batchsize of 256 using Adam with a learning rate of 0.001.

3. Gaussian process basis functions (GP): We fit a Gaussian process with a sum-kernel of a poly-
nomial kernel of degree 3, an RBF kernel, and a white noise kernel to K different sub-samples
{(24,y:) }iens with N/ < N. We then sample a single function from each Gaussian process as
the basis functions v, for k € [K]. We train multiple Gaussian processes on smaller subsets of
the data to ensure sufficient variance in the learned functional relation. Similarly to the neural
net basis functions, the assumption is that the causal effect can be approximated by a linear
combination of these varying samples. In our experiments, we fit the Gaussian processes with
scikit-learn’s GaussianProcessRegressor (Pedregosa et al.| 2011) using N” = 200 and a white
kernel variance of 0.4.

F Why Discretization is not a Good Idea

The framework of |Balke & Pearl| (1994) is powerful and simple, and hence it raises the prospect
that discretizing treatment X can provide a good approximation to the original problem where X is
continuous. However, there are several reasons why this is not a good idea:

* [t destroys the key assumption of instrumental variable modeling. Besides the lack of confounding
between instrument Z and outcome Y, the key assumption in an IV model is the conditional
independence Y 1l Z | {X, U} (“exclusion restriction”). This assumption will in general fail to
hold if we destroy information, i.e., if we condition on X € A, for some set A, instead of the
realization of X;

* It makes causal estimands ill-defined. There are several ways in which an intervention can be
ambiguous. This happens when defining the manipulation of a construct (“race”) or of summary
measurements in general (“obesity”’). One particular instance of the latter is when we speak of
do(x*), meaning the setting of a discretization X* of X to a particular level 2* (VanderWeele
& Herndn| [2013). If X* = z* corresponds to the event X € [a, b], then this at least needs the
assumption that E[Y" | do(z)] is approximately constant for z € [a, b] for the intervention to be
meaningful. This is pointless if the goal is to avoid making assumptions about the shape of the
response function;

* Its cost is super-exponential. Suppose we still want to proceed with the idea of discretization, in
the sense that we are willing to assume that we are using a fine enough grid of intervals for the
treatment so that the previous two points are not particularly prominent. It may be argued that
using Balke & Pearl| (1994) with this approximation is attractive on the grounds it is a convex,
deterministic approach and hence a more computationally attractive alternative to tackling the
continuous problem. In fact, the opposite may hold. Assume we discretize X and Y to |X’| and
| V| levels respectively, and Z assumes | Z| levels (perhaps also by discretization). Then the cost
of using the full information of the distribution is approximately O(| X |IZ!|V|I*1). Tt is true that,
just like in our approach, this can be much simplified if we rely only on a subset of constraints.
In particular, if we use only the first moments in the constraints and the expected outcome is the
objective function, we can simplify the discrete formulation by targeting our parameterization to
depend only on the expected outcomes directly. This makes the problem exponential only on | Z|,
see for instance the parameterization of Zhang & Bareinboim| (2020). Being “only” exponential
may still require Monte Carlo approximations in general. But this can still be super-exponential if
| Z| grows with | X'|, which will be necessary if the instrument is strong: for an extreme example,
if Z and X lie close to a line with high probability and we choose only two levels of Z against
many levels of X, then most combinations of pre-determined (z, x) pairs will lie on regions of
essentially zero density in the p(x, z) distribution;

e [t is vacuous in the limit. Even if we can use an arbitrarily fine discretization and assume that the
piecewise nature of the approximation is close enough to the true response functions of Y, we
know that as | X'| — oo the number of discontinuities in the response function also goes to infinity.

19

As described by (Gunsilius| (2018)), we will not learn anything non-trivial about the causal estimand
of interest.

We reiterate the points above in more direct way: being unable to express constraints on the response
function is not an asset, it’s a liability. Discretization allows us to easily use a single family
of functional constraints: piecewise constant functions. In this framework, it is cumbersome to
represent other constraints such as smoothness constraints, and the degree of violation of the exclusion
restriction assumption remains unknown. There is no reason to believe this discrete representation is
a good family in any computationally bounded sense, as an efficient choice of discretization points
can only be made if we know something about the function. And if we do, then it makes far more
sense to use more representationally efficient ways of partitioning the space of X, such as regression
splines with a fixed number of knots. This involves no discretization of treatment, while avoiding the
issues of violation of the exclusion restriction assumption and ambiguity of intervention.

G Modeling p(y | x, z) and Monte Carlo Alternatives

Alternatively to the setup described in the main text, we can match not only the marginal p(y | z), but
the theoretically more informative p(y | z, z). This problem is actually conceptually simpler, although
it will require joint measurements over the three types of variables.

The main modification is as follows. Instead of
B0i(Y) 12 = ™) = [lun(@) (2,61 Z = =) do db,
we build constraints based on
Elpu(Y)| X =2, Z = 2"] = /aﬁz(ye(x(m)))pn@l){ =a™, 2 =2")ds,

where now we need to define a grid over the joint space of X and Z. This can be done in several
ways, including the joint product of equally-spaced quantiles of the respective marginal distributions,
perhaps discarding combinations for which p(z(™), (")) are below some threshold. Moreover, the
factor p, (0| X = (M 7 = z(m)) was explicitly parameterized in our original setup, and can be
used as is.

Notice the advantages and disadvantages of the two approaches. Modeling the full conditional
p(y | x, z) uses the full information of the problem (as it is equivalent to p(x, y | z), where p(x | z) is
tackled directly), which in principle is more informative but requires functionals of the joint p(z, y | z)
instead of the marginals p(x | z) and p(y | z). We can also see that we are trading-off adding more
constraints but removing the need to integrate X in each constraint. More interestingly, this full
conditional approach does not require any kind of density estimation: the need for p(z | z) disappears,
and all we need on the left-hand sides are estimates of expectations.

More generally, it is clear that there are practical cases where E[¢;(yo(X)) | z, 2], with 0 being the
random variable to be marginalized, has an analytical solution as a function of 7. For instance, this
will be the case when ¢, stands for linear and quadratic functions of Y (itself a linear function of 6 for
a fixed x), and p, (6 | , z) is a (mixture of) Gaussian(s), which is true for our experiments. However,
we demonstrate the suitability of Monte Carlo formulation in order to provide and evaluate a class
of algorithms for black-box (differentiable) features, where such expectations cannot be computed
analytically in general.

H Fitting Latent Variable Models

When fitting the latent variable models, we use multi-layer perceptrons with inputs z, z, y for the
means and variances of the latent dimensions U, where we use lower indices U; for the different
components. For this encoder, we use 32 neurons in the hidden layer and rectified linear units as
the activation function. There are two decoders. The first one is trained to reconstruct E[X | X, U],
i.e., receives the original Z in addition to the latent vector U as input. It is also parameterized by an
MLP with 32 neurons in the hidden layer and ReLu activations. The second decoder reconstructs
E[Y | X,U] and is either an MLP of the same architecture (when comparing to MLP response

n_latent

functions), linear in X, ie.,aX + 5+, =" (7 XU; +6;U;) (when comparing to linear response

20

cubic response GP response MLP response

Figure 5: Bounds for the simulated sigmoidal design. The true causal effect is given by a logistic
function, which is well recovered by our method for different response function families (cubic
polynomials, GP basis functions, and MLP basis functions).

functions), or quadratic in X, i.e., aX? 4+ X + v + Z?;llatent(éiXQUi + ¢, XU,; + ¢;U;) (when
comparing to quadratic response functions). Thereby, we ensure that the form of matches our
assumptions on the function form of the response family. We then optimize the evidence lower
bound following standard techniques of variational autoencoders (Kingma & Welling| 2014) with
L5 reconstruction loss for X and Y. We fit multiple models with different random initializations
and compute the implied causal effect of X on Y for each one, which is obtained from the decoder
E[Y | u,] by averaging over 1000 samples of the latent variable U for a fixed grid of x-values.

I Additional Experimental Results

I.1 Hyperparameter Settings

In all experiments, we fix hyperparameters M = 20, L = 2, B = 1024 and run SGD with momentum
0.9 and learning rate 0.001 for 150 rounds of the augmented Lagrangian with 30 gradient updates
for each subproblem optimization. We start with a temperature parameter 7 = 0.1 and multiply it
by a = 1.08 in each round, capped at Ty,ax = 10. We use 7 neurons in the last hidden layer of the
feed-forward neural net for MLP response functions in our synthetic setting and 9 for the expenditure
data. For GP basis functions (see Appendix[E), we sample 7 basis functions for the sigmoidal design
dataset (see Appendix [[.2). This set of hyperparameters did not require much manual tuning and
worked for all datasets and response function families, i.e., also different dimensionality of §. For
the synthetic settings, we sample 5000 observations each. We use 3 as the latent dimension when
fitting our latent variable models. For the tolerances, we use €,s = 0.2 for the synthetic settings,
€abs = 0.1 for the sigmoidal design (see Section @), €abs = 0.3 for the expenditure dataset and
gradually tighten €,¢; from 0.3 to 0.05 in all settings (which corresponds to the increasingly opaque
lines).

L2 Sigmoidal Design

We also evaluate our method on simulated data from a sigmoidal design introduced by [Chen &
Christensen|(2018]), adopted by Newey & Powell| (2003) and used in previous work on continuous
instrumental variable approaches under the additive assumption as a common test case (Hartford
et al.,[2017} [Singh et al.;|2019; Muandet et al.} 2020). We show the results from KIV and our bounds
for response function families consisting of cubic polynomials and neural net basis functions in
Figure 5| The observed data distribution p(y |) follows the true causal effect rather closely and the
instrument is relatively strong in this setting, see|Singh et al.|(2019) for details. Therefore, the gap
between our bounds is relatively narrow for a broad set of different basis functions as long as they are
flexible enough to capture a sigmoidal shape.

1.3 Expenditure Data

We prepare the data from |Office for National Statistics| (2000) using the same steps as |(Gunsilius
(2020) closely following [Newey & Powell| (2003); Blundell et al.[(2007). This is, we restrict the
sample to households with married couples who live together and in which the head of the household
is between 20 and 55 years old. We further exclude couples with more than 2 children. Finally,

21

—— E[Y|do(X =a*)] ===+ 2SLS =—+= KIV +-X-- lower bound --¥:* upper bound data

linear Gaussian settings using linear response functions

Figure 6: Performance of our method on smaller datasets with only 500 observations. The left column
is the strong confounding weak instrument case (o = 0.5, 5 = 3) and the right column is the weak
confounding strong instrument case (o = 3, 5 = 0.5).

k4
2.0 P
. ol
15 &
10 e PRt
% 7
0.5 ac 7
. Rl
= 00 % Rd
P ——— e R0 —
—0.5 Patal —-=—- 28LS
2
s X — 7
1o T KIV
s ++%+ lower bound
15 /‘x." ~ upper bound
Pt data
-2.0 ¢ x

-20 -15 -10 -0 0.0 0.5 L0 15 2.0

Figure 7: Results for the small dataset from|Acemoglu et al.|(2001) with linear response functions
and M = 5 z-bins.

we also require the head of the household not to be unemployed. Otherwise, the instrument, gross
earnings, would not be available. After these restrictions, we end up with 1650 observations in our
dataset. The dataset can be downloaded for free for academic purposes after creating an account.

L4 Small Data Regime

Having tested our method on datasets of size 5000 (synthetic) and 1650 (expenditure data, see
Appendix [[.3), we now evaluate how our method performs on even smaller datasets. To this end,
we first look at our synthetic settings using only 500 datapoints and correspondingly reducing the
number of z-bins to M = 6 in Figure[6] While the bounds are looser, our method can still provide
useful information with relatively little data.

In addition, we ran our methods on a classic instrumental variable setting from economics, namely
the dataset used by |Acemoglu et al.|(2001) on using settler mortality as an instrument to estimate

22

linear Gaussian setting with strong confounding and weak instrument (o = 0.5, 5 = 3)

2.0

1.5

1.0

1.425
1.325

1.225

1.125 5
1.025
0.925

0.825 N

true effect
— = KIV (A= 0.62, € = —9.76)
v data

0.725

-15 0.625 10

—2. - - - 0.525
-11.0 -105 -100 -95 -90 -85 80 —-10 =5 0 5 10

log(€) X

non-linear, non-additive setting with strong confounding and weak instrument (o = 0.5, § = 3)
6.0 —

—— true effect
— - KIV (A= 407, € = ~11.45)
385 0 data

20

—20
3.35
3.25

Figure 8: We show the results of a manual hyperparameter search for KIV in the left column, where
we score different settings in the two-dimensional hyperparameter space by the log of the out-of-
sample mean squared error, which requires knowledge of the true causal effect. The red cross denotes
the setting with the smallest out-of-sample mean squared error. In the right column, we show the KIV
regression lines using the hyperparameters found in the manual search. The first row corresponds to
the linear Gaussian setting and the second row to the non-linear, non-additive synthetic setting.

the causal effect of the health of institutions on economic performanceEl This dataset consists of
only 70 datapoints. Therefore, we set the number of z-bins to M = 5 for this dataset. Restricting
ourselves to linear response functions, our method still gives informative bounds, which include the
effect estimated by 2SLS, but does not fully include the KIV results, see Figure[7]

J KIV Heuristic for Tuning Hyperparameters

We have found KIV to fail in the strongly confounded linear Gaussian setting, even though all the
assumptions are satisfied, see Figure 2] (row 1). Closer analysis of these cases showed that the
heuristic that determines the hyperparameters does not return useful values in this setting. Instead, we
performed a grid search over the main hyperparameters A and £ (see[Singh et al.}, 2019, for details)
and scored them by the out-of-sample mean-squared-error for the true causal effect (which is known
in our synthetic setting). After manual exploration of the parameter space, we found a good setting
marked by the red cross in the first row on the left of Figure[§] Using these fixed hyperparameters
for KIV instead of the internal tuning stage, we get a much better approximation of the true causal
effect shown in the first row on the right of Figure[8] Towards the data starved regions at large and
small z-values, KIV again reverts back towards the prior mean of zero as expected. It is unclear at
the moment, however, how to set such hyperparameter values without access to the true causal effect.
Our point here is that in principle there is a setting with acceptable results, although even then it is
not clear how much of it is a coincidence based on looking at many possible configurations.

We performed a similar manual analysis for the non-linear, non-additive synthetic setting with strong
confounding, in which off-the-shelf KIV fails as well, see Figure|2| (row 3). Note that this setting
does not satisfy the assumptions of KIV, because of the non-additive confounding. Again, we do
manage to find hyperparameters that locally minimize the out-of-sample mean-squared-error shown

'0The dataset is freely available at https://economics.mit.edu/faculty/acemoglu/data/ajr2001,

23

https://economics.mit.edu/faculty/acemoglu/data/ajr2001

in the second row on the left of Figure[8] However, the resulting regression of the causal effect does
not properly capture the true effect as shown in the second row on the right of Figure [§]

24

