
Supplementary Material to:
Bayesian Optimization of Risk Measures

Sait Cakmak
Georgia Institute of Technology

scakmak3@gatech.edu

Raul Astudillo
Cornell University

ra598@cornell.edu

Peter Frazier
Cornell University
pf98@cornell.edu

Enlu Zhou
Georgia Institute of Technology
enlu.zhou@isye.gatech.edu

Contents

1 Computational complexity 1

2 The SAA problem 2

3 Gradients of rij 3

4 Two time scale optimization 4

5 Experiments 6

5.1 Algorithm parameters . 6

5.2 GP model and fitting . 7

5.3 Synthetic test problems . 7

5.4 Experiment details . 7

5.5 Results . 8

5.6 Results comparing algorithm run times . 9

6 Proofs of theoretical results 10

1 Computational complexity

In this section, we analyze the computational complexity of using ρKG to pick the n-th candidate to
evaluate. For simplicity, we ignore the multiple restart points used for optimization, and present the
analysis for a single restart point. The resulting complexity involves terms for number of LBFGS [1]
iterations performed. These terms can be adjusted to account for the cost of multiple restart points.

In this analysis, we assume that evaluating the GP prior mean and kernel functions (and the cor-
responding derivatives) takes O(1) time. We break down the computations into several parts and
analyze them one by one.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

An iteration starts by fitting the GP hyper-parameters using maximum a posteriori (MAP) estimation
with Q1 iterations of LBFGS algorithm. Each iteration requires calculating the likelihood of the data,
which requires computing

An = Σ0(x1:n, w1:n, x1:n, w1:n) + diag(σ2(x1, w1), . . . , σ2(xn, wn))

(O(n2) kernel evaluations), its Cholesky factor and inverse (O(n3)), and solving a triangular set of
equations (O(n2)); putting the total cost of fitting the GP at O(Q1n

3).

We can use the Cholesky factor of An and the inverse A−1n computed in the previous step to calculate
the posterior mean and variance at the candidate point at a cost of O(n2), which are then used to
draw K fantasy observations at a cost of O(K).

Let An+1 be the matrix obtained by adding An one row and column corresponding to the candidate
(xn+1, wn+1) at a cost of O(n). Using the pre-computed Cholesky factor of An, we can compute
the Cholesky factor of An+1 at a cost of O(n2). The inverse A−1n+1 can also be obtained from A−1n at
a cost of O(n2). Note that An+1 is identical for each fantasy model.

For each fantasy model, we need to compute the posterior mean and covariance matrix for
the L points (x,w1:L), on which we draw the sample paths. Given A−1n+1, we first compute
Σ0(xi, w1:L, x1:n+1, w1:n+1)A−1n+1 at a cost of O(Ln2), then use it to compute the mean vector
and the covariance matrix at a total cost of O(L2n). To sample from the multivariate normal distribu-
tion, we also need the Cholesky factor of the covariance matrix, which is obtained at a cost of O(L3).
Repeating this for each fantasy, we obtain all K mean vectors, covariance matrices and the Cholesky
factors at a total cost of O(KL[n2 + Ln+ L2]).

Given the mean vector and the Cholesky factor of the covariance matrix, we can draw a sample of
F (xi, w1:L) at a cost of O(L2). This results in a total cost of O(KML2) to generate all samples.
The sorting and other arithmetic operations needed for computing ρ, given the sample paths, cost
O(L2) per sample-path, thus introducing no additional terms.

Note that each iteration of LBFGS performs a bounded number of line search and a bounded number
of function evaluations. Thus, if we use Q3 iterations of LBFGS to solve the inner optimization
problem, this translates to a total computational cost of O(Q3KL[n2 + Ln + L2 + ML]) for the
inner optimization of all K fantasies.

If we then use Q2 iterations of LBFGS to optimize the acquisition function, we end up with a
total cost of O(Q2Q3KL[n2 + Ln + L2 + ML]) for optimization, and a total cost of O(Q1n

3 +
Q2Q3KL[n2 + Ln+ L2 +ML]) to pick the n-th candidate to evaluate, including the cost of fitting
the GP model.

2 The SAA problem

In this work, we use the SAA approach [2, 3] to optimize ρKG and ρKGapx, and take advantage of
the higher efficiency offered by deterministic optimization algorithms. The SAA approach trades
a stochastic optimization problem with a deterministic approximation, which can be efficiently
optimized. Suppose that we are interested in the optimization problem minx Eω[h(x, ω)]. The
corresponding SAA problem is given by

min
x

1

S

S∑
i=1

h(x, ωi),

where ω1:S are fixed realizations of ω. It is well known that the (expected) optimal value of SAA
lower bounds the original problem, and that it is consistent as S →∞.

In the case of ρKG, the SAA problem cannot be written out explicitly, due to the sorting operation in
the estimation of risk measures. However, the SAA problem and the corresponding gradient can still
be obtained following an algorithmic approach, as explained in Algorithm 1. The key to obtaining the
SAA problem is using the reparameterization trick [4] to write out the complex multivariate normal
random variables as deterministic functions of a standard normal random vector and the mean and
covariance functions of the corresponding GP model.

2

Algorithm 1 SAA of ρKG
1: Input: The candidate (x,w), the solutions to the inner problems x0∗ and xi∗, K,M,L.
2: Fix the set W̃ = w1:L, as well as the realizations of the random variables Zi0, Z0j

L and ZijL , for
i = 1 : K, j = 1 : M .

3: Use Zi0 to obtain the fantasy GPif and its parameters µif ,Σ
i
f as in equation (1).

4: For sake of brevity, use GP0
f , µ

0
f ,Σ

0
f to refer to the current GP, µn,Σn.

5: for i = 0:K and j=1:M do
6: Draw a sample of F (xi∗, w1:L) from GPif as F̂ ij(xi∗, w1:L) = µif (xi∗, w1:L) + CifZ

ij
L where

Cif is the Cholesky factor of Σif (xi∗, w1:L, x
i
∗, w1:L).

7: Use the sample F̂ ij(xi∗, w1:L) with appropriate operations to get rij(xi∗), as explained in
Section 4 of the paper. The corresponding gradient is then given by∇(x,w)r

ij(xi∗).
8: end for
9: Set ρ̂KGn(x,w) = 1

M

∑M
j=1 r

0j(x0∗)− 1
KM

∑K
i=1

∑M
j=1 r

ij(xi∗).

10: Set ∇(x,w)ρ̂KGn(x,w) = − 1
KM

∑K
i=1

∑M
j=1∇(x,w)r

ij(xi∗).

11: Return: ρ̂KGn(x,w) as the acquisition function value, and ∇(x,w)ρ̂KGn(x,w) as the corre-
sponding gradient.

Let Zi0, Z
ij
L be fixed realizations of the standard normal random vectors of dimension 1 and L

respectively. The fantasy GP model, GPif , can be obtained as a continuous function of (x,w) [5] as

µif (x′, w′) = µn(x′, w′) +
Σn(x′, w′, x, w)√

Σn(x,w, x, w) + σ2(x,w)
Zi0,

Σif (x′, w′, x′′, w′′) = Σn(x′, w′, x′′, w′′)− Σn(x′, w′, x, w)Σn(x,w, x′′, w′′)

Σn(x,w, x, w) + σ2(x,w)
.

(1)

For positive definite matrices, the Cholesky factor is unique, and can be viewed as a differentiable
function of the matrix [6]. In light of this fact, we can view the sample

F̂ ij(xi, w1:L) = µif (xi, w1:L) + CifZ
ij
L

as a deterministic and continuous function of both (x,w) and xi. For fixed (x,w), xi∗ can then be
obtained, again using an SAA approach, by solving

xi∗ = arg minxi

1

M

M∑
j=1

rij(xi); (2)

which is then used to obtain the SAA problem for ρKG:

ρ̂KGn(x,w) =
1

M

M∑
j=1

r0j(x0∗)−
1

KM

K∑
i=1

M∑
j=1

rij(xi∗).

The only possible gap left in the continuity / differentiability of ρ̂KG is the continuity of rij(xi)
as a function of F̂ ij(xi, w1:L). This is conceptually identical to the continuity and almost sure
differentiability of maximum of a finite number of continuous functions, where the maximizer only
changes in the case of equality. In equation 3 of the paper and the preceding ordering, the ordering
changes only in case of equality, which is a probability zero event. Thus, the resulting rij(xi) is
differentiable with probability one.

3 Gradients of rij

In this section, we make explicit the definition of the gradient ∇xirij(xi). In Section 4 of the paper,
for a generic sample F̂ (x,w1:L), we define

v̂(x) := F̂ (x,w(dLαe)) and ĉ(x) :=
1

dL(1− α)e

L∑
j=dLαe

F̂ (x,w(j)),

3

as the corresponding MC samples of VaR and CVaR respectively. For rij , using the reparameterization
trick, we can write the corresponding samples of F as,

F̂ ij(xi, w1:L) = µif (xi, w1:L) + CifZ
ij
L ,

and the corresponding rij(xi) as

v̂ij(xi) := F̂ ij(xi, w(dLαe)) and ĉij(x) :=
1

dL(1− α)e

L∑
j=dLαe

F̂ ij(xi, w(j)),

where the ordering of w(·) depends on the particular realization of F̂ ij(·, ·) as well as the value of
xi. For fixed base samples ZijL , this is a deterministic function of µif , C

i
f and xi; where µif , C

i
f are

differentiable in xi, as well as (x,w). Keeping the ordering of w(·), the gradient can then be written
as

∇xi v̂ij(xi) := ∇xi F̂ ij(xi, w(dLαe)) and ∇xi ĉij(x) :=
1

dL(1− α)e

L∑
j=dLαe

∇xi F̂ ij(xi, w(j)),

where∇xi F̂ ij(xi, w(·)) is given by the corresponding element of

∇xi F̂ ij(xi, w1:L) = ∇xiµif (xi, w1:L) +∇xiCifZ
ij
L .

The treatment of gradient ∇(x,w)r
ij(xi) is identical to the one presented here. Additional discussion

on the theoretical properties of these gradients can be found in Section 6 of this supplement.

4 Two time scale optimization

Before starting the discussion on the TTS approach, it is helpful to define the term “raw samples".
In many settings as well as in this paper, non-convex functions are optimized using a multi-start
gradient-based approach. Multi-start optimization requires selecting a set of restart points, which
are typically randomly drawn from the solution space in the absence of domain-specific knowledge.
A gradient-based algorithm then performs optimization starting from each of these restart points,
which has a cost that is linear in the number of restart points. Raw samples offer an alternative
way of selecting these restart points: Consider drawing a large number of points randomly from the
solution space; then, instead of performing gradient-based optimization starting from each of these
points, consider evaluating the objective function once for each point and then selecting a subset of
them, from which to start gradient-based optimization, via a stochastic soft-max approach. We call
this larger number of randomly selected points raw samples and we refer to the points selected for
gradient-based optimization as restart points. This approach is better able to select high-quality restart
points from which to perform gradient-based optimization, without the need for domain-specific
knowledge. This enables us to use a smaller number of restart points for optimization while still
providing a high-quality global solution.

Among state-of-the-art BO algorithms, knowledge gradient (KG) algorithms are on the more expen-
sive side due to their underlying nested optimization structure. Although the added computational
cost is typically justified by the superior sampling efficiency they offer (see [5, 7] for numerical
comparisons), reducing the computational cost would make KG algorithms applicable in much
broader settings.

To reduce the computational cost of KG optimization, [7] proposes a one-shot optimization approach,
which converts the dX dimensional nested optimization problem of the KG acquisition function [5],

max
x

1

K

K∑
i=1

max
xi

µif (xi),

into a single (K + 1)dX dimensional optimization problem:

max
x,xi,i=1,...,K

1

K

K∑
i=1

µif (xi).

4

The objective function of the one-shot problem is substantially cheaper to evaluate, since it does
not require solving an optimization problem. Moreover, this new problem is deterministic and
smooth, allowing the use of efficient gradient-based algorithms such as LBFGS. However, the one-
shot problem is again non-convex, and its large dimension makes it challenging to solve to global
optimality.

Using a gradient-based approach, the one-shot problem is optimized locally from a given set of restart
points, resulting in a locally optimal solution. In particular, the choice of some of the xi can be
locally optimal, in contrast with the globally optimal value for xi found by a nested optimization
approach with sufficiently many restarts. If K is large, and the majority of the inner solutions are
at their global optimum, the solutions that are not globally optimized do not significantly affect the
algorithm’s performance. However, getting the majority at their global optimum requires starting
with a large number of raw samples.

In the classical BO setting, because evaluations of µif (xi) are cheap, one can afford to evaluate
the one-shot acquisition function at a large number of (carefully crafted) raw samples, and select a
good set of restart points for optimization. As K increases, both the number of raw samples and the
restart points need to increase as well. When the acquisition function evaluations (even without the
inner optimization) are significantly more expensive than in the classical setting (e.g., ρKG requires
evaluating 1

M

∑M
j=1 r

ij(xi)), one is restricted to a relatively small number of raw samples, which
requires using a small K (≈ 10) to achieve a good performance within a reasonable time.

Consider extending this approach to our setting, where we jointly maximize over candidates (x,w)
and xi, i = 1, . . . ,K, and µif (xi) is replaced by the posterior mean of ρ[F (x,W)]. Since this
posterior mean is more expensive to evaluate than µif (xi), it becomes computationally burdensome to
use a large number of raw samples. Using few raw samples, unfortunately, can also cause problems:
a good candidate (x,w) can appear poor because many of its xi are at local optima; while a poor
candidate (x,w) can outperform it because more of its xi happened to reach globally optimal values.
In such a scenario, the one-shot approach will recommend the bad candidate with the large acquisition
function value, leading to a poor sampling decision. This so-called instability became an issue with
the one-shot implementation of ρKG in our preliminary testing and led to a search for a more stable
alternative.

In this paper, we propose two time scale optimization (TTS), a novel approach for optimizing KG
type of acquisition functions that addresses the issues raised here about the one-shot approach while
still providing significant computational savings. The main idea behind the TTS approach is that
the objective of the inner optimization problem is a continuous function of the candidate; and the
optimal inner solution changes only a small amount between iterations when we update the candidate
using a gradient-based algorithm. Thus, the solution to the inner problem obtained with the previous
candidate provides a high quality approximation of the acquisition function value and its gradient.
TTS optimization leverages this observation to provide computational savings by solving the inner
optimization problem once every T iterations, and reusing the obtained solution in between. We
provide a detailed description of TTS in Algorithm 2. We note that LBFGS performs multiple
line searches within an iteration, and evaluates the solution found at the end of each line search.
The description of Algorithm 2 treats each line search as an iteration of LBFGS, and the candidate
(x(t), w(t)) is updated at the end of each line search. This essentially means that we optimize the
inner solution at every T -th evaluation of the ρKG and not necessarily at every T -th iteration of
LBFGS.

In the algorithm description, the parameter T is the TTS-frequency that determines how often the
inner problem is solved. If T = 1, the TTS optimization reduces to the standard nested optimization.
In numerical testing, we observed that the TTS optimization reduces the cost of optimizing ρKG
roughly by a factor of T . In our experiments, we used T = 10 without any noticeable change in
algorithm performance. We emphasize that TTS optimization can be used with other BO algorithms
that involve a nested optimization, including all knowledge gradient type acquisition functions.

We mentioned earlier that the TTS optimization would address the instability we faced with the
one-shot optimization. Going back to our example with one good and one bad candidate, TTS, by
periodically solving the inner problem globally for each candidate, ensures that each candidates
acquisition function value is calculated using a global solution, reducing the chances of misidentifying
the bad candidate as the better one.

5

Algorithm 2 Two time scale optimization of ρKG
Input: Q2, Q3,M,K,L, α, starting candidate (x(0), w(0)), and TTS-frequency T .
for t = 0 to Q2 − 1 do

Generate the fantasy models GPif , i = 1, . . . ,K using the candidate (x(t), w(t)).
for i = 1 to K do

if t mod T = 0 then
Generate a set of random restart points for optimization of i-th inner problem. Include the
previous solution xi(T) if available.
Use Q3 iterations of the multi-start LBFGS algorithm to optimize i-th inner problem, and
set xi(T) as the optimizer.

end if
Return xi(T) as the solution to i-th inner problem

end for
Set − 1

KM

∑K
i=1

∑M
j=1∇(x,w)r

ij(xi(T)) as the gradient at the current candidate.
Do an iteration of LBFGS using this gradient to obtain the new candidate (x(t+ 1), w(t+ 1)).

end for
Return: (x(Q2), w(Q2)) as the next candidate to evaluate.

We conclude by noting that the TTS implementation presented here is a primitive one, with room for
improvement. We would also like to point out that our discussion of one-shot optimization is mostly
an observational one, based on certain shortcomings we faced. An in-depth comparison and further
development of the two optimization methods is left as a subject for future research.

5 Experiments

5.1 Algorithm parameters

• Common parameters: Each algorithm is optimized using the LBFGS algorithm [1] (except for
Covid-19 where we use SLSQP [8] due to the linear constraint on the decision variables), with
10× (dX + dW) random restart points which are selected from 500× (dX + dW) raw samples.
We use low-discrepancy Sobol sequences [9] to generate the raw samples. The restart points are
selected using a sof-=max heuristic implemented in the BoTorch package [7], which assigns each
raw sample a weight that is an exponential factor of its acquisition function value, then selects the
restart points with probability proportional to this weight.

• EI: Does not have any specific parameters.

• MES: A set of 500 × (dX + dW) randomly drawn points is used to discretize the design space,
and the max values are sampled over this discretization using the Gumbel approximation. We draw
10 max value samples over the discretization, and use 128 fantasies to compute the approximate
information gain from using the candidate.

• KG: We use the one-shot KG implementation with 64 fantasies.

• UCB: We use parameter β = 0.2, i.e. the acquisition function is given by UCB(x) = µn(x) +√
0.2Σn(x, x).

• ρKG and ρKGapx: We use K = 10 fantasy models for optimization and K = 4 fantasy models to
evaluate the raw samples; and generate M = 10 sample paths per fantasy model. For the inner
optimization problem of ρKG, we use 5× dX random restart points selected from 50× dX raw
samples. We use TTS optimization with T = 10.

All fantasy models and sample paths are generated using low-discrepancy Sobol sequences [9]. For
our algorithms, we observed a small improvement when increasing the number of fantasy models,
however, this comes with a linear increase in run time and memory usage. We used a smaller
number of fantasy models to evaluate the raw samples, as this reduces the computational cost without
affecting performance. The number of sample paths were chosen rather arbitrarily, since the majority
of computational effort is spent pn calculating the Cholesky factor, which is then used for generating
all sample paths. We observed very similar performance with M = 4, 10 and 40; and decided to use
M = 10 rather arbitrarily.

6

5.2 GP model and fitting

We use the “SingleTaskGP” model from the BoTorch package [7] with the given priors on hyper-
parameters, which, quoting from the documentation, “... work best when covariates are normalized
to the unit cube and outcomes are standardized (zero mean, unit variance)”. We use the Matérn 5/2
kernel and fit the hyper-parameters using MAP estimation.

We project, i.e., scale, the function domain X × W to the unit hypercube [0, 1]d
X+dW , and all

the calculations are done on the unit hypercube. For calculations involving the GP, we use the
“Standardize” transformation available in BoTorch, which transforms the outcomes (observations)
into zero mean, unit variance observations for better compatibility with the hyper-parameter priors.

5.3 Synthetic test problems

Figure 1: The VaR objective of Branin Williams function. Left to right, full domain and close-ups of
the optimal region. It is notable that the objective function is quite flat across most of its domain,
making it challenging to identify the optimal solution using a small number of evaluations.

The first two problems we use are synthetic test functions from the BO literature. The first problem
is the 4 dimensional Branin-Williams problem formulated in [10]. For x ∈ [0, 1]4, the function is
defined as y(x) = yb(15x1 − 5, 15x2)× yb(15x3 − 5, 15x4), where

yb(u, v) =

(
v − 5.1

4π2
u2 +

5

π
u− 6

)2

+ 10

(
1− 1

8π

)
cos(u) + 10.

The function is observed with additive Gaussian noise with a standard deviation of 10. The decision
variables are x1 and x4, and the environmental variables are w = (x2, x3). The setW of size 12 and
the corresponding probability distribution are given in Table 1.

The problem is originally formulated for the expectation objective, however, here we consider the
minimization of VaR at risk level α = 0.7. A plot of the VaR objective of the Branin Willams
function is found in Figure 1.

The second problem we consider is f6(xc, xe) function from [11] given by

f6 (xc, xe) = xe1
(
x2c1 − xc2 + xc3 − xc4 + 2

)
+ xe2

(
−xc1 + 2x2c2 − x2c3 + 2xc4 + 1

)
+ xe3

(
2xc1 − xc2 + 2xc3 − x2c4 + 5

)
+ 5x2c1 + 4x2c2 + 3x2c3 + 2x2c4 −

2∑
i=1

x2ei,

where xc ∈ [−5, 5]4 are the decision variables and xe ∈ [−2, 2]3 are the environmental variables.
The function is evaluated with additive Gaussian noise with a standard deviation of 1. We formulate
this problem for minimization of CVaR at risk level α where w = xe has a continuous uniform
distribution over its domain. For the computation of ρKG and ρKGapx, we use a randomly drawn W̃
of size 40 at each iteration, and use randomly drawn W̃ of size 8 for evaluating CVaR[F (x,W)] in
benchmarks.

5.4 Experiment details

We initialize the GP model for the benchmark algorithms using 2dX + 2 random samples of xj ∈ X ,
and evaluate (or estimate) ρ[F (xj ,W)] using evaluations of F (xj , w), w ∈ W̃ where W̃ is the set

7

Table 1: Probability distribution of x2 and x3 in Branin Williams problem.

x3
0.2 0.4 0.6 0.8

x2
0.25 0.0375 0.0875 0.0875 0.0375
0.5 0.0750 0.1750 0.1750 0.0750

0.75 0.0375 0.0875 0.0875 0.0375

corresponding to the benchmark algorithms as described below. For ρKG and ρKGapx, we use
equivalent number of evaluations of F (x,w), using (xj , wj) randomly drawn from X ×W . Each
replication of the experiments uses a new draw of the samples; and the samples are synchronized
across different algorithms.

In what follows, we describe the use of W in each experiment. Note that all random sets W̃ are
independently re-drawn at each iteration.

1. Branin-Williams: The setW and the corresponding probability distribution is given in Table 1.
Our algorithms use the full setW in the inner computations, and all the benchmarks evaluate
VaR0.7[F (x,W)] using the fullW , thus using 12 evaluations per iteration.

2. f6(xc, xe): The setW is the hyper-rectangle [−2, 2]3 with a continuous uniform distribution. At
each iteration of our algorithms, we sample a subset W̃ of size 40, and use this for the inner
computations. The w component of the candidate is not restricted to this subset W̃ , and can take
any value inW . For each evaluation of the benchmarks, we sample a subset W̃ of size 8, and
calculate CVaR0.75[F (x,W)] on this set, thus using 8 evaluations per iteration.

3. Portfolio optimization: The set

W = {w ∈ R2 : w1 ∈ [10−4, 10−2], w2 ∈ [10−4, 10−3]}
gives the range of bid-ask spread (w1) and the borrowing cost (w2), and W follows a uniform
distribution onW . For the inner computations of our algorithms, we use a randomly drawn subset
W̃ of size 40, and use a subset W̃ of size 10 for benchmark evaluations of VaR0.8[F (x,w)], thus
using 10 evaluations per iteration.

4. COVID-19: The setW of initial disease propensity is given by

W =

{
w ∈ R3 :

w1 ∈ {0.001, 0.0025, 0.004},
w2 ∈ {0.002, 0.004, 0.006},
w3 ∈ {0.002, 0.005, 0.008}

}
with the probability distribution given by

PW (W = w) = 2−8+1(w1=0.0025)+1(w2=0.004)+1(w3=0.005).

For the inner computation of ρKGapx, we use the full setW . For evaluations of the benchmarks,
we draw a random sample W̃ of size 10 and use this to calculate CVaR0.9[F (x,W)], thus using
10 evaluations per iteration.
The output of the Covid-19 simulator is stochastic with a large variation. To enable fair comparison
between the algorithms, we fix a set of 10 seeds, and each function evaluation is done using a
randomly selected seed from this set. The reported performance is computed as the average
performance of using all 10 seeds.

We ran the benchmark algorithms EI, MES, KG, UCB and random for 100 replications in each
experiment. For ρ−random and ρKGapx, we ran 50 replications in each experiment, and ρKG was
run for 30 replications in each experiment.

5.5 Results

In the main body of the paper, we present the results using a moving average window of 3 iterations, to
smooth out the oscillations and make the plots easier to read. In Figure 2, we present the non-smoothed
plots to complement the moving averages presented in the paper.

8

The comparatively larger variance of our algorithms is attributed to: (i) our methods reporting a new
solution ∼10x more frequently (after each evaluation of F (x,w), rather than an evaluation at many
w), leading to more points in the plot; (ii) our methods having fewer replications than the benchmark
algorithms.

0 50 100 150 200 250
of evaluations

2.55

2.60

2.65

2.70

2.75

2.80

2.85

2.90

2.95

lo
g

ga
p

Branin Willams VaR Log Optimality Gap

0 50 100 150 200 250
of evaluations

2.5

2.6

2.7

2.8

2.9

3.0

lo
g

ga
p

Branin Willams CVaR Log Optimality Gap

0 25 50 75 100 125 150 175 200
of evaluations

1.0

0.5

0.0

0.5

1.0

1.5

lo
g

ga
p

f6(xc, xe) Log Optimality Gap

0 20 40 60 80 100 120 140 160
of evaluations

4

6

8

10

12

re
tu

rn
s

Portfolio Returns

0 20 40 60 80 100 120 140 160
of evaluations

1.24

1.25

1.26

1.27

1.28

1.29

1.30

1.31

1.32

in
fe

ct
io

ns

1e4 Covid-19 Cumulative Infections

Figure 2: Top: The log optimality gap in Branin Williams with VaR (left) with CVaR (middle),
and f6(xc, xe) (right). Bottom: The returns on Portfolio problem (left), the cumulative number of
infections in the COVID-19 problem (middle) and the legend (right). The plots are plotted against
the number of F (x,w) evaluations.

5.6 Results comparing algorithm run times

Figure 3: Left: Time to reach an optimality gap of 320 on the Branin Williams problem with CVaR
objective. Right: Time to reach an optimality gap of 1 on the f6(xc, xe) function. The plots show the
total run time vs the time per a single evaluation of the function F (x,w).

In Figure 3, we present plots that show the total time it takes for the algorithms to reach a given
optimality gap threshold, as a function of the cost of a single evaluation of the function F (x,w). The
plots make clear the advantage of using our acquisition functions, instead of the benchmarks studied
in the paper, even with only moderately expensive function evaluations. The Branin Williams and
f6(xc, xe) were chosen since the results for these experiments allow for a meaningful comparison;
and that they are representative as, roughly speaking, the least and the most computationally intensive
in terms of acquisition function optimization, respectively, of all the numerical examples presented in
the paper. It is seen that in f6(xc, xe), the ρKG algorithm is quite expensive to optimize, and is not a
good contender unless the function evaluations are expensive enough. However, for both examples,
ρKGapx proves to be a better option than all the benchmarks, even when the function evaluations
take only a few minutes.

9

6 Proofs of theoretical results

This section is dedicated to showing that the derivative estimators we propose in this paper are
asymptotically unbiased and consistent. Here, we only present the proofs for the case of dW = 1.

The derivative of a GP is again a GP (cf. [12] and section 9.4 of [13]). If we model F (x) as a GP
with mean and covariance functions µ,Σ, then F and ∇F follow a multi output GP with mean and
covariance functions given by [12]

µ̃(x) = (µ(x),∇µ(x))> and Σ̃(x, x′) =

(
Σ(x, x′) ∇Σ(x, x′)
∇Σ(x′, x)> ∇2Σ(x, x′)

)
;

where ∇Σ and ∇2Σ are the Jacobian and Hessian of the covariance function. We note that, although
this result is found in the literature without any assumptions on the GP, it in fact requires the GP to
possess differentiable sample paths. For example, the Brownian motion is a well known example of a
GP that has nowhere differentiable sample paths, thus violates this framework. To this end, we refer
the reader to [14] for precise conditions on the differentiability of the GP sample paths, and assume
that these conditions are satisfied.

Remark 1. Before discussing the assumptions below, we note that the assumptions listed here
are more restrictive than needed. The main results we build on require certain conditions on the
distribution of the function in a neighborhood of its VaR. However, when the function is drawn from
a GP, it is impossible to know where this neighborhood, which would be different for each draw,
might be, and thus it is impossible to impose assumptions on such an unknown and ever changing
neighborhood. The main purpose of the results presented here is to show that there indeed exists a
set of conditions under which our claims hold. However, we are confident that our algorithms are
applicable in much broader settings, even when no such assumption can be verified.

We assume that the kernel Σ̃ of the joint GP of the function and its derivative is strictly positive
definite; and the random environmental variable W admits a strictly positive and continuous density
p(w) over its domain. (Note that this assumption is easily satisfied by adding a small Gaussian noise
to W .) Observe that when the kernel is strictly positive definite, the sample paths of the GP are
non-zero w.p.1., i.e. the equation F (x,w) = 0 has at most countably many solutions, where F (·, ·)
denotes a sample drawn from the GP.

Lemma 1. Under conditions outlined above, for any t such that PW (F (x,W) ≤ t) ∈ (0, 1),
the CDF PW (F (x,W) ≤ t) is continuously differentiable w.r.t. both x and t; and the density
∂tPW (F (x,W) ≤ t) is strictly positive for each x.

Proof. Since there are at most countably many points where the derivative is zero, we can construct
countably many distinct intervalsWi, i ∈ I where F (x,w) is monotone (in w) in eachWi, andWi

are such that PW (∪i∈IWi) = 1 and PW (Wi) > 0, i ∈ I . Then,

∂xPW (F (x,W) ≤ t) = ∂x

∫
{w:F (x,w)≤t}

p(w)dw

= ∂x
∑
i∈I

PW (Wi)

∫
{w∈Wi:F (x,w)≤t}

p(w)

PW (Wi)
dw

=
∑
i∈I

∂xPW (Wi)

∫
{w∈Wi:F (x,w)≤t}

p(w)dw = (∗)

where the interchange of derivative and summation is justified as the sum is bounded. From here on,
we ignore theWi that do not produce any root to the equation F (x,w) = t, as the corresponding
derivatives are zero. Since F (x,w) is continuously differentiable and monotone in w in eachWi,
by the inverse function theorem [15], there exists a continuously differentiable inverse function
F−1i (t′;x) mapping t′ to w ∈ Wi for a given x. For the remainingWi, define the sets I+ and I−

such that, I+ is the set ofWi that has F−1i (t;x) as the upper bound of the integral and I− as the
ones with the lower bound. For i ∈ I+, let w−i be the lower bound of the integral, and similarly w+

i

10

as the upper bound for I−. Then,

(∗) =
∑
i∈I+

∂x

∫ F−1
i (t;x)

w−i

p(w)dw +
∑
i∈I−

∫ w+
i

F−1(t;x)

p(w)dw

=
∑
i∈I+

p(w)∂xF
−1
i (t;x)−

∑
i∈I−
−p(w)∂xF

−1
i (t;x)

=
∑

i∈I+∪I−
p(w)∂xF

−1
i (t;x)

where the result follows by the Leibniz rule. Applying the same steps with ∂t, we get

∂tPW (F (x,W) ≤ t) =
∑

i∈I+∪I−
p(w)∂tF

−1
i (t;x).

Since p(w) is continuous and F−1i (t;x) is continuously differentiable, PW (F (x,W) ≤ t) is contin-
uously differentiable w.r.t. both x and t. Since p(w) is strictly positive and the derivative is non-zero
(and the CDF is a non-decreasing function), it follows that ∂tPW (F (x,W) ≤ t) is strictly positive,
thus completing the proof.

Proposition 1. Under the conditions outlined above, for α ∈ (0, 1),

1

M

M∑
j=1

∇xv̂j(x)
p−→ ∇xEn+1[VaRα[F (x,W)]]

as M,L → ∞, where
p−→ denotes convergence in probability. Moreover, the gradient

∇xEn+1[VaRα[F (x,w)]] is continuous.

Proof. Let F (x,w)(ω) denote a sample path of the GP. As a sample path of the GP, F (x,w)(ω) is
continuously differentiable w.r.t. w w.p.1. By Lemma 1, the CDF PW (F (x,W) ≤ t) is continuously
differentiable w.r.t. both x and t, and the density ∂tPW (F (x,W) ≤ t) is strictly positive. Then, by
Lemma 2 of [16],

lim
L→∞

E[∇xv̂(x)] = ∇xVaRα[F (x,W)]. (3)

Since the gradient is also a GP defined in a compact space,∇xF (x,w)(ω) is bounded w.p.1., so is
∇xVaRα[F (x,W)]. Then, by proposition 1 of [17],

∇xEn+1[VaRα[F (x,W)]] = En+1[∇xVaRα[F (x,W)]]. (4)

F (x,w) is bounded by the same argument as ∇xF (x,w), thus has finite second moment. There-
fore, the main result follows by an application of Chebyshev’s inequality. The continuity of
∇xEn+1[VaRα[F (x,W)]] follows by Theorem 1 of [16] and the fact that both gradients are continu-
ous as shown in Lemma 1.

Before going into the main result, we discuss the mapping from the candidate point (x,w) to the
sample F̂ ij(·, ·), the j-th sample path drawn from the i-th fantasy GP model, GPif . Let’s start with
the mapping from the candidate to the mean and covariance functions of GPif . Let Zi be (a fixed
realization of) the standard normal random variable used to generate the fantasy. The mean and
covariance functions of GPif are given by:

µif (x′, w′) = µn(x′, w′) +
Σn(x′, w′, x, w)√

Σn(x,w, x, w) + σ2(x,w)
Zi,

Σif (x′, w′, x′′, w′′) = Σn(x′, w′, x′′, w′′)− Σn(x′, w′, x, w)Σn(x,w, x′′, w′′)

Σn(x,w, x, w) + σ2(x,w)
,

where σ2(x,w) is the known observation noise level (see [18] for more details). Assuming that the
prior mean and covariance functions are continuously differentiable, µif and Σif are continuously
differentiable w.r.t. the candidate (x,w).

11

For a given xi and finite set W̃ = {w1:L}, and a (realization of) L - dimensional standard normal
random vector ZijL , the j-th sample path of i-th fantasy model is generated as

F̂ ij(xi, w1:L) = µif (xi, w1:L) + C(xi, w1:L)ZijL , (5)

where C(xi, w1:L) is the Cholesky factor of L× L covariance matrix Σif (xi, w1:L, x
i, w1:L). Since

Σif is continuously differentiable w.r.t. the candidate, so is C(xi, w1:L), making the sample F̂ ij(·, ·)
continuously differentiable w.r.t. the candidate (x,w).

The discussion above establishes continuous differentiability of the sample F̂ ij(·, ·) w.r.t. the
candidate (x,w) only for a finite collection of points (xi, w1:L). However, to be able to use the
analysis of Proposition 1, we need continuous differentiability of F̂ ij(x,w), w ∈W which, with W
being a continuous random variable, is an infinite dimensional random variable. The concept of an
infinite dimensional standard Gaussian random variable, or a standard Gaussian random function, is
not well defined, and we can no longer use equation (5). In the proposition below, we assume that
F (·, ·) is indeed differentiable w.r.t. the candidate (x,w) and hope that this discussion justifies the
assumption. Below, we use u := (x,w) as the candidate to simplify the notation.
Proposition 2. Under the conditions outlined above, and assuming that the solution to the inner
problem x∗ is unique w.p.1.,

1

K

K∑
i=1

− 1

M

M∑
j=1

∇uv̂j(x∗i)
p−→ ∇uEn[−min

x
En+1[VaRα[F (x,w)]] | u] (6)

as K,L,M →∞

Proof. Following the proof of proposition 1 with∇u replacing∇x, we get

lim
L→∞

En+1[E[∇uv̂(x)]] = ∇uEn+1[VaRα[F (x,W)]].

By the assumption that x∗ is unique w.p.1. and the continuity of ∇uEn+1[VaRα[F (x,W)]] by
proposition 1, we can apply the envelope theorem (corollary 4, [19]) to get

lim
L→∞

En+1[E[∇uv̂(x∗)]] = ∇uEn+1[VaRα[F (x∗,W)]].

Again by the arguments in the proof of proposition 1, the gradient is continuous and bounded w.p.1.,
thus applying proposition 1 of [17], we get

lim
L→∞

En[En+1[E[∇uv̂(x∗)]] | u] = ∇uEn[En+1[VaRα[F (x∗,W)]] | u]. (7)

Since the second moment of the estimators are bounded (see the proof of proposition 1), the result
follows by Chebyshev’s inequality.

Proposition 3. The results presented in Propositions 1 & 2 extend to the risk measure CVaR, i.e.

1

M

M∑
j=1

∇xĉj(x)
p−→ ∇xEn+1[CVaRα[F (x,W)]];

and
1

K

K∑
i=1

− 1

M

M∑
j=1

∇uĉj(x∗i)
p−→ ∇uEn[−min

x
En+1[CVaRα[F (x,w)]] | u] (8)

as K,L,M →∞.

Proof. We have established in the proof of Proposition 1 that ∇F (x,w) is bounded, and that
VaRα[F (x,W)] is continuously differentiable. Combining these with the assumption that W is a
continuous random variable, we can apply Theorem 3.1 of [20] to get

∇CVaRα[F (x,W)] = E[∇F (x,W) | F (x,W) ≥ VaRα[F (x,W)]].

Since ∇F (x,W) is continuous and bounded, it follows by bounded convergence theorem [21] that
CVaRα[F (x,W)] is continuously differentiable. The remaining arguments are identical to those of
Propositions 1 & 2.

12

We conclude this discussion by noting that, while the proposition in the main paper claims both
asymptotic unbiasedness and consistency, the propositions proved here only establish the consistency
of the estimators, and the asymptotic unbiasedness result is hidden within the proof argument. In the
proof of Proposition 1, combining the equations (3) and (4) gives us the asymptotic unbiasedness
of the gradient estimators for the inner problem, where the interchange of limit and expectation is
justified by the dominated convergence theorem [21]. Similarly, equation (7) shows that the estimators
for the candidate optimization of ρKG are asymptotically unbiased.

References
[1] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale

bound-constrained optimization,” ACM Trans. Math. Softw., vol. 23, no. 4, p. 550–560, 1997.

[2] A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello, “The sample average approximation method for
stochastic discrete optimization,” SIAM J. on Optimization, vol. 12, no. 2, pp. 479–502, 2002.

[3] S. Kim, R. Pasupathy, and S. G. Henderson, “A guide to sample average approximation,” in Handbook of
Simulation Optimization, pp. 207–243, Springer New York, 2015.

[4] J. Wilson, F. Hutter, and M. Deisenroth, “Maximizing acquisition functions for Bayesian optimization,” in
Advances in Neural Information Processing Systems, pp. 9884–9895, 2018.

[5] J. Wu and P. I. Frazier, “The parallel knowledge gradient method for batch Bayesian optimization,” in
Advances in Neural Information Processing Systems, pp. 3134–3142, 2016.

[6] I. Murray, “Differentiation of the cholesky decomposition,” arXiv: 1602.07527, 2016.

[7] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy, “BoTorch:
Programmable Bayesian Optimization in PyTorch,” arXiv: 1910.06403, 2019.

[8] D. Kraft, “A software package for sequential quadratic programming,” 1988. Tech. Rep. DFVLR-FB
88-28, DLR German Aerospace Center — Institute for Flight Mechanics, Koln, Germany.

[9] A. B. Owen, “Scrambling Sobol’ and Niederreiter–Xing points,” Journal of Complexity, vol. 14, no. 4,
pp. 466 – 489, 1998.

[10] B. Williams, T. Santner, and W. Notz, “Sequential design of computer experiments to minimize integrated
response functions,” Statistica Sinica, vol. 10, pp. 1133–1152, October 2000.

[11] J. Marzat, E. Walter, and H. Piet-Lahanier, “Worst-case global optimization of black-box functions through
kriging and relaxation,” Journal of Global Optimization, vol. 55, pp. 707–727, 04 2013.

[12] J. Wu, M. Poloczek, A. G. Wilson, and P. I. Frazier, “Bayesian optimization with gradients,” in Proceedings
of the 31st International Conference on Neural Information Processing Systems, p. 5273–5284, 2017.

[13] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. The MIT Press, 2006.

[14] R. J. Adler and J. E. Taylor, Random Fields and Geometry. Springer, 2007.

[15] W. Rudin, Principles of Mathematical Analysis. McGraw-Hill Inc, 1976.

[16] G. Jiang and M. C. Fu, “Technical note—on estimating quantile sensitivities via infinitesimal perturbation
analysis,” Operations Research, vol. 63, no. 2, pp. 435–441, 2015.

[17] M. Broadie and P. Glasserman, “Estimating security price derivatives using simulation,” Management
Science, vol. 42, no. 2, pp. 269–285, 1996.

[18] J. Wu and P. I. Frazier, “The parallel knowledge gradient method for batch Bayesian optimization,” in
Advances Neural Information Processing Systems, p. 3134–3142, 2016.

[19] P. Milgrom and I. Segal, “Envelope theorems for arbitrary choice sets,” Econometrica, vol. 70, no. 2,
pp. 583–601, 2002.

[20] L. J. Hong and G. Liu, “Simulating sensitivities of conditional value at risk,” Management Science, vol. 55,
no. 2, pp. 281–293, 2009.

[21] R. Durrett, Probability: Theory and Examples. Cambridge University Press, 2010.

13

	Computational complexity
	The SAA problem
	Gradients of rij
	Two time scale optimization
	Experiments
	Algorithm parameters
	GP model and fitting
	Synthetic test problems
	Experiment details
	Results
	Results comparing algorithm run times

	Proofs of theoretical results

