
A Proof of Theorem 1
Recall the Theorem 1.

The optimal policy π∗τt is guaranteed in Πτt(π̂τ:t) for all t ≥ 1. With probability at least 1− δ, the
algorithm takes at most O(

∑T
t=1Kτt |Πτt(π

∗
τ:t)| log2(T |Πτt(π

∗
τ:t)|/δ)) steps to end. A curriculum-

free algorithm that learns tasks separately requires samples at least
∑T
t=1Kt|Πt|.

For the first argument, we use induction. On round t, assuming

π∗τt ∈ Πτt(π̂τ:t), (1)

we have π̂t = π∗τt . Then for t+ 1, equation (1) also holds. As π∗τ1 ∈ Πτ1 , the argument follows by
induction. For the second part, we it is essentially a Coupon Collector’s problem.

Lemma 3 (Coupon Collector’s problem). It takes O(N log2(N/δ)) rounds of random sampling to
see all N distinct options with a probability at least 1− δ.

Proof. Consider a general sampling problem: for any finite set N with |N | = N . For any n, whose
sampling probability is p(c), with a probability at least 1− δ, it requires at most

log(1/δ)

log(1 + p(n)
1−p(n) )

for n to be sampled.

Since log(1 + x) ≥ x− 1
2x

2 for all x > 0, we have

log(1/δ)

log(1 + p(n)
1−p(n) )

≤ log(1/δ)
1

p(n)
1−p(n) −

p(n)2

2(1−p(n))2

= O(log(1/δ)
1− p(n)

p(n)
).

Searching the whole space N with each new element being found with probability N−i
N at round i, it

requires at most

O(

N∑
i=1

log(
N

δ
)
N

N − i
) = O(log2(

N

δ
)N),

with a probability at most 1− δ.

By Lemma 3, with a probability 1 − δ/T , search the marginal policy space Πτt(π:τt) requires at
most O(Kτt log2(T |Πτt(π:τt)|/δ)|Πτt(π:τt)|) times policy evaluation. As the horizon for task τt is
Kt, the total number of samples to search the whole joint space is

T∑
t=1

Kτt |Πτt(π:τt)| log2(T |Πτt(π:τt)|/δ).

B Combination lock
Problem setup. We consider the combination lock problem [20]. As shown in Figure 4, the set of T
MDPs {M1, . . . ,MT } share the same action space A = {−1,+1}. The t-th task has the state space
St = {1, . . . , t}, the episode length t. The agent receives 0 reward on all but the last state t in the
t-th task. There are two actions, one for staying on the current state and the other one for moving
forward, i.e. st+1 = st + 1.

1 2 3 T-1 Ta = +1 a = +1 a = +1

a = +1, reward = +1a = -1a = -1 a = -1 a = -1

Figure 4: Combination lock MDPs.

Joint policy space. We assume the same optimal actions on the common states shared by different
tasks. Formally, πt1(s, h1) = πt2(s, h2) for t2 ≥ t1, s ∈ St1 and h1 ∈ [t1], h2 ∈ [t2].
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Figure 5: We trained a set of models sequentially on gridworld problem with size {3, 5, . . . , 17}.
Model x is the model trained on environment x using the parameters transferred from model x− 1.
The colors represent the target environment. Each point (x, y) in the plot represents the distance in
rewards between the conformer suggested by model x and the optimal reward. The red dashed line
links the points of test environments x+ 1 using the model trained on environment x. The confidence
interval is based on the standard deviation over 100 episodes.

Sample complexity. By [50], the total number of steps needed to learn MT is at least AT 3. The
lower bound can only be achieved by carefully designed exploration strategy, which accounts for
the underlying function class. Applying Theorem 1, a purely random exploration strategy following
curricula M1, . . . ,MT has an upper bound of O(

∑T
t=1Ht|Πt(πt)| log(

∑T
t=1 |Πt(πt)|

δ )) = Õ(AT 3)
with probability at least 1− δ, which matches the lower bound. Solving MT directly using random
exploration requires O(2T ) samples.

Experiment setup. To match the experiment setup in our conformer generation problem, we conduct
the combination lock experiment on a harder environment, MiniGrid. MiniGrid is a minimalistic
gridworld environment for OpenAI Gym with an image input. The environment is shown in Figure 6.
In our experiments, we train an PPO on MiniGrid of size 25, with target grid changing according to
the sequence {(3, 3), (5, 5), (7, 7), . . . , (17, 17)}. The model setting and hyper-parameters are the
same in Torch-rl. Whenever the model converges on the current task, we test the average regret over
100 samples on all the tasks from 3 to 17. The results are shown in Figure 5. As we can see, we
observe a similar pattern as shown in Figure 3.

Figure 6: MiniGrid environment of size 6: an agent takes actions from {Turn Left, Turn Right, Move
Forward} to reach the target grid (green). The starting grid is always placed in the left-up corner (1,
1) of the gridworld. A positive reward 1 is received only when the agnet reaches the target grid.
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C Algorithm Details and Experimental Parameters
C.1 Curriculum Algorithm

Algorithm 1 TorsionNet trained with doubling curriculum

Initialize model parameter θ, round t = 1, the sequence of target molecule XJ , starting set
X1 = {XJ [1]};
for round t = 1, . . . , T do

while True do
1. Sample a molecule x from Xt
2. Train on x with TorsionNet.
if Performance Threshold Reached then

3. Set Xt+1 ← Xt
4. Add molecules from XJ to Xt+1 until |Xt+1| = 2|Xt|
5. XJ ← XJ\Xt+1

6. Break
end if

end while
end for

The specifics of our implementation are included with the code.

C.2 Features and Hyperparameters

Table 3: Molecule Features
Feature Feature Type Description Dimensionality

Atom type Node [C, O] (one-hot) 2
Position Node 3D Cartesian coordinates (float) 3
Bond type Edge [Single, Double, Triple, Aromatic] (one-hot) 4
Conjugated Edge Bond belongs to a conjugated system (boolean) 1
Ringed Edge Bond is in a closed ring (boolean) 1

Position of atoms are given by Cartesian coordinates. These are taken directly from the RDKit
conformer object, then normalized in two ways. Firstly atoms are centered on the origin. Then,
rotation is normalized such that eigenvectors align with coordinate axes.

Table 4: Experimental Constants
Molecules E0 (kcal/mol) Z0 τ(◦K)

11-torsion alkane 7.840935037731404 13.066560104213275 503
22-torsion alkane 14.882782943326 1.2363186365185 503
8-lignin 525.8597422 16.1548792743065 2000

E0 and Z0 are utilized for Gibbs evaluation. Normalizers for alkane train and test molecules are
sampled from RDKit ETKDG with default settings, and for the lignin test environment via exhaustive
SGMD sampling. The lignin train molecules have normalizers collected via OpenBabel sampling.
We include the constants for test molecules here, but all remaining constants for train molecules are
included in code repository in Appendix E.

Table 5: Selected Hyperparameters
Hyperparameter Value

Message Passing Steps 6
Set-to-Set Passes 6
Node Embedding Dimension 128
LSTM Hidden State Dimension 256

Full hyperparameter setup described in code repo (Appendix E).
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C.3 Test Molecule Depiction

(a) 11-torsion alkane (b) 22-torsion alkane

Figure 7: Stick visualization of alkane test molecules with implicit hydrogen atoms. (black: carbon)

Figure 8: Stick visualization of 8-lignin molecule with implicit hydrogen atoms. (black: carbon, red:
oxygen)
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(a) T-Alkane 0 (b) T-Alkane 4 (c) T-Alkane 9

Figure 9: Stick visualization of T-Branched Alkane molecule family with implicit hydrogen atoms.
Each subsequent T-alkane is a superset of the molecular graph of the prior T-alkane, with one
additional carbon on the long end. (black: carbon)

Full smiles string is given for each molecule in code repo (Appendix E).

C.4 Molecular Dynamics Computational Details

The lignin oligomer topology was obtained using Lignin-KMC [31] and 3D coordinates were
generated with OpenBabel’s gen3D [29] and optimized with molecular mechanics. CHARMM [6]
was the software used for the molecular dynamics simulations. Parametrization of the system was
done with the CHARMM General Forcefield (CGenFF) [46]. The simulations were carried out with
Langevin dynamics in vacuum at 300K with a collision frequency of 10 per ps. The nonbonded list
cutoff was set at 14 angstroms and interactions were modulated by a switching function between
10 and 12 angstroms. The shake constraint was used to fix bond lengths involving hydrogen atoms.
The simulations involved 2 ns of heating and 50 ns of production at 2 fs timestep. The self-guided
dynamics settings involved a local average time of 0.2 ps and momentum guiding factor of 1. The
coordinates in the production run were saved every 5 ps for subsequent analysis.

D Diversity of conformer sets
We calculate the RMSD (root-mean-square deviation) of every pair of conformers of 8-Lignin
generated by SGMD and TorsionNet. The former has 2352 pruned conformers and the latter has
986. As shown in Figure 10, both methods have similar distribution for the pair-wises RMSDs with a
range roughly in [4, 10] angstroms.

Figure 10: Histograms of pairwise RMSDs of two conformers sets, one from SGMD (left) and the
other one from TorsionNet (right). The unit of distance for the x-axis is angstrom.

E Code
Github link: https://github.com/tarungog/torsionnet_paper_version
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