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Abstract

Finding Nash equilibria in two-player zero-sum continuous games is a central
problem in machine learning, e.g. for training both GANs and robust models. The
existence of pure Nash equilibria requires strong conditions which are not typically
met in practice. Mixed Nash equilibria exist in greater generality and may be found
using mirror descent. Yet this approach does not scale to high dimensions. To
address this limitation, we parametrize mixed strategies as mixtures of particles,
whose positions and weights are updated using gradient descent-ascent. We study
this dynamics as an interacting gradient flow over measure spaces endowed with the
Wasserstein-Fisher-Rao metric. We establish global convergence to an approximate
equilibrium for the related Langevin gradient-ascent dynamic. We prove a law of
large numbers that relates particle dynamics to mean-field dynamics. Our method
identifies mixed equilibria in high dimensions and is demonstrably effective for
training mixtures of GANs.

1 Introduction

Multi-objective optimization problems arise in many fields, from economics to civil engineering.
Tasks that require optimizing multiple objectives have also become a routine part of many agent-based
machine learning algorithms including generative adversarial networks (Goodfellow et al., 2014),
imaginative agents (Racanière et al., 2017), hierarchical reinforcement learning (Wayne and Abbott,
2014) and multi-agent reinforcement learning (Bu et al., 2008). It not only remains difficult to carry
out the necessary optimization, but also to assess the optimality of a given solution.

Multi-agent optimization is generally cast as finding equilibria in the space of strategies. The classic
notion of equilibrium is due to Nash (Nash, 1951): a Nash equilibrium is a set of agent strategies for
which no agent can unilaterally improve its loss value. Pure Nash equilibria, in which each agent
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adopts a single strategy, provide a limited notion of optimality because they exist only under restrictive
conditions. On the other hand, mixed Nash equilibria (MNE), where agents adopt a strategy from
a probability distribution over the set of all strategies, exist in much greater generality (Glicksberg,
1952). Importantly, MNE exist for games with infinite-dimensional compact strategy spaces, in which
each player observes a loss function that is continuous in its strategy. We encounter this setting in
different game formulations of machine learning problems, like GANs (Goodfellow et al., 2014).

Although MNE are guaranteed to exist, it is difficult to identify them. Indeed, worst-case complexity
analyses have shown that without additional assumptions on the losses there is no efficient algorithm
for finding a MNE, even in the case of two-player finite games (Daskalakis et al., 2009). Some recent
progress has been made; (Hsieh et al., 2019) proposed a mirror-descent algorithm with convergence
guarantees, which is approximately realizable in high-dimension.

Contributions. Following Hsieh et al. (2019), we formulate continuous two-player zero-sum games
as a multi-agent optimization problem over the space of probability measures on strategies. We
describe two gradient descent-ascent dynamics in this space, both involving a transport term.

• We show that the stationary points of a gradient ascent-descent flow with Langevin diffusion
over the space of mixed strategies are approximate MNE.

• We analyse a gradient ascent-descent dynamics that jointly updates the positions and weights
of two mixed strategies to converge to an exact MNE. This dynamics corresponds to a
gradient descent-ascent flow over the space of measures endowed with a Wasserstein-Fisher-
Rao (WFR) metric (Chizat, Peyré, et al., 2018).

• We discretize both dynamics in space and time to obtain implementable training algorithms.
We provide mean-field type consistency results on the discretization. We demonstrate
numerically how both dynamics overcome the curse of dimensionality for finding MNE on
synthetic games. On real data, we use WFR flows to train mixtures of GANs, that explicitly
discover data clusters while maintaining good performance.

2 Related work

Equilibria in continuous games. Most of the works that study convergence to equilibria in contin-
uous games or GANs do not frame the problem in the infinite-dimensional space of measures, but
on finite-dimensional spaces. That is because they either (i) restrict their attention to games with
convexity-concavity assumptions in which pure equilibria exist (Mertikopoulos et al., 2019; Lin et al.,
2018; Nouiehed et al., 2019), or (ii) provide algorithms with convergence guarantees to local notions
of equilibrium such as stable fixed points, local Nash equilibria and local minimax points (Heusel
et al., 2017; Adolphs et al., 2018; Mazumdar et al., 2019; Jin et al., 2019; Fiez et al., 2019; Balduzzi
et al., 2018). Both approaches differ from ours, which is to give global convergence guarantees
without convexity assumptions. Some works have studied approximate MNE in infinite-dimensional
measure spaces. Arora et al. (2017) proved the existence of approximate MNE and studied the
generalization properties of this approximate solution; their analysis, however, does not provide a
constructive method to identify such a solution. In a more explicit setting, Grnarova et al. (2017)
designed an online-learning algorithm for finding a MNE in GANs under the assumption that the
discriminator is a single hidden layer neural network. Balandat et al. (2016) apply the dual averaging
algorithm to the minimax problem and show that it recovers a MNE, but they do not provide any
convergence rate nor a practical algorithm for learning mixed NE. Our framework holds without
making any assumption on the architectures of the discriminator and generator and provides explicit
algorithms with some convergence guarantees.

Mean-field view of nonlinear gradient descent. Our approach is closely related to the mean-field
perspective on wide neural networks (Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Chizat
and Bach, 2018; Sirignano and Spiliopoulos, 2019; Rotskoff, Jelassi, et al., 2019). These methods
view training algorithms as approximations of Wasserstein gradient flows, which are dynamics on
measures over the space of neurons. In our setting, a mixed strategy corresponds to a measure over
the space of strategies.
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Particle approaches for two-player games. Our theoretical work sheds a new light on the results
of Hsieh et al. (2019), and rigorously justifies important algorithmic modifications the authors
introduced. Specifically, they give rates of convergence for infinite-dimensional mirror descent on
measures (i.e. updating strategy weights but not their positions). The straightforward implementation
of this algorithm performs poorly unless the dimension is low (Fig. 1), which is why they proposed
an ‘implementable‘ two-timescale version, in which the inner loop is a transport-based sampling
procedure closely related to our Algorithm 1. This implementable version is not studied theoretically,
as the two-timescale structure hinders a thorough analysis. Our analysis includes transport on equal
footing with mirror descent updates.

3 Problem setup and mean-field dynamics

Notation. For a topological space X we denote by P(X ) the space of Borel probability measures
on X , andM+(X ) the space of Borel (positive) measures. For a given measure µ ∈ P(X ) that is
absolutely continuous with respect to the canonical Borel measure dx of X and has Radon-Nikodym
derivative dµ

dx ∈ C(X ), we define its differential entropy H(µ) = −
∫

log(dµdx )dµ. For measures
µ, ν ∈ P(X ),W2 is the 2-Wasserstein distance.

3.1 Lifting differentiable games to spaces of strategy distributions

Differentiable two-player zero-sum games. We recall the definition of a differentiable zero-sum
game, and show how finding a mixed Nash equilibrium to such a game is equivalent to solving a
bi-linear game in the infinite dimensional space of distributions on strategies. We will use gradient
flow approaches for solving the lifted problem.
Definition 1. A two-player zero-sum game consists of a set of two players with parameters z =
(x, y) ∈ Z = X ×Y , where players observe a loss functions `1 : Z → R and `2 : Z → R that satisfy
for all (x, y) ∈ Z , `1(x, y) + `2(x, y) = 0. ` , `1 = −`2 is the loss of the game.

The compact finite-dimensional spaces of strategies X and Y are endowed with a certain distance
function d (which we assume Euclidean in what follows—§G.5 derives our results on arbitrary
strategy manifolds). This allows to define differentiable games, amenable to first-order optimization.
We make the following mild assumption over the regularity of losses and constraints (Glicksberg,
1952).
Assumption 1. The parameter spaces X and Y are compact Riemannian manifolds without
boundary of dimensions dx, dy embedded in RDx ,RDy respectively. The loss ` is continuously
differentiable and L-smooth with respect to each parameter. That is, for all x, x′ ∈ X and
y, y′ ∈ Y , ‖∇x`(x, y)−∇x`(x′, y′)‖2 6 L(d(x, x′) + d(y, y′)), ‖∇y`(x, y)−∇y`(x′, y′)‖2 6
L(d(x, x′) + d(y, y′)).

From pure to mixed Nash equilibria. Assuming that both players play simultaneously, a pure
Nash equilibrium point is a pair of strategies (x∗, y∗) ∈ X × Y such that, for all (x, y) ∈ X × Y ,
`(x?, y) 6 `(x?, y?) 6 `(x, y?). Such points do not always exist in continuous games. In contrast,
mixed Nash equilibria (MNE) are guaranteed to exist (Glicksberg, 1952) under Asm. 1. Those
distributions (µ?x, µ

?
y) ∈ P(X )× P(Y) are global saddle points of the expected loss L(µx, µy) ,∫∫

`(x, y)dµx(x)dµy(y). Formally, for all µx, µy ∈ P(X )× P(Y),
L(µ∗x, µy) 6 L(µ∗x, µ

∗
y) 6 L(µx, µ

∗
y). (1)

We quantify the accuracy of an estimation (µ̂x, µ̂y) of a MNE using the Nikaidô and Isoda (1955)
error

NI(µ̂x, µ̂y) = sup
µy∈P(Y)

L(µ̂x, µy)− inf
µ̂x∈P(X )

L(µx, µ̂y). (2)

We track the evolution of this metric in our theoretical results (§4.2) and in our experiments. We
obtain guarantees on finding ε-MNE (µεx, µ

ε
y), i.e. distribution pairs such that NI(µεx, µ

ε
y) 6 ε.

3.2 Training dynamics on discrete mixtures of strategies

We study three different dynamics for solving (1). Let us first assume that the two players play
finite mixtures of n strategies µx =

∑n
i=1 w

i
xδxi ∈ P(X ), µy =

∑n
i=1 w

i
yδyi ∈ P(Y), where
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Algorithm 1 Langevin Descent-Ascent (L-DA).

1: Input: IID samples x1
0, . . . , x

n
0 from µx,0 ∈ P(X ), IID samples y1

0 , . . . , y
n
0 ∈ Y from µy,0 ∈

P(Y)
2: for t = 0, . . . , T do
3: for i = 1, . . . , n do
4: Sample ∆W i

t ∼ N (0, I), xit+1 = xit − η
n

∑n
j=1∇x`(xit, y

j
t ) +

√
2ηβ−1∆W i

t

5: Sample ∆W̄ i
t ∼ N (0, I), yit+1 = yit + η

n

∑n
j=1∇y`(x

j
t , y

i
t) +

√
2ηβ−1∆W̄ i

t

6: Return µnx,T = 1
n

∑n
i=1 δxiT , µny,T = 1

n

∑n
i=1 δyiT

{xi, yi}i∈[1:n] are the positions of the strategies and wix, w
i
y > 0 are their weights. In the simplest

setting, those mixtures are assumed uniform, i.e. wix = wiy = 1/n. Finding the best 2n strategies
involve finding a saddle point of L(µx, µy) = 1

n2

∑
i

∑
j `(xi, yj). Starting from random indepen-

dent initial strategies xi0 = ξi ∼ µx,0, yi0 = ξ̄i ∼ µy,0, we may hope that the gradient descent-ascent
dynamics

dxit
dt

= − 1

n

n∑
j=1

∇x`(xit, yjt ),
dyit
dt

=
1

n

n∑
j=1

∇y`(xjt , yit), ∀i ∈ [1 : n] (3)

finds such a saddle point. Yet this may fail in simple nonconvex-nonconcave games, as illustrated in
§G.2—the particle distributions collapse to a stationary point that is not a MNE.

To mitigate this convergence problem, we analyse a perturbed dynamics analogous to Langevin
gradient descent. Using the same initialization as in (3), we add a small amount of noise in the
gradient dynamics and obtain the stochastic differential equations

dXi
t = − 1

n

n∑
j=1

∇x`(Xi
t , Y

j
t )dt+

√
2

β
dW i

t , dY
i
t =

1

n

n∑
j=1

∇y`(Xj
t , Y

i
t )dt+

√
2

β
dW̄ i

t , (4)

where W i
t , W̄

i
t are independent Brownian motions. The discretization of (4) results in Alg. 1; it is

similar to Alg. 4 in Hsieh et al. (2019).

We propose a second alternative dynamics to (3), that updates both the positions and the weights
of the particles, using relative updates for weights. We will show that it enjoys better convergence
properties in the mean-field limit.

dxit
dt

= −γ
n∑
j=1

wjy,t∇x`(xit, yjt ),
dwix,t
dt

= α

− n∑
j=1

wjy,t`(x
i
t, y

j
t ) +K(t)

wix,t (5)

and similarly for all yit (flipping the sign of `). K(t) ,
∑n
k=1

∑n
j=1 w

j
y,tw

k
x,t`(x

i
t, y

j
t ) keeps wx,t in

the simplex. We use uniform weights for initialization. When γ = 0 and α = 1, only the weights are
updated: this results in the continuous-time version of the infinite-dimensional mirror descent studied
by Hsieh et al. (2019). The Euler discretization of (5) results in Alg. 2.

3.3 Training dynamics as gradient flows on measures

The three dynamics that we have introduced at the level of particles induces dynamics on the associated
empirical probability measures. If {xit, yit}i∈[1,n] is a solution of (3), then µx(t) = 1

n

∑n
i=1 δxit and

µy(t) = 1
n

∑n
i=1 δyit are solutions of the Interacting Wasserstein Gradient Flow (IWGF) of L:{

∂tµx = ∇ · (µx∇xVx(µy, x)), µx(0) = 1
n

∑n
i=1 δxi0 ,

∂tµy = −∇ · (µy∇yVy(µx, y)), µy(0) = 1
n

∑n
i=1 δyi0 .

(6)

The derivation of (6) is provided in §G.3. We use the notation Vx(µy, x) , δL
δµx

(µx, µy)(x) =∫
`(x, y)dµy(y) for the first variations of the functional L(µx, µy). Holding µy fixed, the evolution
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Algorithm 2 Wasserstein-Fisher-Rao Descent-Ascent (WFR-DA).

1: Input: IID samples x(1)
0 , . . . , x

(n)
0 from νx,0 ∈ P(X ), IID samples y(1)

0 , . . . , y
(n)
0 from νy,0 ∈

P(Y). Initial weights: For all i ∈ [1 : n], w(i)
x = 1, w

(i)
y = 1.

2: for t = 0, . . . , T do
3: [x

(i)
t+1]ni=1 = [x

(i)
t − η

∑n
j=1 w

(i)
y,t∇x`(x(i)

t , y
(j)
t )]ni=1

4: [ŵ
(i)
x,t+1]ni=1=

[
w

(i)
x,t exp

(
−η′

∑n
j=1 w

(j)
y,t`(x

(i)
t ,y

(j)
t )
)]n
i=1

, [w
(i)
x,t+1]ni=1=[ŵ

(i)
x,t+1]ni=1/

∑n
j=1 ŵ

(j)
x,t+1

5: [y
(i)
t+1]ni=1 = [y

(i)
t + η

∑n
j=1 w

(j)
x,t∇y`(x(j)

t , y
(i)
t )]ni=1,

6: [ŵ
(i)
y,t+1]ni=1=

[
w

(i)
y,t exp

(
η′
∑n
j=1 w

(j)
x,t`(x

(j)
t ,y

(i)
t )
)]n
i=1

, [w
(i)
y,t+1]ni=1=[ŵ

(i)
y,t+1]ni=1/

∑n
j=1 ŵ

(j)
y,t+1

7: Return ν̄nx,T = 1
T+1

∑T
t=0

∑n
i=1 w

(i)
x,T δx(i)

T

, ν̄ny,T = 1
T+1

∑T
t=0

∑n
i=1 w

(i)
y,T δy(i)T

of µx is a Wasserstein gradient flow on L(·, µy) (Ambrosio et al., 2005). We interpret these PDEs in
the weak sense, i.e. equality holds when integrating measures against bounded continuous functions.

The distributions µx(t) = 1
n

∑n
i=1 δXit and µy(t) = 1

n

∑n
i=1 δY it , where {Xi, Y i}i∈[1:n] are solu-

tions of (4) follows a Entropy-Regularized Interacting Wasserstein Gradient Flow (ERIWGF):{
∂tµx = ∇x · (µx∇xVx(µy, x)) + β−1∆xµx, µx(0) = 1

n

∑n
i=1 δxi0

∂tµy = −∇y · (µy∇yVy(µx, y)) + β−1∆yµy, µy(0) = 1
n

∑n
i=1 δyi0

(7)

The derivation of (7) is provided in Lemma 10. It is a system of coupled nonlinear Fokker-Planck
equations, that are the Kolmogorov forward equations of the SDE (4). They correspond to the IWGF
of the entropy-regularized loss Lβ(µx, µy) , L(µx, µy) + β−1(H(µy)−H(µx).

Finally, if {xi, yi, wix, wiy}i∈[1:n] solve (5), then µx(t) =
∑n
i=1 w

i
x,tδxit , µy(t) =

∑n
i=1 w

i
y,tδyit

solve the Interacting Wasserstein-Fisher-Rao Gradient Flow (IWFRGF) of L:{
∂tµx = γ∇x · (µx∇xVx(µy, x))− αµx(Vx(µy, x)− L(µx, µy)), µx(0) =

∑n
i=1 w

i
x,0δxi0 ,

∂tµy = −γ∇y · (µy∇yVy(µx, y)) + αµy(Vy(µx, y)− L(µx, µy)), µy(0) =
∑n
i=1 w

i
y,0δyi0 .

(8)

The derivation of (8) is provided in App. A and Lemma 11. The Wasserstein-Fisher-Rao or Hellinger-
Kantorovich metric (Chizat, Peyré, et al., 2015; Kondratyev et al., 2016; Gallouët and Monsaingeon,
2016) is a metric on the probability spaceM+(X ) induced by a lifting to the space P(X × R+) of
the form ν 7→ µ =

∫
R+ w dν(·, w). If we keep νy fixed, the first equation in (8) is a Wasserstein-

Fisher-Rao gradient flow (slightly modified by the term αµxL(µx, µy) to constrain µx in P(X )).
The term −αµx(Vx(µy, x)−L(µx, µy)), which also arises in entropic mirror descent, allow mass to
‘teleport’ from bad strategies to better ones with finite cost by moving along the weight coordinate.
Wasserstein-Fisher-Rao gradient flows have been used by Chizat (2019), Rotskoff, Jelassi, et al.
(2019), and Liero et al. (2018) in the context of optimization.

Initialization of (6), (7) and (8) may be done with the measures µx,0 and µy,0 from which {xi0}, {yi0}
are sampled, in which case the measures µx(t) and µy(t) are not discrete and follow the mean-field
dynamics. In §4.3 we link the dynamics starting from discrete realizations to the mean-field dynamics.

4 Convergence analysis

We establish convergence results for the entropy-regularized dynamics and the WFR dynamics.

4.1 Convergence of the entropy-regularized Wasserstein dynamics

The following theorem characterizes the stationary points of the entropy-regularized dynamics.
Theorem 1. Suppose that Asm. 1 holds, that ` ∈ C2(X ×Y) and that the initial measures µx,0, µy,0
have densities in L1(X ), L1(Y). If a solution (µx(t), µy(t)) of the ERIWGF (7) converges in time, it
must converge to the point (µ̂x, µ̂y) which is the unique fixed point of the problem

ρx(x) =
1

Zx
e−β

∫
`(x,y) dµy(y), ρy(y) =

1

Zy
eβ
∫
`(x,y) dµx(x). (9)
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(µ̂x, µ̂y) is an ε-Nash equilibrium of the game given by L when β > 4
ε log

(
2 1−Vδ

Vδ
(2K`/ε− 1)

)
,

where K` := maxx,y `(x, y)−minx,y `(x, y) is the length of the range of `, δ := ε/(2Lip(`)) and
Vδ is a lower bound on the volume of a ball of radius δ in X ,Y .

The proof is in App. C. Theorem 1 characterizes the stationary points of the ERIWGF but does
not provide a guarantee of convergence in time. It implies that if the dynamics (7) converges in
time, the limit will be an ε-Nash equilibrium of L, with ε = Õ(1/β) (disregarding log factors). The
dynamics (7) correspond to a McKean-Vlasov process on the joint probability measure µx × µy.
While convergence to stationary solutions of such processes have been studied in the Euclidean case
(Eberle et al., 2019)l, their results would only guarantee convergence for temperatures β−1 & Lip(`)
in our setup, which is not strong enough to certify convergence to arbitrary ε-NE.

There is a trade-off between setting a low temperature β−1, which yields an ε-Nash equilibrium with
small ε but possibly slow or no convergence, and setting a high temperature, which has the opposite
effect. Linear potential Fokker-Planck equations (that we recover when both players are decoupled)
indeed converge exponentially with rate e−λβt for all β, with λβ decreasing exponentially with β for
nonconvex potentials (Markowich and Villani, 1999, sec. 5). Entropic regularization also biases the
dynamics towards measures with full support and hence precludes convergence to sparse equilibria
even if they exist. This problem does not arise in the WFR dynamics.

4.2 Analysis of the Wasserstein-Fisher-Rao dynamics

Theorem 2 states that, at a certain time t0, the time averaged measures of the solution (νx, νy) of (8)
are an ε-MNE, where ε can be made arbitrarily small by adjusting the constants γ, α of the dynamics.
We define ν̄x(t) = 1

t

∫ t
0
νx(s) ds and ν̄y(t) = 1

t

∫ t
0
νy(s) ds, where νx and νy are solutions of (8).

Theorem 2. Let ε > 0 arbitrary. Suppose that νx,0, νy,0 are such that their Radon-Nikodym
derivatives with respect to the Borel measures ofX ,Y are lower-bounded by e−K

′
x , e−K

′
y respectively.

For any δ ∈ (0, 1/2), there exists a constant Cδ,X ,Y,K′x,K′y > 0 depending on the dimensions of X ,Y ,

their curvatures and K ′x,K
′
y , such that if γ/α < 1, γα 6

(
ε/Cδ,X ,Y,K′x,K′y

) 2
1−δ

NI(ν̄x(t0), ν̄y(t0)) 6 ε where t0 = (αγ)−1/2.

The proof (App. D) builds on the convergence properties of continuous-time mirror descent and closely
follows the proof of Theorem 3.8 from Chizat (2019). We explicit the dependency of Cδ,X ,Y,K′x,K′y
on the dimensions of the manifolds and the properties of the loss `. Notice that Theorem 2 ensures
convergence towards an ε-Nash equilibrium of the non-regularized game. Following Chizat (2019),
it is possible to replace the regularity assumption on the initial measures νx,0, νy,0 by a singular
initialisation, at the expense of using O(exp(d)) particles. This result is not a convergence result for
the measures, but rather on the value of the NI error. Notice that it involves time-averaging and a
finite horizon. Similar results are common for mirror descent in convex games (Juditsky et al., 2011),
albeit in the discrete-time setting.

Theorem 2 does not capture the benefits of transport, as it regards it as a perturbation of mirror descent
(which corresponds to γ = 0). When targetting a small error ε, we need to set γ � α because of the
bound on γ/α. In this case, mirror descent is the main driver of the dynamics. However, it is seen
empirically that taking much higher ratios γ/α (i.e. increasing the importance of the transport term)
results in better performance. A satisfying explanation of this phenomenon is still sought after in the
simpler optimization setting (Chizat, 2019).

4.3 Convergence to mean-field

The following theorem (proof in App. F) links the empirical measures of the systems (4), (5) to the
solutions of the mean field dynamics (7) and (8) respectively. It can be seen as a law of large numbers.
It shows that by Theorem 3, Alg. 1 and Alg. 2 approximate the mean-field dynamics studied in §4.1
and §4.2.

Theorem 3. (i) Let µnx = 1
n

∑n
i=1 δX(i) ∈ C([0, T ],P(X )), µny = 1

n

∑n
i=1 δY (i) ∈ C([0, T ],P(Y))

be the empirical measures of a solution of (4) up to an arbitrary time T . Let µx ∈

6



1 2 4 8 16 32
−10

−5

0

5

L
og

N
I

er
ro

r

Dimen°

50x2 particles 100x2 particles
Langevin DA Mirror DA WFR DA

1 2 4 8 16 32

Figure 1: Nikaido-Isoida errors for L-DA,
WFR-DA and mirror descent, as a function
of the problem dimension, for a noncon-
vex loss `a (left) and convex loss `b (right).
L-DA and WFR-DA outperforms mirror de-
scent for large dimensions. Values averaged
over 20 runs after 30000 iterations. Error
bars show standard deviation across runs.

103 104

5.0

7.5

10.0

12.5

15.0

-
L

og
-l

ik
el

ih
o

o
d

Total G. iter

Deep (overfitting)
networks

1G 1D

3G 3D

5G 5D

103 104

5.0

7.5

10.0

12.5

15.0

-
L

og
-l

ik
el

ih
o

o
d

Total G. iter

Shallow (underfitting)
networks

1G 1D

3G 3D

5G 5D

Multi G, multi D Single G, single D

True G0 G1 G2 G3 G4
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parametrized models. Mixtures naturally perform a form of clustering of the data. Errors bars show
variance across 5 runs.

C([0, T ],P(X )), µy ∈ C([0, T ],P(Y)) be a solution of the ERIWGF (7) with mean-field initial
conditions µx(0) = µx,0, µy(0) = µy,0. Then,

E[W2
2 (µnx,t, µx,t) +W2

2 (µny,t, µy,t)]
n→∞−−−−→ 0, E[|NI(µnx,t, µ

n
y,t)− NI(µx,t, µy,t)|] n→∞−−−−→ 0,

uniformly over t ∈ [0, T ]. NI is the Nikaido-Isoda error defined in (2).

(ii) Let νnx =
∑n
i=1 w

i
x,tδX(i) ∈ C([0, T ],P(X )), µny =

∑n
i=1 w

i
y,tδY (i) ∈ C([0, T ],P(Y))

be the (projected) empirical measures of a solution of (5) up to an arbitrary time T . Let
νx ∈ C([0, T ],P(X )), νy ∈ C([0, T ],P(Y)) be a solution of (8) with mean-field initial conditions
µx(0) = µx,0, µy(0) = µy,0. Then,

E[W2
2 (νnx,t, νx,t) +W2

2 (νny,t, νy,t)]
n→∞−−−−→ 0, E[|NI(ν̄nx,t, ν̄

n
y,t)− NI(ν̄x,t, ν̄y,t)|] n→∞−−−−→ 0,

uniformly over t ∈ [0, T ]. ν̄x,t, ν̄y,t, ν̄nx,t, ν̄
n
y,t are the time-averaged measures, as in Theorem 2.

5 Numerical Experiments

We show that WFR and Langevin dynamics outperform mirror descent in high dimension, on synthetic
games. We then show the interests of using WFR-DA for training GANs. Code has been made
available for reproducibility.

0.2 0.4 0.6 0.8 1.0
20

30

40

50

60

F
ID

G. Iter

×105

1G 1D

5G 1D W

5G 2D W

5G 2D WFR

G0 G1 G2

G3 G4

Fake CIFAR10
WFR flow on

5 gen. 2 discr.

G0

MNIST images, WFR, 2 gen. 2 discr.

G1

Figure 3: Training mixtures of GANs over CIFAR10. We compare the algorithm that updates the
mixture weights and parameters (WFR-DA flow) with the algorithm that only updates parameters
(W-DA flow). Using several discriminators and a WFR-DA flow brings more stable convergence.
Each generator tends to specialize in a type of images. Errors bars show variance across 5 runs.
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5.1 Polynomial games on spheres

We study two different games with losses `a, `b : Sd−1 × Sd−1 → R of the form

`a(x, y) = x>A0x+ x>A1y + y>A2y + y>A3(x2) + a>0 x+ a>1 y

`b(x, y) = x>A>0 A0x+ x>A1y + y>A>2 A2y + a>0 x+ a>1 y,

where A0, A1, A2, A3, a0, a1 are matrices and vectors with components sampled from a normal
distributionN (0, 1), and x2 is the vector given by component-wise multiplication of x. `b is a convex
loss on the sphere, while `a is not. We run Langevin Descent-Ascent (updates of positions) and WFR
Descent-Ascent (updates of weights and positions), and compare it with mirror descent (updates of
weights).We note that the computation of the NI error (2) entails solving two optimization problems
on measures, or equivalently in parameter space. We solve each of them by performing 2000 gradient
acsent runs with random uniform initialization and selecting the highed minimum final value. This
gives a lower bound on the NI error which is precise enough for our purposes. We perform time
averaging on the weights of mirror descent and WFR-DA, but not on the positions of WFR-DA
because that would incur an O(t) overhead on memory.

Results. Wirror descent performs like WFR-DA in low dimensions, but suffers strongly from the
curse of dimensionality (Fig. 1). On the other hand, algorithms that incorporate a transport term keep
performing well in high dimensions. In particular, WFR-DA is consistently the algorithm with lowest
NI error. Notice that the errors in the n = 50 and n = 100 plots do not differ much, confirming that
we reach a mean-field regime.

5.2 Training GAN mixtures

We now use WFR-DA to train mixtures of generator networks. We consider the Wasserstein-GAN
(Arjovsky et al., 2017) setting. We seek to approximate a distribution Pdata with a distribution Gx,
defined as the push-forward of a noise distribution N (0, I) by a neural-network gx. The discrepancy
between Pdata and Gx is estimated by a neural-network discriminator fy , leading to the problem

min
x

max
y

`(x, y) , Ea∼pdata [fy(a)]− Eε∼N (0,I)[fy(gx(ε))].

We lift this problem in the space of distributions over the parameters x and y (see §G.4), that we
represent through weighted discrete distributions of

∑p
i=1 w

(i)
x δx(i) and

∑q
j=1 w

(j)
y δy(j) . We solve

min
x(i),wx∈4p

max
y(j),wy∈4q

p∑
i=1

q∑
j=1

w(i)
x w(j)

y `(x(i), y(j)) ,

using Alg. 2, where4q is the q-dimensional simplex. The optimal generation strategy corresponding
to an equilibrium point (x(i))i, wx, (y

(j))j , wy is then to randomly select a generator gxI with I
sampled among [n] with probability w(i)

x , and use it to generate gxI (ε), with ε ∼ N (0, I). Training
mixtures of generators has been proposed by Ghosh et al. (2018), with a tweaked discriminator loss.
Our formulation only involves a lifting in the space of measures, and uses a new training algorithm.

Results on 2D GMMs. We first set Pdata to be an 8-mode mixture of Gaussians in two dimensions.
We use the original W-GAN loss, with weight cropping for the discriminators (fy(j))j . We measure
the interest of using mixtures when a single generator gx(i) cannot fit Pdata (single-layer MLP),
and when it can (4-layer MLP). We report results in Fig. 2, measuring the log likelihood of Gx for
the GMM during training. The WFR dynamic is stable even with few particles. When training
under-parametrized generators, using mixtures permits faster convergence (in terms of generator
updates). In the over-parametrized setting, training a single generator or a mixture of generators
perform similarly. WFR-DA is thus useful to train mixtures of simple generators. In this setting, each
simple generator identifies modes in the training data, doing data clustering at no cost (Fig. 2 right).

Results on real data. We train a mixture of ResNet generators on CIFAR10 and MNIST. We
replace the position updates in Alg. 2 by extrapolated Adam steps (Gidel et al., 2019) to achieve faster
convergence, and perform grid search over generator and discriminators learning rates. Convergence
curves for the best learning rates are displayed in Fig. 3 right, measuring test FID (Heusel et al.,
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2017). With a sufficient number of generators and discriminators (G > 5, D > 2), the model trains
as fast as a normal GAN. WFR-DA is thus stable and efficient even with a reasonable number of
particles. Using the discretized WFR versus the Wasserstein flow provides a slight improvement
over updating parameters only. As with GMMs, each generator trained with WFR-DA becomes
specialised in generating a fraction of the target data, thereby identifying clusters. Those could be
used for unsupervised conditional generation of images.

6 Conclusions and future work

We have explored non-convex-non-concave, high-dimensional games from the perspective of optimal
transport. As with non-convex optimization, framing the problem in terms of measures provides
geometric benefits, at the expense of moving into non-Euclidean metric spaces over measures. Our
theoretical results establish approximate mean-field convergence for two setups: Langevin Descent-
Ascent and WFR D-A, and directly applies to GANs, for mixtures of generators and discriminators.

Despite the positive convergence guarantees our results are qualitative in nature, i.e. without rates.
In the entropic case, the unfavorable tradeoff between temperature and convergence of the associ-
ated McKean-Vlasov scheme deserves further study, maybe through log-Sobolev-type inequalities
(Markowich and Villani, 1999). In the WFR case, we lack a local convergence analysis explaining
the benefits of transport observed empirically, perhaps leveraging sharpness Polyak-Łojasiewicz
results such as those in (Chizat, 2019) or (Sanjabi et al., 2018). Finally, in our GAN formulation,
each generator is associated to a single particle in a high-dimensional product space of all network
parameters, which is not scalable to large population sizes that would approximate their mean-field
limit. A natural question is to understand to what extent our framework could be combined with
specific choices of architecture, as recently studied in (Lei et al., 2019).
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Broader impact

We study algorithms designed to find equilibria in games, provide theoretical guarantees of conver-
gence and test their performance empirically. Among other applications, our results give insight into
training algorithms for generative adversarial networks (GANs), which are useful for many relevant
tasks such as image generation, image-to-image or text-to-image translation and video prediction.
As always, we note that machine learning improvements like ours come in the form of “building
machines to do X better”. For a sufficiently malicious or ill-informed choice of X, such as surveillance
or recidivism prediction, almost any progress in machine learning might indirectly lead to a negative
outcome, and our work is not excluded from that.
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