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Abstract

Neural architecture search (NAS) has been extensively studied in the past few years.
A popular approach is to represent each neural architecture in the search space as
a directed acyclic graph (DAG), and then search over all DAGs by encoding the
adjacency matrix and list of operations as a set of hyperparameters. Recent work
has demonstrated that even small changes to the way each architecture is encoded
can have a significant effect on the performance of NAS algorithms [22, 24].
In this work, we present the first formal study on the effect of architecture encodings
for NAS, including a theoretical grounding and an empirical study. First we
formally define architecture encodings and give a theoretical characterization on
the scalability of the encodings we study. Then we identify the main encoding-
dependent subroutines which NAS algorithms employ, running experiments to show
which encodings work best with each subroutine for many popular algorithms. The
experiments act as an ablation study for prior work, disentangling the algorithmic
and encoding-based contributions, as well as a guideline for future work. Our
results demonstrate that NAS encodings are an important design decision which
can have a significant impact on overall performance.1

1 Introduction

In the past few years, the field of neural architecture search (NAS) has seen a steep rise in interest [2],
due to the promise of automatically designing specialized neural architectures for any given prob-
lem. Techniques for NAS span evolutionary search, Bayesian optimization, reinforcement learning,
gradient-based methods, and neural predictor methods. Many NAS instantiations can be described by
the optimization problem mina∈A f(a), where A denotes a large set of neural architectures, and f(a)
denotes the objective function of interest for a, which is usually a combination of validation accuracy,
latency, or number of parameters. A popular approach is to describe each neural architecture a as a
labeled directed acyclic graph (DAG), where each node or edge represents an operation.

Due to the complexity of DAG structures and the large size of the space, neural architecture search
is typically a highly non-convex, challenging optimization problem. A natural consideration when
designing a NAS algorithm is therefore, how should we encode the neural architectures to maximize
performance? For example, NAS algorithms may involve manipulating or perturbing architectures, or
training a model to predict the accuracy of a given architecture; as a consequence, the representation

1See the full-length paper here: https://arxiv.org/abs/2007.04965. Our code is available at https:
//github.com/naszilla/naszilla.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://arxiv.org/abs/2007.04965
https://github.com/naszilla/naszilla
https://github.com/naszilla/naszilla


of the DAG-based architectures may significantly change the outcome of these subroutines. The
majority of prior work has not explicitly considered this question, opting to use a standard encoding
consisting of the adjacency matrix of the DAG along with a list of the operations. Two recent papers
have shown that even small changes to the architecture encoding can make a substantial difference
in the final performance of the NAS algorithm [22, 24]. It is not obvious how to formally define an
encoding for NAS, as prior work defines encodings in different ways, inadvertently using encodings
which are incompatible with other NAS algorithms.

In this work, we provide the first formal study on NAS encoding schemes, including a theoretical
grounding as well as a set of experimental results. We define an encoding as a multi-function from
an architecture to a real-valued tensor. We define a number of common encodings from prior work,
identifying adjacency matrix-based encodings [26, 24, 21] and path-based encodings [22, 20, 18]
as two main paradigms. Adjacency matrix approaches represent the architecture as a list of edges
and operations, while path-based approaches represent the architecture as a set of paths from the
input to the output. We theoretically characterize the scalability of each encoding by quantifying
the information loss from truncation. This characterization is particularly interesting for path-based
encodings, which we find to exhibit a phase change at rk/n, where r is the number of possible
operations, n is the number of nodes, and k is the expected number of edges. In particular, we show
that when the size of the path encoding is greater than r2k/n, barely any information is lost, but below
rk/(2n), nearly all information is lost. We empirically verify these findings.

Next, we identify three major encoding-dependent subroutines used in NAS algorithms: sample
random architecture, perturb architecture, and train predictor model. We show which of the
encodings perform best for each subroutine by testing each encoding within each subroutine for many
popular NAS algorithms. Our experiments retroactively provide an ablation study for prior work by
disentangling the algorithmic contributions from the encoding-based contributions. We also test the
ability of a neural predictor to generalize to new search spaces, using a given encoding. Finally, for
encodings in which multiple architectures can map to the same encoding, we evaluate the average
standard deviation of accuracies for the equivalence class of architectures defined by each encoding.

Overall, our results show that NAS encodings are an important design decision which must be taken
into account not only at the algorithmic level, but at the subroutine level, and which can have a
significant impact on the final performance. Based on our results, we lay out recommendations for
which encodings to use within each NAS subroutine. Our experimental results follow the guidelines
in the recently released NAS research checklist [9]. In particular, we experiment on two popular NAS
benchmark datasets, and we release our code.

Our contributions. We summarize our main contributions below.

• We demonstrate that the choice of encoding is an important, nontrivial question that should be
considered not only at the algorithmic level, but at the subroutine level.
• We give a theoretical grounding for NAS encodings, including a characterization of the scalability

of each encoding.
• We give an experimental study of architecture encodings for NAS algorithms, disentangling the

algorithmic contributions from the encoding-based contributions of prior work, and laying out
recommendations for best encodings to use in different settings as guidance for future work.

2 Related Work

Neural architecture search. NAS has been studied for at least two decades and has received
significant attention in recent years [7, 15, 26]. Some of the most popular techniques for NAS include
evolutionary algorithms [11], reinforcement learning [12, 19], Bayesian optimization [6], gradient
descent [10], neural predictors [21], and local search [23]. Recent papers have highlighted the need
for fair and reproducible NAS comparisons [8, 24, 9]. See the recent survey [2] for more information
on NAS research.

Encoding schemes. Most prior NAS work has used the adjacency matrix encoding, [26, 24, 10],
which consists of the adjacency matrix together with a list of the operations on each node. A
continuous-valued variant has been shown to be more effective for some NAS algorithms [24]. The
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Figure 2.1: (a) An example neural architecture a. (b) An adjacency matrix representation of a,
showing two encodings. (c) A path-based representation of a, showing two encodings.

path encoding is a popular choice for neural predictor methods [22, 20, 18], and it was shown that
truncating the path encoding leads to a small information loss [22].

Some prior work uses graph convolutional networks (GCN) as a subroutine in NAS [14, 25], which
requires retraining for each new dataset or search space. Other work has used intermediate encodings
to reduce the complexity of the DAG [16, 4], or added summary statistics to the encoding of
feedforward networks [17]. To the best of our knowledge, no paper has conducted a formal study of
encodings involving more than two encodings.

3 Encodings for NAS

We denote a set of neural architectures a by A (called a search space), and we define an objective
function ` : A→ R, where `(a) is typically a combination of the accuracy and the model complexity.
We define a neural architecture encoding as an integer d and a multifunction e : A→ Rd from a set
of neural architectures A to a d-dimensional Euclidean space Rd, and we define a NAS algorithm
A as a procedure which takes as input a triple (A, `, e), and outputs an architecture a, with the goal
that `(a) is as close to maxa∈A `(a) as possible. Based on this definition, we consider an encoding e
to be a fixed transformation, independent of `. In particular, NAS components that use ` to learn a
transformation of an input architecture such as graph convolutional networks (GCN) or variational
autoencoders (VAE), are considered part of the NAS algorithm rather than the encoding. This is
consistent with prior definitions of encodings [18, 24]. However, we do still experimentally compare
the fixed encodings with GCNs and VAEs in Section 4.

We define eight encodings split into two popular paradigms: adjacency matrix-based and path-based
encodings. We assume that each architecture is represented by a DAG with at most n nodes, at
most k edges, at most P paths from input to output, and q choices of operations on each node.
We focus on the case where nodes represent operations, though our analysis extends similarly to
formulations where edges represent operations. Most of the following encodings have been defined
in prior work [24, 22, 18], and we will see in the next section that each encoding is useful for some
part of the NAS pipeline.

Adjacency matrix encodings. We first consider a class of encodings that are based on representa-
tions of the adjacency matrix. These are the most common types of encodings used in current NAS
research.

• The one-hot adjacency matrix encoding is created by row-major vectorizing (i.e. flattening)
the architecture adjacency matrix and concatenating it with a list of node operation labels.
Each position in the operation list is a single integer-valued feature, where each operation is
denoted by a different integer. The total dimension is n(n− 1)/2 + n. See Figure 2.1.

• In the categorical adjacency matrix encoding, the adjacency matrix is first flattened (similar
to the one-hot encoding described previously), and is then defined as a list of the indices
each of which specifies one of the n(n− 1)/2 possible edges in the adjacency matrix. To
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Figure 3.1: (a) An example of three architectures that map to the same path encoding. (b) An example
of two adjacency matrices that map to the same architecture.

ensure a fixed length encoding, each architecture is represented by k features, where k is the
maximum number of possible edges. We again concatenate this representation with a list of
operations, yielding a total dimensionality of k + n. See Figure 2.1.

• Finally, the continuous adjacency matrix encoding is similar to the one-hot encoding, but
each of the features for each edge can take on any real value in [0, 1], rather than just {0, 1}.
We also add a feature representing the number of edges, 1 ≤ K ≤ k. The list of operations
is encoded the same way as before. The architecture is created by choosing the K edges
with the largest continuous features. The dimension is n(n− 1)/2 + n+ 1.

The disadvantage of adjacency matrix-based encodings is that nodes are arbitrarily assigned indices
in the matrix, which means one architecture can have many different representations (in other words,
e−1 is not one-to-one). See Figure 3.1 (b).

Path-based encodings. Path-based encodings are representations of a neural architecture that are
based on the set of paths from input to output that are present within the architecture DAG.

• The one-hot path encoding is created by giving a binary feature to each possible path from
the input node to the output node in the DAG (for example: input–conv1x1–maxpool3x3–
output). See Figure 2.1. The total dimension is

∑n
i=0 q

i = (qn+1 − 1)/(q − 1). The
truncated one-hot path encoding, simply truncates this encoding to only include paths of
length x. The new dimension is

∑x
i=0 q

i.
• The categorical path encoding, is defined as a list of indices each of which specifies one of

the
∑n

i=0 q
i possible paths. See Figure 2.1.

• The continuous path encoding consists of a real-valued feature [0, 1] for each potential path,
as well as a feature representing the number of paths. Just like the one-hot path encoding,
the continuous path encoding can be truncated.

Path-based encodings have the advantage that nodes are not arbitrarily assigned indices, and also
that isomorphisms are automatically mapped to the same encoding. Path-based encodings have the
disadvantage that different architectures can map to the same encoding (e is not one-to-one). See
Figure 3.1 (c).

3.1 The scalability of encodings

In this section, we discuss the scalability of the NAS encodings with respect to architecture size. We
focus on the one-hot variants of the encodings, but our analysis extends to all encodings. We show
that the path encoding can be truncated significantly while maintaining its performance, while the
adjacency matrix cannot be truncated at all without sacrificing performance, and we back up our
theoretical results with experimental observations in the next section. In prior work, the one-hot path
encoding has been shown to be effective on smaller benchmark NAS datasets [20, 22], but it has
been questioned whether its exponential Θ(qn) length allows it to perform well on very large search
spaces [18]. However, a counter-arguement is as follows. The vast majority of features correspond to
single line paths using the full set of nodes. This type of architecture is not common during NAS
algorithms, nor is it likely to be effective in real applications. Prior work has made the first steps in
showing that truncating the path encoding does not harm the performance of NAS algorithms [22].
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Consider the popular sample random architecture method: given n, r, and k ≤ n(n−1)
2 , (1) choose

one of r operations for each node from 1 to n; (2) for all i < j, add an edge from node i to node j
with probability 2k

n(n−1) ; (3) if there is no path from node 1 to node n, goto(1). Given a random
graph Gn,k,r outputted by this method, let an,k,` denote the expected number of paths from node 1
to node n of length ` in Gn,k,r. We define

b(k, x) =

∑x
`=1 an,k,`∑n
`=1 an,k,`

.

Given n < k < n(n − 1)/2 and 0 < x < n, b(k, x) represents the expected fraction of paths of
length at most x in Gn,k,r. Say that we truncate the path encoding to only include paths of length at
most x. If b(k, x) is very close to one, then the truncation will result in very little information loss
because nearly all paths in a randomly drawn architecture are length at most x with high probability.
However, if b(k, x) is bounded away from 1 by some constant, there may not be enough information
in the truncated path encoding to effectively run a NAS algorithm.

Prior work has shown that b(k, x) > 1− 1/n2 when k < n+ O(1) and x > log n [22]. However,
no bounds for b(k, x) are known when k is larger than a constant added to n. Now we present
our main result for the path encoding, which gives a full characterization of b(k, x) up to constant
factors. Interestingly, we show that b(k, x) exhibits a phase transition at x = k/n. What this means
is, for the purposes of NAS, truncating the path encoding to length rk/n contains almost exactly the
same information as the full path encoding, and it cannot be truncated any smaller. In particular, if
k ≤ n log n, the truncated path encoding can be length n, which is smaller than the one-hot adjacency
matrix encoding. We give the details of the proofs from this section in the full version of this paper.

Theorem 3.1. Given 10 ≤ n ≤ k ≤ n(n−1)
2 , and c > 3, for x > 2ec · kn , b(k, x) > 1− c−x+1, and

for x < 1
2ec ·

k
n , b(k, x) < −2

k
2n .

Proof sketch. Let G′n,k,r denote a random graph after step (2) of sample random architecture. Then
G′n,k,r may not contain a path from node 1 to node n. Let a′n,k,` denote the expected number of paths
of length ` in G′n,k,r. Say that a graph is valid if it contains a path from node 1 to node n. Then

a′n,k,` = 0 · (1− P (G′n,k,r is valid)) + an,k,` · P (G′n,k,r is valid),

so an,k,` = a′n,k,`/P (G′n,k,r is valid). Then

b(k, x) =

∑x
`=1 an,k,`∑n
`=1 an,k,`

=

∑x
`=1 a

′
n,k,`/P (G′n,k,r is valid)∑n

`=1 a
′
n,k,`/P (G′n,k,r is valid)

=

∑x
`=1 a

′
n,k,`∑n

`=1 a
′
n,k,`

.

Now we claim
2k

n(n− 1)

(
2k(n− 2)

(`− 1)n(n− 1)

)`−1

≤ an,k,` ≤
2k

n(n− 1)

(
2ek(n− 2)

(`− 1)n(n− 1)

)`−1

.

This is because on a path from node 1 to n of length `, there are
(
n−2
`−1
)

choices of intermediate nodes
from 1 to n. Once the nodes are chosen, we need all ` edges between the nodes to exist, and each edge
exists independently with probability 2

n(n−1) · k. Then we use the well-known binomial inequalities(
n
`

)` ≤ (n`) ≤ ( en` )` to finish the claim.

To prove the first part of Theorem 3.1, given x > 2ec · kn , we must upper bound
∑n

`=x+1 a
′
n,k,` and

lower bound
∑x

`=1 a
′
n,k,`. To lower bound

∑x
`=1 a

′
n,k,`, we use x > 2ec · kn with the claim:

n∑
`=x+1

an,k,` ≤
n∑

`=x+1

2k

n(n− 1)

(
2ek(n− 2)

(`− 1)n(n− 1)

)`−1

≤ 2k

n(n− 1)

n∑
`=x+1

(
1

c

)`−1

≤
(

2k

n(n− 1)

)(
1

c

)x−1
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We also have an,k,1 = 2k
n(n−1) because there is just one path of length 1: the edge from the input

node to the output node. Therefore, we have

b(k, x) =

∑x
`=1 an,k,`∑n
`=1 an,k,`

≥ an,k,1
an,k,1 +

∑n
`=x+1 an,k,`

≥
2k

n(n−1)

2k
n(n−1) +

(
2k

n(n−1)

) (
1
c

)x−1 ≥ 1− c−x+1.

The proof of the second part of Theorem 3.1 uses similar techniques.

In Figure 4.2, we plot b(k, x) for NASBench-101, which supports Theorem 3.1. Next, we may ask
whether the one-hot adjacency matrix encoding can be truncated. However, even removing one bit
from the adjacency matrix encoding can be very costly, because each single edge makes the difference
between a path from the input node to the output node vs. no path from the input node to the output
node. In the next theorem, we show that the probability of a random graph containing any individual
edge is at least 2k/(n(n− 1)). Therefore, truncating the adjacency matrix encoding even by a single
bit results in significant information loss. In the following theorem, let En,k,r denote the edge set
of Gn,k,r. Given 1 ≤ z ≤ n(n− 1)/2, we slightly abuse notation by writing z ∈ En,k,r if the edge
with index z in the adjacency matrix is in En,k,r.

Theorem 3.2. Given n ≤ k ≤ n(n−1)
2 and 1 ≤ z ≤ n(n− 1)/2, we have P (z ∈ En,k,r) > 2k

n(n−1) .

Proof. Recall that sample random architecture adds each edge with probability 2k/(n(n− 1)) and
rejects in step (3) if there is no path from the input to the output. Define G′n,k,r and valid as in the
proof of Theorem 3.1 and let E′n,k,r denote the edge set of G′n,k,r. Then

P (G′n,k,r is valid | z ∈ E′n,k,r)

P (G′n,k,r is valid)
=
P (z ∈ E′n,k,r | G′n,k,r is valid)

P (z ∈ E′n,k,r)
> 1,

where the first equality comes from Bayes’ theorem, and the inequality follows because there is a
natural bijection φ from graphs with z to graphs without z given by removing z, where G is valid if
φ(G) is valid but the reverse does not hold. Therefore,

P (z ∈ En,k,r) = P (z ∈ E′n,k,r | G′n,k,r is valid) =
P (G′n,k,r is valid | z ∈ E′n,k,r)P (z ∈ E′n,k,r)

P (G′n,k,r is valid)

> P (z ∈ E′n,k,r) =
2k

n(n− 1)
.

Our theoretical results show that the path encoding can be heavily truncated, while the adjacency
matrix cannot be truncated. In the next section, we verify this experimentally (Figure 4.2).

4 Experiments

In this section, we present our experimental results. All of our experiments follow the Best Practices
for NAS checklist [9]. We discuss our adherence to these practices in the full version of this
paper. In particular, we release our code at https://github.com/naszilla/naszilla. We run
experiments on three search spaces which we describe below.

The NASBench-101 dataset [24] consists of approximately 423,000 neural architectures pretrained
on CIFAR-10. The search space is a cell consisting of 7 nodes. The first node is the input, and the
last node is the output. The middle five nodes can take one of three choices of operations, and there
can be at most 9 edges between the 7 nodes. The NASBench-201 dataset [1] consists of 15625 neural
architectures separately trained on each of CIFAR-10, CIFAR-100, and ImageNet16-120. The search
space consists of a cell which is a complete directed acyclic graph with 4 nodes. Each edge takes an
operation, and there are five possible operations. The DARTS [10] search space is used for large-scale
cell-based NAS experiments on CIFAR-10. It contains roughly 1018 architectures, consisting of two
cells: a convolutional cell and a reduction cell, each with six nodes. The first two nodes are input
from previous layers, and the last four nodes can take on any DAG structure such that each node has
degree two. Each edge can take one of eight operations.

6
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We split up our first set of experiments based on the three encoding-dependent subroutines: sample
random architecture, perturb architecture, and train predictor model. These three subroutines are the
only encoding-dependent building blocks necessary for many NAS algorithms.

Sample random architecture. Most NAS algorithms use a subroutine to draw an architecture
randomly from the search space. Although this operation is more generally parameterized by a
distribution over the search space, it is often instantiated with the choice of architecture encoding.
Given an encoding, we define a subroutine by sampling each feature uniformly at random. We also
compare to sampling each architecture uniformly at random from the search space (which does not
correspond to any encoding). Note that sampling architectures uniformly at random can be very
computationally intensive. It is much easier to sample features uniformly at random.

Perturb architecture. Another common subroutine in NAS algorithms is to make a small change to
a given architecture. The type of modification depends on the encoding. For example, a perturbation
might be to change an operation, add or remove an edge, or add or remove a path. Given an encoding
and a mutation factor m, we define a perturbation subroutine by resampling each feature of the
encoding uniformly at random with a fixed probability, so that m features are modified on average.

Train predictor model. Many families of NAS algorithms use a subroutine which learns a model
based on previously queried architectures. For example, this can take the form of a Gaussian process
within Bayesian optimization (BO), or, more recently, a neural predictor model [14, 21, 22]. In the
case of a Gaussian process model, the algorithm uses a distance metric defined on pairs of neural
architectures, which is typically chosen as the edit distance between architecture encodings [6, 5]. In
the case of a neural predictor, the encodings of the queried architectures are used as training data, and
the goal is typically to predict the accuracy of unseen architectures.

Experimental setup and results. We run multiple experiments for each encoding-dependent
subroutine listed above. Many NAS algorithms use more than one subroutine, so in each experiment,
we fix the encodings for all subroutines except for the one we are testing. For each NAS subroutine,
we experiment on algorithms that depend on the subroutine. In particular, for random sampling, we
run experiments on the Random Search algorithm. For perturb architecture, we run experiments on
regularized evolution [13] and local search [23]. For train predictor model, we run experiments on BO,
testing five encodings that define unique distance functions, as well as NASBOT [6] (which does not
correspond to an encoding). We also train a neural predictor model using seven different encodings,
as well as GCN [21] and VAE [25]. Since this runs in every iteration of a NAS algorithm [14, 22, 21],
we plot the mean absolute error on the test set for different sizes of training data. Finally, we run
experiments on BANANAS [22], varying all three subroutines at once. We directly used the open
source code for each algorithm, except we changed the hyperparameters based on the encoding,
described below. Details on the implementations for each algorithm are discussed in the full version
of this paper.

Existing NAS algorithms may have hyperparameters that are optimized for a specific encoding,
therefore, we perform hyperparameter tuning for each encoding. We just need to be careful that we do
not perform hyperparameter tuning for specific datasets (in accordance with NAS best practices [9]).
Therefore, we perform the hyperparameter search on CIFAR-100 from NAS-Bench-201, and apply
the results on NAS-Bench-101. We defined a search region for each hyperparameter of each algorithm,
and then for each encoding, we ran 50 iterations of random search on the full hyperparameter space.
We chose the configuration that minimizes the validation loss of the NAS algorithm after 200 queries.

In each experiment, we report the test error of the neural network with the best validation error after
time t, for t up to 130 TPU hours. We run 300 trials for each algorithm and record the mean test errors.
See Figure 4.1 for the results on NASBench-101. We present more experiments for NASBench-
201 and the DARTS search space in the full version of this paper, seeing largely the same trends.
Depending on the subroutine, two encodings might be functionally equivalent, which is why not all
encodings appear in each experiment (for example, in local search, there is no difference between one-
hot and categorical encodings). There is no overall best encoding; instead, each encoding has varied
performance for each subroutine, and the results in Figure 4.1 act as a guideline for which encodings
to use in which subroutines. As a rule of thumb, the adjacency matrix-based encodings perform well
for the sample random architecture and perturb architecture subroutines, but the path-based encodings
far outperformed the adjacency matrix-based encodings for the train predictor model subroutines.
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Figure 4.1: Experiments on NASBench-101 with different encodings, keeping all but one subroutine
fixed: random sampling (top left), perturb architecture (top middle, top right), train predictor model
(bottom left, bottom middle), or varying all three subroutines (bottom right).

Categorical, one-hot, adjacency-based, path-based, and continuous encodings are all best in certain
settings. Some of our findings explain the success of prior algorithms, e.g., regularized evolution
using the categorical adjacency encoding, and BANANAS using the path encoding in the meta neural
network. We also show that combining the best encodings for each subroutine in BANANAS yields
the best performance. Finally, we show that the path encoding even outperforms GCNs and VAEs in
the neural predictor experiment.

In Figure 4.1, Trunc. Path denotes the path encoding truncated from
∑5

i=0 3i = 364 to
∑3

i=0 3i = 40.
As predicted by Theorem 3.1, this does not decrease performance. In fact, in regularized evolution,
the truncation improves performance significantly because perturbing with the full path encoding
is more likely to add uncommon paths that do not improve accuracy. We also evaluate the effect of
truncating the one-hot adjacency matrix encoding on regularized evolution, from the full 31 bits (on
NASBench-101) to 0 bits, and the path encoding from 31 bits (out of 364) to 0 bits. See Figure 4.2.
The path encoding is much more robust to truncation, consistent with Theorems 3.1 and 3.2.

Outside search space experiment. In the set of experiments above, we tested the effect of encod-
ings on a neural predictor model by computing the mean absolute error between the predicted vs.
actual errors on the test set, and also by evaluating the performance of BANANAS when changing
the encoding of its neural predictor model. The latter experiment tests the predictor model’s ability
to predict the best architectures, not just all architectures on average. We take this one step further
and test the ability of the neural predictor to generalize beyond the search space on which it was
trained. We set up the experiment as follows. We define the training search space as a subset
of NASBench-101: architectures with at most 6 nodes and 7 edges. We define the disjoint test
search space as architectures with 6 nodes and 7 to 9 edges. The neural predictor is trained on 1000
architectures and predicts the validation loss of the 5000 architectures from the test search space. We
evaluate the losses of the ten architectures with the highest predicted validation loss. We run 200
trials for each encoding and average the results. See Table 1. The adjacency encoding performed the
best. An explanation is that for the path encoding, there are features (paths) in architectures from
the test set that do not exist in the training set. This is not the case for the adjacency encoding: all
features (edges) from architectures in the test set have shown up in the training set.

Equivalence class experiments. Recall that the path encoding function e is not one-to-one (see
Figure 3.1). In general, this is not desirable because information is lost when two architectures
map to the same encoding. However, if the encoding function only maps architectures with similar
accuracies to the same encoding, then the behavior is beneficial. On the NASBench-101 dataset,
we compute the path encoding of all 423k architectures, and then we compute the average standard
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Table 1: Ability of neural predictor with different encodings to generalize beyond the search space.

Encoding Validation error Test error

Top 10 avg. Top 1 avg. Top 10 avg. Top 1 avg.

Adjacency 5.888 5.505 6.454 6.056
Categorical Adjacency 7.589 6.191 8.155 7.086

Path 5.967 5.606 6.616 6.335
Truncated Path 6.082 5.644 6.712 6.452
Categorical Path 6.357 5.703 6.939 6.489
Truncated Categorical Path 6.339 5.895 6.918 6.766
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Figure 4.2: Plot of b(k, x) on NASBench-101 (left), which is consistent with Theorem 3.1. Truncation
of encodings for regularized evolution on NASBench-101 (middle). Average standard deviation of
accuracies within each equivalence class defined by the path encoding at different levels of truncation
on NASBench-101 (right).

deviation of accuracies among architectures with the same encoding (i.e., we look at the standard
deviations within the equivalence classes defined by the encoding). See Figure 4.2. The result is an
average standard deviation of 0.353%, compared to the 5.55% standard deviation over the entire set
of architectures.

5 Conclusion

In this paper, we give the first formal study of encoding schemes for neural architecture search. We
define eight different encodings and characterize the scalability of each one. We then identify three
encoding-dependent subroutines used by NAS algorithms—sample random architecture, perturb
architecture, and train predictor model—and we run experiments to find the best encoding for each
subroutine in many popular algorithms. We also conduct experiments on the ability of a neural
predictor to generalize beyond the training search space, given each encoding. Our experimental
results allow us to disentangle the algorithmic and encoding-based contributions of prior work, and
act as a set of guidelines for which encodings to use in future work. Overall, we show that encodings
are an important, nontrivial design decision in the field of NAS. Designing and testing new encodings
is an exciting next step.

6 Broader Impact

Our work gives a study on encodings for neural architecture search, with the goal of helping future
researchers improve their NAS algorithms. Therefore, this work may not have a direct impact on
society, since it is two levels of abstraction from real applications, but it can indirectly impact society.
As an example, our work may inspire the creation of a new state-of-the-art NAS algorithm, which
is then used to improve the performance of various deep learning algorithms, which can have both
beneficial and detrimental uses (e.g. optimizers that reduce CO2 emissions, or deep fake generators).
Due to the recent push for the AI community to be more conscious and prescient about the societal
impact of its work [3], we are hoping that future AI models, including ones influenced by our work,
will have a positive impact on society.
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