Latent Template Induction with Gumbel-CRFs
Appendix

A PM-MRF

As noted in the main paper, the baseline estimator PM-MREF also involve in-depth exploitation of the
structure of models and gradients, thus being quite competitive. Here we give a detailed discussion.

Papandreou and Yuille [4] proposed the Perturb-and-MAP Random Field, an efficient sampling
method for general Markov Random Field. Specifically, they propose to use the Gumbel noise to
perturb each local potential ®; of an MRF, then run a MAP algorithm (if applicable) on the perturbed
MREF to get a MAP 2. This MAP 2 from the perturbed ® can be viewed as a biased sample from the
original MRF. This method is much faster than the MCMC sampler when an efficient MAP algorithm
exists. Applying to a CRF, this would mean adding noise to its potential at every step, then run
Viterbi:

D(zy =i, 241, 2t D(z,x-1,2¢) + 9,9 ~G(0) forall ¢, (1a)

) =
% = Viterbi(®) (1b)

However, when tracing back along the Viterbi path, we still get 2 as a sequence of index. For
continuous relaxation, we would like to relax Z; to be relaxed one-hot, instead of index. One natural
choice is to use the Softmax function. The relaxed back-tracking algorithm is listed in Algorithm 1]
In our experiments, for the PM-MRF estimator, we use z for both forward and back-propagation. For
the PM-MREF-ST estimator, we use 2 for the forward pass, and Z for the back-propagation pass.

It is easy to verify the PM-MRF is a biased sampler by checking the sample probability of the first
step 21. With the PM-MRE, the biased z; is essentially from a categorical distribution parameterized
by 7 where:

logm; = log ®(21 = i, 21) 2
With forward-sampling, however, the unbiased z; should be from the marginal distribution where:
log m; = log 51(i) # log (21 = 4, 21) 3)

Where 3 denote the backward variable from the backward algorithm [5]. The inequality in equation
[3shows that PM-MREF gives biased sample.

B Theoretical Comparison of Gradient Structures

We compare the detailed structure of gradients of each estimator. We denote f(21.,, 21.n) =
log po(x1:m, 21:n). We use 2 to denote unbiased hard sample, Z to denote soft sample coupled with Z,
% to denote biased hard sample from the PM-MREF, Z’ to denote soft sample coupled with 2’ output
by the relaxed Viterbi algorithm. We use ws.,, to denote the “emission” weights of the CRF. The
gradients of all estimators are:

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Algorithm 1 Viterbi with Relaxed Back-tracking

: Input: ®(z¢—1,2¢, ), t € {1,..,T}

2 51(1) = log (i, 1)

: fort < 2,7 do

s¢(i) = max;{si—1(j) + log@(z3,1 =j,ze =1,24¢)}

bi (i) = Softmax;(si—1(j) + log ®(ze—1 = j, 2¢ = i, 24))
: end for

: Back-tracking:

. Zp = Softmax(st)

: Zr = Argmax(sr (7))

10: fort < T —1,1do

11: 241 = Argmax, (Z441(7))
12: Ze = beg1(Ze41)
13: end for

14: Return 2, Z

Vo LrENFORCE & Y f(#1m, £1:n) - Vo l0g g (51211, ) “)
reward term stepwise term
V 4 LGumbel-CRE-ST ~ Z Vi f(@1m, 21:0) © VeZe(Zig1, Wi, €) )
pathwise term stepwise term
V¢£PM-MRF-ST ~ Z Vz;f(fvlzm éi:n) O] V¢Zé(2£+1, W1:n, Et) (6)
pathwise term stepwise term

In equation @ we decompose ¢(z|x) with its markovian property, leading to a summation over the
chain where the same reward f is distributed to all steps. Equations[5]and[6|use the chain rule to get
the gradients. Vz, f(x1.n, 21.,) denotes the gradient of f evaluated on hard sample 2;.,, and taken
w.r.t. soft sample Z,. V42 (%¢41, W1.m, €;) denotes the Jacobian matrix of Z, (note Z; is a vector)
taken w.r.t. the parameter ¢ (note ¢ is also a vector, so taking gradients of z; w.r.t. ¢ gives a Jacobian
matrix). Consequently © is a special vector-matrix summation which result in a vector (note this is
different with equation since the later is a scalar-vector product). We further use Z;(2;11, W1, €)
to denote that 2; is a function of the previous hard sample Z;, ;, all CRF weights wj.,, and the local
Gumbel noise €;. Similar notation applies to equation 6]

All gradients are formed as a summation over the steps. Inside the summation is a scalar-vector
product or a vector-matrix product. The REINFORCE estimator can be decomposed with a reward
term and a “stepwise” term, where the stepwise term comes from the “transition” probability. The
Gumbel-CRF and PM-MRF estimator can be decomposed with a pathwise term, where we take
gradient of f w.r.t. each sample step Z; or Z;, and a “stepwise” term where we take Jacobian w.r.t. ¢.

To compare the three estimators, we see that:
o Using hard sample 2. like REINFORCE, Gumbel-CRF-ST use hard sample 2 for the forward
pass, as indicated by the term f(z1.n,, 21.1,)
— The advantage of using the hard sample is that one can use it to best explore the search space of
the inference network, i.e. to search effective latent codes using Monte Carlo samples.
— Gumbel-CRF-ST perserves the same advantage as REINFORCE, while PM-MRF-ST cannot
fully search the space because its sample 2’ is biased.
e Coupled sample path. The soft sample z; of Gumbel-CRF-ST is based on the hard, exact sample
path 2,41, as indicated by the term Z; (2411, W1, € ).
— The coupling of hard Z and soft 2 is ensured by our Gumbelized FFBS algorithm by applying
gumbel noise ¢, to each transitional distribution Z; = Softmax(log ¢(z¢|Zi+1, ) + €).
— Consequently, we can recover the hard sample with the Argmax function 2; = Argmax(Z;).
— This property allows us the use continuous relaxation to allow pathwise gradients
V2t (2141, W1n, €) Without losing the advantage of using hard exact sample 2.



— PM-MREF with relaxed Viterbi also has this advantage of continuous relaxation, as shown by the
term V4 Z; (2,1, W1.n, € ), but it does not have the advantage of using unbiased sample since
Z;, 1 is biased.

¢ “Fine-grained” gradients. The stepwise term V 4 log ¢4 (2|21, ) in the REINFORCE estima-
tor is scaled by the same reward term f(1.y,, £1.,), While the stepwise term V 42, (241, W1, €;)

in the rest two estimators are summed with different pathwise terms Vs, f (1., 21.n)-

— To make REINFORCE achieve similar “fine-grained” gradients for each steps, the reward
function (generative model) f must exhibit certain structures that make it decomposible. This is
not always possible, and one always need to manually derive such decomposition.

— The fine-grained gradients of Gumbel-CRF is agnostic with the structure of the generative model.
No matter what f is, the gradients decompose automatically with AutoDiff libraries.

C Experiment Details

C.1 Data Processing

For the E2E dataset, we follow similar processing pipeline as Wiseman et al. [6]]. Specifically,
given the key-value pairs and the sentences, we substitute each value token in the sentence with its
corresponding key token. For the MSCOCO dataset, we follow similar processing pipeline as Fu et al.
[1]]. Since the official test set is not publically available, we use the same training/ validation/ test
split as Fu et al. [1]. We are unable to find the implementation of Liu et al. [3]], thus not sure their
exact data processing pipeline, making our results of unsupervised paraphrase generation not strictly
comparable with theirs. However, we have tested different split of the validation dataset, and the
validation performance does not change significantly with the split. This indicates that although not
strictly comparable, we can assume their testing set is just another random split, and their performance
should not change much under our split.

C.2 Model Architecture

For the inference model, we use a bi-directional LSTM to predict the CRF emission potentials. The
dropout ratio is 0.2. The number of latent state of the CRF is 50. The decoder is a uni-directional
LSTM model. We perform attention to the BOW, and also let the decoder to copy [2] from the
BOW. For text modeling and data-to-text, we set the number of LSTM layers to 1 (both encoder
and decoder), and the hidden state size to 300. This setting is comparable to [6]. For paraphrase
generation, we set the number of LSTM layers (both encoder and decoder) to 2, and the hidden state
size to 500. This setting is comparable to [1]. The embedding size for the words and the latent state
is the same as the hidden state size in both two settings.

C.3 Hyperparameters, Training and Evaluation Details

Hyperparameters For the score function estimators, we conduct more than 40 different runs
searching for the best hyperparameter and architecture, and choose the best model according to the
validation performance. The hyperparameters we searched include: (a). number of MC sample (3,
5) (b). value of the constant baseline (0, 0.1, 1.0) (c). 3 value (5 x 10=6,10=%,1073) (d). scaling
factor of the surrogate loss of the score function estimator (1, 102, 10%). For the reparameterized
estimators, we conduct more than 20 different runs for architecture and hyperparameter search.
The hyperparameters we searched include: (a). the template in Softmax (1.0, 0.01) (b). 3 value
(5 x 107%,1074,1073). Other parameter/ architecture we consider include: (a). number of latent
states (10, 20, 25, 50) (b). use/ not use the copy mechanism (c). dropout ratio (d). different word
drop schedule. Although we considered a large range of hyperparameters, we have not tested all
combinations. For the settings we have tested, all settings are repeated 2 times to check the sensitivity
under different random initialization. If we find a hyperparameter setting is sensitive to initialization,
we run this setting 2 more times and choose the best.

Training We find out the convergence of score-function estimators are generally less stable than
the reparameterized estimators, they are: (a). more sensitive to random initialization (b). more prone
to converging to a collapsed posterior. For the reparameterized estimators, the ST versions generally
converge faster than the original versions.



References

[1] Yao Fu, Yansong Feng, and John P. Cunningham. Paraphrase generation with latent bag of words.
In NeurIPS, 2019.

[2] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint arXiv:1603.06393,2016.

[3] Xianggen Liu, Lili Mou, Fandong Meng, Hao Zhou, Jie Zhou, and Sen Song. Unsupervised
paraphrasing by simulated annealing. ArXiv, abs/1909.03588, 2019.

[4] George Papandreou and Alan L Yuille. Perturb-and-map random fields: Using discrete optimiza-
tion to learn and sample from energy models. In 2011 International Conference on Computer
Vision, pages 193-200. IEEE, 2011.

[5] Charles Sutton, Andrew McCallum, et al. An introduction to conditional random fields. Founda-
tions and Trends®) in Machine Learning, 4(4):267-373, 2012.

[6] Sam Wiseman, Stuart M Shieber, and Alexander M Rush. Learning neural templates for text
generation. arXiv preprint arXiv:1808.10122, 2018.



	PM-MRF
	Theoretical Comparison of Gradient Structures
	Experiment Details
	Data Processing
	Model Architecture
	Hyperparameters, Training and Evaluation Details


