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Abstract
Many practical tasks involve sampling sequentially without replacement (WoR)
from a finite population of size N , in an attempt to estimate some parameter θ‹.
Accurately quantifying uncertainty throughout this process is a nontrivial task,
but is necessary because it often determines when we stop collecting samples and
confidently report a result. We present a suite of tools for designing confidence
sequences (CS) for θ‹. A CS is a sequence of confidence sets pCnqNn“1, that
shrink in size, and all contain θ‹ simultaneously with high probability. We present
a generic approach to constructing a frequentist CS using Bayesian tools, based on
the fact that the ratio of a prior to the posterior at the ground truth is a martingale.
We then present Hoeffding- and empirical-Bernstein-type time-uniform CSs and
fixed-time confidence intervals for sampling WoR, which improve on previous
bounds in the literature and explicitly quantify the benefit of WoR sampling.

1 Introduction
When data are collected sequentially rather than in a single batch with a fixed sample size, many clas-
sical statistical tools cannot naively be used to calculate uncertainty as more data become available.
Doing so can quickly lead to overconfident and incorrect results (informally, “peeking, p-hacking”).
For these kinds of situations, the analyst would ideally have access to procedures that allow them to:

(a) Efficiently calculate tight confidence intervals whenever new data become available;
(b) Track the intervals, and use them to decide whether to continue sampling, or when to stop;
(c) Have valid confidence intervals (or p-values) at arbitrary data-dependent stopping times.

The desire for methods satisfying (a), (b), and (c) led to the development of confidence se-
quences (CS) — sequences of confidence sets which are uniformly valid over a given time horizon
T . Formally, a sequence of sets tCtutPT is a p1 ´ αq-CS for some parameter θ‹ if

Prp@t P T , θ‹ P Ctq ě 1 ´ α ” PrpDt P T : θ‹ R Ctq ď α. (1.1)

Critically, (1.1) holds iff Prpθ‹ R Cτ q ď α for arbitrary stopping times τ [1], yielding property (c).
The foundations of CSs were laid by Robbins, Darling, Siegmund & Lai [2, 3, 4, 5]. The multi-armed
bandit literature sometimes calls them ‘anytime’ confidence intervals [6, 7]. CSs have recently been
developed for a variety of nonparametric problems [1, 8, 9].
This paper derives closed-form CSs when samples are drawn without replacement (WoR) from a
finite population. The technical underpinnings are novel (super)martingales for both categorical
(Section 2) and continuous (Section 3) observations. In the latter setting, our results unify and
improve on the time-uniform with-replacement extensions of Hoeffding’s [10] and empirical Bern-
stein’s inequalities by Maurer and Pontil [11] that have been derived recently [12, 1], with several
related inequalities for sampling WoR by Serfling [13] and extensions by Bardenet and Maillard
[14] and Greene and Wellner [15].
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Figure 1: 95% CS for the number of green and red balls in an urn by sampling WoR2. Notice that the
true totals (650 green, 350 red) are captured by the CSs uniformly over time from the initial sample
until all 1000 balls are observed. After sampling 61 balls in this example, the CSs cease to overlap,
and we can conclude with 95% confidence that there are more green than red balls in the urn.

Outline. In Section 2, we use Bayesian ideas to obtain frequentist CSs for categorical observations.
In Section 3, we construct CSs for the mean of a finite set of bounded real numbers. We discuss im-
plications for testing in Section 4. Some prototypical applications are described in Appendix A. The
other appendices contain proofs, choices of tuning parameters, and computational considerations.

1.1 Notation, supermartingales and the model for sampling WoR
Everywhere in this paper, the N objects in the finite population tx1, . . . , xNu are fixed and non-
random. In the discrete setting (Section 2) with K ě 2 categories tckuKk“1, we have xi P
tc1, c2, . . . , cKu. In the continuous setting (Section 3), xi P r$, us for some known bounds $ ă u.
What is random is only the order of observation; the model for sampling uniformly at random WoR
posits that

Xt | tX1, . . . , Xt´1u „ Uniformptx1, . . . , xNuztX1, . . . , Xt´1uq. (1.2)
All probabilities in this paper are to be understood as solely arising from observing fixed entities
in a random order, with no distributional assumptions being made on the finite population. It is
worth remarking on the power of this randomization—as demonstrated in our experiments, one can
estimate the average of a deterministic set of numbers to high accuracy without observing a large
fraction of the set.
The results in this paper draw from the theory of supermartingales. While they can be defined in
more generality, we provide a definition of supermartingales which will suffice for the theorems that
follow.
A filtration is an increasing sequence of sigma fields. For the entirety of this paper, we consider
the ‘canonical’ filtration pFtqNt“0 defined by Ft :“ σpX1, . . . , Xtq, with F0 is the empty or trivial
sigma field. For any fixed N P N, a stochastic process pMtqNt“0 is said to be a supermartingale with
respect to pFtqNt“0 if for all t P t0, 1, . . . , N ´ 1u, Mt is measurable with respect to Ft (informally,
Mt is a function of X1, . . . , Xt), and

EpMt`1 | Ftq ď Mt.

If the above inequality is replaced by an equality for all t, then pMtqNt“0 is said to be a martingale.
For succinctness, we use the notation at1 :“ ta1, . . . , atu and ras :“ t1, . . . , au. Using this termi-
nology, one can rewrite model (1.2) as positing that Xt | Ft´1 „ UniformpxN

1 zXt´1
1 q.

2 Discrete categorical setting
When observations are of this discrete form, the variables can be rewritten in such a way that they
follow a hypergeometric distribution. In such a setting, the following “prior-posterior-ratio martin-
gale” can be used to obtain CSs for parameters of the hypergeometric distribution which shrink to a
single point after all data have been observed.

2Code to reproduce plots is available at github.com/wannabesmith/confseq_wor.
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2.1 The prior-posterior-ratio (PPR) martingale
While the PPR martingale will be particularly useful for obtaining CSs when sampling discrete
categorical random variables WoR from a finite population, it may be employed whenever one is able
to compute a posterior distribution, and is certainly not limited to this paper’s setting. Moreover, this
posterior distribution need not be computed in closed form, and computational techniques such as
Markov Chain Monte Carlo may be employed when a conjugate prior is not available or desirable.
To avoid confusion, we emphasize that while we make use of terminology from Bayesian inference
such as posteriors and conjugate priors, all of the probability statements with regards to CSs should
be read in the frequentist sense, and are not interpreted as sequences of credible intervals.
Consider any family of distributions tFθuθPΘ with density fθ with respect to some underlying com-
mon measure (such as Lebesgue for continuous cases, counting measure for discrete cases). Let
θ‹ P Θ be a fixed parameter and let T “ rN s where N P N Y t8u. Suppose that X1 „ fθ‹ pxq and

Xt`1 „ fθ‹ px | Xt
1q for all t P T .

Let π0pθq be a prior distribution on Θ, with posterior given by

πtpθq “ π0pθqfθpXt
1qş

ηPΘ π0pηqfηpXt
1qdη .

To prepare for the result that follows, define the prior-posterior ratio (PPR) evaluated at θ P Θ as

Rtpθq :“ π0pθq
πtpθq .

Proposition 2.1 (Prior-posterior-ratio martingale). For any prior π0 on Θ that assigns nonzero mass
everywhere, the sequence of prior-posterior ratios evaluated at the true θ‹, that is pRtpθ‹qqNt“0, is a
nonnegative martingale with respect to pFtqNt“0. Further, the sequence of sets

Ct :“ tθ P Θ : Rtpθq ă 1{αu
forms a p1 ´ αq-CS for θ‹, meaning that PrpDt P T : θ‹ R Ctq ď α.

The proof is given in Appendix B.1.
Going forward, we adopt the label working before ‘prior’ and ‘posterior’ and encase them in ‘quotes’
to emphasize that they constitute part of a Bayesian ‘working model’, to contrast it against an as-
sumed Bayesian model; the latter would be inappropriate given the discussion in Section 1.1. Next,
we apply this result to the hypergeometric distribution. We will later examine the practical role of
this working prior.

2.2 CSs for binary settings using the hypergeometric distribution
Recall that a random variable X has a hypergeometric distribution with parameters pN,N`, nq if
it represents the number of “successes” in n random samples WoR from a population of size N in
which there are N` such successes, and each observation is either a success or failure (1 or 0). The
probability of a particular number of successes x P t0, 1, . . . ,minpN`, nqu is

PrpX “ xq “ `N`

x

˘`N´N`

n´x

˘{`N
n

˘
.

For notational simplicity, we consider the case when n “ 1, that is we make one observation at a
time, but this is not a necessary restriction. In fact, one would obtain the same CS at time ten if we
repeatedly make one observation ten times, or make ten observations in one go. For a moment, let
us view this problem from the Bayesian perspective, treating the fixed parameter N` as a random
parameter, which we call rN` to avoid confusion. We choose a beta-binomial ‘working prior’ on rN`

as it is conjugate to the hypergeometric distribution up to a shift in rN` [16]. Concretely, suppose

Xt | p rN`, X1, . . . , Xt´1q „ HyperGeo

˜
N ´ pt ´ 1q, rN` ´

t´1ÿ

i“1

Xi, 1

¸
,

rN` „ BetaBinpN, a, bq,
for some a, b ą 0. Then for any t P rN s, the ‘working posterior’ for rN` is given by

rN` ´
tÿ

i“1

Xi | Xt
1 „ BetaBin

˜
N ´ t, a `

tÿ

i“1

Xi, b ` t ´
tÿ

i“1

Xi

¸
.
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Now that we have ‘prior’ and ‘posterior’ distributions for rN`, an application of the prior-posterior
martingale (Proposition 2.1) yields a CS for the true N`, summarized in the following theorem.
Theorem 2.1 (CS for binary observations). Suppose xN

1 P t0, 1uN is a nonrandom set with the
number of successes

řN
i“1 xi ” N` fixed and unknown. Under observation model (1.2), we have

Xt | Xt´1
1 „ HyperGeo

˜
N ´ pt ´ 1q, N` ´

t´1ÿ

i“1

Xi, 1

¸
.

For any beta-binomial ‘prior’ π0 for N` with parameters a, b ą 0 and induced ‘posterior’ πt,

Ct :“
#
n` P rN s : π0pn`q

πtpn`q ă 1

α

+

is a p1´αq-CS for N`. Further, the running intersection, pŞsďt CtqtPrNs is also a valid p1´αq-CS.
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Figure 2: Consider sampling balls from an urn WoR with three distinct colors (red, green, and
purple). In this example, the urn contains 1000 balls with 300 red, 600 green, and 100 purple. We
only require a two-dimensional confidence sequence (yellow region) to capture uncertainty about all
three totals. After around 300 balls have been sampled, we are quite confident that the urn is made
up mostly of green; after 1000 samples, we know the totals for each color with certainty.

The proof of Theorem 2.1 is a direct application of Proposition 2.1. Note that for any ‘prior’, the
‘posterior’ at time t “ N is πN pn`q “ 1pn` “ N`q, so Ct shrinks to a point, containing only
N`. For K ą 2 categories, Theorem 2.1 can be extended to use a multivariate hypergeometric with
a Dirichlet-multinomial prior to yield higher-dimensional CSs, but we leave the (notationally heavy)
derivation to Appendix C. See Figure 2 to get a sense of what these CSs can look like when K “ 3.

2.3 Role of the ‘prior’ in the prior-posterior CS
The prior-posterior CSs discussed thus far have valid (frequentist) coverage for any ‘prior’ on N`,
and in particular are valid for a beta-binomial ‘prior’ with any data-independent choices of a, b ą 0.
Importantly, the corresponding CS always shrinks to zero width. How, then, should the user pick
pa, bq? Figure 3 provides some visual intuition.
These are our takeaway messages: (a) if the ‘prior’ is very accurate (coincidentally peaked at the
truth), the resulting CS is narrowest, (b) even if the ‘prior’ is horribly inaccurate (placing almost no
mass at the truth), the resulting CS is well-behaved and robust, albeit wider, (c) if we do not actually
have any idea what the underlying truth might be, we suggest using a uniform ‘prior’ to safely
balance the two extremes. However, a more risky ‘prior’ pays a relatively low statistical price.

3 Bounded real-valued setting
Suppose now that observations are real-valued and bounded as in Examples C and D of Appendix A.
Here we introduce Hoeffding- and empirical Bernstein-type inequalities for sampling WoR.

3.1 Hoeffding-type bounds
Recalling Section 1.1, we deal with a fixed batch xN

1 of bounded real numbers xi P r$, us with mean
µ :“ 1

N

řN
i“1 xi. Our CS for µ will utilize a novel WoR mean estimator,

pµt :“
řt

i“1 Xi ` řt
i“1

1
N´i`1

ři´1
j“1 Xj

t ` řt
i“1

i´1
N´i`1

. (3.1)
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Figure 3: Beta-binomial probability mass function as a ‘prior’ on N‹
1 with different choices of (a, b),

and the resulting PPR CS for the parameter N‹
1 of a hypergeometric distribution when pN‹

1 , N
‹
2 q “

p650, 350q.

More generally, if λ1, . . . ,λN is a predictable sequence (meaning λt is Ft´1-measurable for t P
t1, . . . , Nu), then we may define the weighted WoR mean estimator,

pµtpλt
1q :“

řt
i“1 λipXi ` 1

N´i`1

ři´1
j“1 Xjq

řt
i“1 λip1 ` i´1

N´i`1 q , (3.2)

where it should be noted that if λ1 “ ¨ ¨ ¨ “ λN then pµtpλt1q recovers pµt. Past WoR works
[13, 14, 15] base their bounds on the sample average

ř
i Xi{t. Both pµt and the sample average

are conditionally biased and unconditionally unbiased (see Appendix B.2 for more details). As
frequently encountered in Hoeffding-style inequalities for bounded random variables [10], define

ψHpλq :“ λ2pu ´ #q2
8

. (3.3)

Setting MH
0 :“ 1, we introduce a new exponential Hoeffding-type process for a predictable se-

quence λN1 ,

MH
t :“ exp

#
tÿ

i“1

«
λi

˜
Xi ´ µ ` 1

N ´ i ` 1

i´1ÿ

j“1

pXj ´ µq
¸

´ ψHpλiq
ff+

. (3.4)

Theorem 3.1 (A time-uniform Hoeffding-type CS for sampling WoR). Under the observation
model and filtration pFtqNt“0 of Section 1.1, and for any predictable sequence λN1 , the process
pMH

t qNt“0 is a nonnegative supermartingale, and thus,

Pr

¨

˝Dt P rN s : µ ´ pµtpλt1q ě
řt

i“1 ψHpλiq ` logp1{αq
řt

i“1 λi
´
1 ` i´1

N´i`1

¯

˛

‚ď α.

Consequently,

CH
t :“ pµtpλt1q ˘

řt
i“1 ψHpλiq ` logp2{αq
řt

i“1 λi
´
1 ` i´1

N´i`1

¯ forms a p1 ´ αq-CS for µ.

The proof in Appendix B.2 combines ideas from the with-replacement, time-uniform extension of
Hoeffding’s inequality of Howard et al. [1, 12] with the fixed-time, without-replacement extension
of Hoeffding’s by Bardenet & Maillard [14], to yield a bound that improves on both. When λ :“
λ1 “ ¨ ¨ ¨ “ λN is a constant, the term

At :“
tÿ

i“1

i ´ 1
N ´ i ` 1

(3.5)

captures the ‘advantage’ over the classical Hoeffding’s inequality; we discuss this term more soon.
In order to use the aforementioned CS, one needs to choose a predictable λ-sequence. First, consider
the simpler case of a fixed real-valued λ :“ λ1 “ ¨ ¨ ¨λN as this will aid our intuition in choosing
a more complex λ-sequence. In this case, λ corresponds to a time t0 P rN s for which the CS is
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tightest. If the user wishes to optimize the width of the CS for time t0, then the corresponding λ to
be used is given by

λ :“
d

8 logp2{αq
t0pu ´ #q2 . (3.6)

Alternatively, if the user does not wish to commit to a single time t0, they can choose a λ-sequence
akin to (3.6) but which spreads its width optimization over time. For example, one can use the
sequence for t P t1, . . . , Nu,

λt :“
d

8 logp2{αq
t logpt ` 1qpu ´ #q2 ^ 1

u ´ #
, (3.7)

where the minimum was taken to prevent the CS width from being dominated by early terms. Note
however that any predictable λ-sequence yields a valid CS (see Appendix E for more examples).
Optimizing a real-valued λ “ λ1 “ ¨ ¨ ¨ “ λN for a particular time is in fact the typical strategy
used to obtain the tightest fixed-time (i.e. non-sequential) Chernoff-based confidence intervals (CIs)
such as those based on Hoeffding’s inequality [1, 10]. This same strategy can be used with our WoR
CSs to obtain tight fixed-time CIs for sampling WoR. Specifically, plugging (3.6) into Theorem 3.1
for a fixed sample size n P rN s, we obtain the following corollary.
Corollary 3.1 (Hoeffding-type CI for sampling WoR). For any n P rN s,

pµn ˘

b
1
2 pu ´ $q2 logp2{αq
?
n ` An{?

n
forms a p1 ´ αq CI for µ. (3.8)

Notice that the classical Hoeffding confidence interval is recovered exactly, including constants, by
dropping the An term and using the usual sample mean estimator instead of pµt. To get a sense of
how large the advantage is, note that

for small n ! N , An —
n´1ÿ

i“1

i{N — n2{N,

for large n « N , An — AN “
N´1ÿ

i“1

i

N ´ i
“

N´1ÿ

j“1

N ´ j

j
— N logN ´ pN ´ 1q.

Thus, the advantage is negligible for n “ Op
?
Nq, while it is substantial for n “ OpNq, but it is

clear that the CI of (3.8) is strictly tighter than Hoeffding’s inequality for any n.

3.2 Empirical Bernstein-type bounds
Hoeffding-type bounds like the one in Theorem 3.1 only make use of the fact that observations are
bounded, and they can be loose if only some observations are near the boundary of r$, us while the
rest are concentrated near the middle of the interval. More formally, the CS of Theorem 3.1 has the
same width whether the underlying population xN

1 has large or small variance
řN

i“1pxi ´ µq2—
thus, they are tightest when the xis equal $ or u, and they are loosest when xi « p$ ` uq{2 for all
i. As an alternative that adaptively takes a variance-like term into account [11, 17], we introduce a
sequential, WoR, empirical Bernstein CS. As is typical in empirical Bernstein bounds [1], we use a
different ‘subexponential’-type function,

ψEpλq :“ p´ logp1 ´ cλq ´ cλq{4 for any λ P r0, 1{cq
where c :“ u ´ $. ψE seems quite different from ψH , but Taylor expanding log yields ψEpλq «
c2λ2{8. Indeed,

lim
λÑ0

ψEpλq{ψHpλq “ 1. (3.9)

Note that one typically picks small λ, e.g.: set t0 “ N{2, $ “ ´1, u “ 1 in (3.6) to get λ191{
?
N .

In what follows, we derive a time-uniform empirical-Bernstein inequality for sampling WoR. Similar
to Theorem 3.1, underlying the bound is an exponential supermartingale. Set ME

0 “ 1, and recall
that c “ u ´ $ to define a novel exponential process for any r0, 1{cq-valued predictable sequence
λ1, . . .λN :

ME
t :“ exp

#
tÿ

i“1

«
λi

˜
Xi ´ µ ` 1

N ´ i ` 1

i´1ÿ

j“1

pXj ´ µq
¸

´
´ c
2

¯´2
pXi ´ pµi´1q2ψEpλiq

ff+
. (3.10)
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Theorem 3.2 (A time-uniform empirical Bernstein-type CS for sampling WoR). Under the obser-
vation model and filtration pFtqNt“0 of Section 1.1, and for any r0, 1{cq-valued predictable sequence
λN1 , the process pME

t qNt“0 is a nonnegative supermartingale, and thus,

Pr

¨

˝Dt P rN s : µ ´ pµtpλt1q ě
řt

i“1 pc{2q´2 pXi ´ pµi´1q2ψEpλiq ` logp1{αq
řt

i“1 λi
´
1 ` i´1

N´i`1

¯

˛

‚ď α.

Consequently,

CE
t :“ pµtpλt1q ˘

řt
i“1 pc{2q´2 pXi ´ pµi´1q2ψEpλiq ` logp2{αq

řt
i“1 λi

´
1 ` i´1

N´i`1

¯ forms a p1 ´ αq-CS for µ.

The proof in Appendix B.3 involves modifying the proof of Theorem 4 in Howard et al. [1] to use
our WoR versions of pµt and to include predictable values of λt.
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Figure 4: Left-most plots show the histogram of the underlying set of numbers xN
1 P r0, 1sN ,

while right-most plots compare empirical Bernstein- and Hoeffding-type CSs for µ. Specifically,
the Hoeffding and empirical Bernstein CSs use the λ-sequences in (3.7) and (3.13), respectively. As
expected, in low-variance settings (top), CE

t is superior, but in a high-variance setting (bottom), CH
t

has a slight edge.

As before one must choose a λ-sequence to use CE
t . We will again consider the case of a real-

valued λ :“ λ1 “ ¨ ¨ ¨λN to help guide our intuition on choosing a more complex λ-sequence.
Unlike earlier, we cannot optimize the width of CE

t in closed-form since ψE is less analytically
tractable. Once more, fact (3.9) comes to our rescue: substituting ψH for ψE and optimizing the
width yields an expression like (3.6):

λ‹ :“
d

2 logp2{αq
pVt

, (3.11)

where pVt :“ řt
i“1pXi ´ pµi´1q2 is a variance process. However, we cannot use this choice of λ‹

since it depends on Xt
1. Instead, we construct a predictable λ-sequence which mimics λ‹ and adapts

to the underlying variance as samples are collected. To heuristically optimize the CS for a particular
time t0, take an estimate pσ2

t´1 of the variance which only depends on Xt´1
1 , and set

λt :“
d

2 logp2{αq
pσ2
t´1t0

^ 1
2c

. (3.12)

Alternatively, to spread the CS width optimization over time as in (3.7), one can use the λ-sequence,

λt :“
d

2 logp2{αq
pσ2
t´1t logpt ` 1q ^ 1

2c
, (3.13)
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but again, any predictable sequence will suffice.
Similarly to the Hoeffding-type CS, we may instantiate the empirical Bernstein-type CS at a par-
ticular time to obtain tight CIs for sampling WoR. However, ensuring that the resulting fixed-time
CI is valid when using a data-dependent λ-sequence requires some additional care. Suppose now
that Xn

1 is a simple random sample WoR from the finite population, xN
1 P r$, usN . If we randomly

permute X1, . . . , Xn to obtain the sequence, rX1, . . . , rXn, we have recovered the observation model
of Section 1.1, and thus Theorem 3.2 applies. We choose a λ-sequence which sequentially estimates
the variance, but heuristically optimizes for the sample size n as in (3.12). For t P rns, define

rλt :“
d

2 logp2{αq
nrσ2

t´1

^ 1
2c

where rσ2
t :“ c2{4 ` řt

i“1p rXi ´ rµiq2
t ` 1

and rµt :“ 1
t

tÿ

i“1

rXi. (3.14)

Here, an extra c2{4 was added to rσ2
t so that it is defined at time 0, but this is simply a heuristic and

any other choice of rσ2
0 will suffice. The resulting CI can be summarized in the following corollary.

Corollary 3.2. Let Xn
1 be a simple random sample WoR from the finite population xN

1 and let rXn
1

be a random permutation of Xn
1 . Let rλt be a predictable sequence such as the one in (3.14) for each

t P rns. Then for any n P rN s,

pµnprλn1 q ˘
řn

i“1pc{2q´2p rXi ´ rµi´1q2ψEprλiq ` logp2{αq
řn

i“1
rλi

´
1 ` i´1

N´i`1

¯ forms a p1 ´ αq CI for µ.

The aforementioned CSs and CIs have a strong relationship with corresponding hypothesis tests. In
the following section, we discuss how one can use the techniques developed here to sequentially test
hypotheses about finite sets of nonrandom numbers.

4 Testing hypotheses about finite sets of nonrandom numbers
In classical hypothesis testing, one has access to i.i.d. data from some underlying distribution(s), and
one wishes to test some property about them; this includes sequential tests dating back to Wald [18].
However, it is not often appreciated that it is possible to test hypotheses about a finite list of numbers
that do not have any distribution attached to them. Recalling the setup of Section 1.1, this is the
nonstandard setting we find ourselves in. For instance in the same example as Figure 1, we may
wish to test:

H0 : N‹
1 ď 550 (At most 550 of the balls are green).

If we had access to each ball in advance, then we could accept or reject the null without any type-I
or type-II error, but this is tedious, and so we sequentially take samples in a random order to test
this hypothesis. The main question then is: how do we calculate a p-value Pt that we can track over
time, and stop sampling when Pt ď 0.05?
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Figure 5: The duality between anytime p-values and CSs for three null hypotheses: H0 : N‹
1 ď D

for D P t550, 600, 650u. The first null is rejected at a 5% significance level after 260 samples,
exactly when the 95% CS stops intersecting the null set r0, 550s. However, H0 : N‹

1 ď 650 is never
rejected since 650, the ground truth, is contained in the CS at all times from 0 to 1000.

Luckily, we do not need any new tools for this, and our CSs provide a straightforward answer.
Though we left it implicit, each confidence sequence Ct is really a function of confidence level α.
Consider the family tCtpqquqPp0,1q indexed by q, which we only instantiated at q “ α. Now, define

Pt :“ inftq : Ctpqq X H0 “ Hu, (4.1)
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which is the smallest error level q at which Ctpqq just excludes the null set H0. This ‘duality’ is
familiar in non-sequential settings, and in our case it yields an anytime-valid p-value [19, 1],

Under H0, PrpDt P rN s : Pt ď αq ď α for any α P r0, 1s.
In words, if the null hypothesis is true, then Pt will remain above α through the whole process, with
probability ě 1 ´ α. To more clearly bring out the duality to CSs, define the stopping time

τ :“ inftt P rN s : Pt ď αu, and we set τ “ N if the inf is not achieved.
Then under the null, τ “ N (we never stop early) with probability ě 1´α. If we do stop early, then
τ is exactly the time at which Ctpαq excluded the null set H0. The manner in which anytime-valid
p-values and CSs are connected through stopping times is demonstrated in Figure 5.
In summary, our CSs directly yield p-values (4.1) for composite null hypotheses. These p-values
can be tracked, and are valid simultaneously at all times, including at arbitrary stopping times.
Aforementioned type-I error probabilities are due to the randomness in the ordering, not in the data.
It is worth noting that our (super)martingales pRtq, pMH

t q and pME
t q also immediately yield ‘e-

values’ [20] and hence ‘safe tests’ [21], meaning that under nulls of the form in Figure 5, they
satisfy EMτ ď 1 for any stopping time τ .

5 Summary
WoR sampling and inference naturally arise in a variety of applications such as finite-population
studies and permutation-based statistical methods as outlined in Appendix A. Furthermore, sev-
eral machine learning tasks involve random samples from finite ‘populations’, such as sampling (a)
points for a stochastic gradient method, (b) covariates in a random order for coordinate descent, (c)
columns of a matrix, or (d) edges in a graph.
In order to quantify uncertainty when sequentially sampling WoR from a finite set of objects, this
paper developed three new confidence sequences: one in the discrete setting and two in the continu-
ous setting (Hoeffding, empirical-Bernstein). Their construction was enabled by the development of
new technical tools—the prior-posterior-ratio martingale, and two exponential supermartingales—
which may be of independent interest. We clarified how these can be tuned (role of ‘prior’ or
λ-sequence), and demonstrated their advantages over naive sampling with replacement. Our CSs
can be inverted to yield anytime-valid p-values to sequentially test arbitrary composite hypotheses.
Importantly, these CSs can be efficiently updated, continuously monitored, and adaptively stopped
without violating their uniform validity, thus merging theoretical rigor with practical flexibility.
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Broader impact
The main type of broader impact caused by our work is the reduction of time and money due to
the ability to continuously monitor data and hence make critical decisions early. In Appendix A,
we provide four prototypical examples of such situations. In Example A, every phone call requires
time, thus using up money as well, and if we can accurately quantify uncertainty then we can stop
collecting data sooner. In Example B, randomization tests such as those involving permutations are
a common way to quantify statistical significance, but they are computationally intensive. Knowing
when to stop, based on the test being clearly statistically significant (or clearly far from it), can save
on energy costs. In Example D, when an educational intervention is unrolled one school at a time,
there are two possibilities again: if it is clearly beneficial, we would like to recognize it quickly so
that every student can avail of the benefits, while if it is for some reason harmful (e.g. causing stress
without measurable benefit), then it would be equally important to end the program quickly. Once
more, accurately quantifying uncertainty as the process unfolds underpins the ability to make these
decisions early to disseminate benefits rapidly or mitigate harms quickly.
Our techniques are also applicable to auditing elections (checking whether the results are as an-
nounced by a manual random recount). ‘Risk-limiting audits’ [22] constitute an application area
that we intend to pursue; there are many variants depending on how voters express their preferences
(choose one, or rank all, or score all) and the aggregation mechanism used to decide on one or multi-
ple winners. Audits are not currently required by law in many elections due to high perceived effort
among other reasons, so being able to stop these audits early, yet accurately and confidently, is crit-
ical to their broad adoption. Thus, a longer-term broader impact to trust in elections is anticipated.
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