
Consistent Plug-in Classifiers for
Complex Objectives and Constraints

Shiv Kumar Tavker
Indian Institute of Technology Madras, India
shivtavker@smail.iitm.ac.in

Harish G. Ramaswamy
Indian Institute of Technology Madras, India

hariguru@cse.iitm.ac.in

Harikrishna Narasimhan
Google Research, USA

hnarasimhan@google.com

Abstract

We present a consistent algorithm for constrained classification problems where the
objective (e.g. F-measure, G-mean) and the constraints (e.g. demographic parity
fairness, coverage) are defined by general functions of the confusion matrix. Our
approach reduces the problem into a sequence of plug-in classifier learning tasks.
The reduction is achieved by posing the learning problem as an optimization over
the intersection of two sets: the set of confusion matrices that are achievable and
those that are feasible. This decoupling of the constraint space then allows us to
solve the problem by applying Frank-Wolfe style optimization over the individual
sets. For objective and constraints that are convex functions of the confusion matrix,
our algorithm requires O(1/✏2) calls to the plug-in subroutine, which improves on
the O(1/✏3) calls needed by the reduction-based algorithm of Narasimhan (2018)
[29]. We show empirically that our algorithm is competitive with prior methods,
while being more robust to choices of hyper-parameters.

1 Introduction

In an increasing number of machine learning tasks, one is required to train a classifier with constraints
on multiple metrics such as fairness, coverage, recall, etc [16, 17, 2, 9, 10]. Often, the objective and
constraints in these problems are not simple metrics such as classification error, and may have a
more complex non-decomposable structure, i.e. may not be expressible a simple average of errors on
individual data points. Examples of such metrics include the F-measure and G-mean used in class-
imbalanced problems [27, 24], the predictive parity criteria used in ML fairness [7], KL-divergence
based metrics used in distribution matching tasks [12, 14], and many more.

A common feature of the above metrics is that they can all be defined as a function of a classifier’s
confusion matrix. We are therefore interested in constrained learning problems where the objectives
and constraints are general functions of the confusion matrix. Our goal is to design a statistically
consistent algorithm for solving these problems, i.e. an algorithm that converges in the limit of infinite
training data to an optimal feasible classifier for these problems.

In previous work, Narasimhan (2018) [29] provide consistent algorithms for constrained learning
problems by reducing them into a sequence of easy-to-solve sub-problems. Each of these sub-
problems is a linear metric minimization task and involves learning a plug-in classifier, a classifier
constructed by fine-tuning a threshold (or a weight matrix for multiclass problems) on a pre-trained
class probability model. For convex functions of the confusion matrix, their method requires O(1/✏3)
calls to the plug-in learning routine to converge to a classifier that is ✏-optimal and ✏-feasible. In this

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

paper, we build on their work and provide an algorithm which requires only O(1/✏2) calls to the
plug-in routine to reach a classifier of the same quality.

Like the prior method, the key to our approach is to translate the constrained learning problem
into an optimization problem over a finite dimensional space. While Narasimhan (2008) formulate
this optimization problem over the space of confusion matrices that are achievable by a classifier,
we formulate the problem over the intersection of two convex sets: the set of confusion matrices
that are achievable, and the set of confusion matrices that are feasible, i.e. satisfy the constraints.
The decoupling of the search space into two sets then allows us to adapt the Frank-Wolfe based
algorithm of Gidel et al. (2018) [15] to solve the optimization. Our approach makes use of two
oracle subroutines, both of which can be implemented efficiently. The first oracle minimizes a
linear function over the space of achievable confusion matrices, which amounts to learning a plug-in
classifier. The second performs a linear minimization over the space of feasible matrices, which is
often a straight-forward convex program.

The proposed algorithm enjoys several practical benefits. Firstly, the algorithm is computationally
efficient to implement: given a pre-trained class probability model (e.g. logistic regression), the
algorithm performs a sequence of efficient threshold optimizations on the predicted class probability
outputs. Secondly, it can be applied readily to multi-class problems and fairness problems with
multiple groups. Thirdly, the number of optimization parameters needed by our algorithm scales
linearly with the number of classes and groups, and does not directly depend of the number of
constraints. This is in contrast to the method of Narasimhan (2018), which maintains an explicit
parameter for each constraint. Our approach instead solves a linear minimization problem over the
feasible matrices, which has the advantage of leveraging specialized convex solvers that exploit
redundancies in the constraints.

Contributions. The following are the main contributions in this paper. (i) We provide an algorithm
for complex constrained classification problems , which solves a sequence of plug-in learning tasks
(see Section 3). (ii) We show that our algorithm is statistically consistent and enjoys improved
convergence guarantees (see Section 4). (iii) We present experiments on benchmark fairness datasets
and show that the proposed algorithm performs at least as well as existing methods, while being more
robust to choices of hyper-parameters (see Section 5).

Related Work. Prior methods for optimizing complex evaluation metrics fall mainly under two
broad categories: plug-in style methods that enjoy consistency guarantees [35, 25, 34, 33, 44, 3, 29],
and approaches that optimize convex relaxations to the metrics and are not necessarily consistent
[20, 22, 32, 21, 16, 37, 30, 19]. There has also been much work on training classifiers with objectives
and constraints that are linear constraints on the confusion matrix, with the main focus being on
fairness constraints [16, 46, 2, 23, 11, 9, 10, 31]. There’s however been relatively lesser work on
handling objectives and constraints that are non-linear in the confusion matrix [29, 30, 5]. The more
recent of these approaches by Narasimhan et al. (2019) [30] formulates the constrained learning
problem as a Lagrangian game played by three players, and seeks to find an equilibrium of the game.
However, their main proposal makes use of “surrogate relaxations” for the entries of the confusion
matrix and does not come with consistency guarantees. We compare against this algorithm in our
experiments. Narasimhan et al. (2019) do however also provide a more idealized algorithm that
enjoys the same convergence rate as our approach to the optimal feasible solution, but do not provide
a consistency analysis for this method. In Section 4 and Appendix B, we discuss in detail about the
technical differences between this idealized algorithm of theirs and our approach.

2 Preliminaries and Background

We are interested in general multiclass learning problems with an instance space X and label space
Y = [n] = {1, 2, . . . , n}. For binary classification problems, we will denote the label space using
Y = {0, 1}. We use �n to denote the probability simplex in Rn

+. We assume examples are drawn
i.i.d. from some distribution D on X ⇥ [n], with marginal µ on X , conditional class probabilities
⌘i(x) = P(Y = i|X = x), and class priors ⇡i = P(Y = i). Given a finite training sample
S = ((x1, y1), ..., (xN , yN)) 2 (X ⇥ [n])N drawn i.i.d. from D, the task is to learn a multiclass
classifier h : X ! [n], or more generally, a randomized multiclass classifier h : X ! �n, which
given an instance x predicts a class label in [n] according to the probability distribution specified by
h(x). Let H denote the the space of all randomized classifiers.

2

We will also be interested in fair classification problems where each instance belongs to one of m
protected groups, and will denote the protected group associated with instance X by A(X) 2 [m].
We denote ⌫a = P(A(X) = a) and ⇡a,i = P(A(X) = a, Y = i).

Learning problem. We measure the performance of a classifier w.r.t. distribution D using a perfor-
mance measure ̄ : H ! R+ that associates a non-negative value ̄(h;D) 2 R+ to each classifier
h 2 H, with lower values indicating better performance. We also require the classifier to satisfy
K constraints, given by �̄k(h;D)  0, k 2 [K], where �̄k : H ! R associates a real value to a
classifier. Our goal is to then solve the following optimization problem over classifiers:

min
h2H

 ̄(h) s.t. �̄k(h)  0, 8k 2 [K]. (OP1)

Confusion matrices. We define the confusion matrix of a classifier h as a n ⇥ n matrix C[h] 2
[0, 1]n⇥n where the ij-the entry is the probability that the true class for an instance is i and the
predicted class is j:

Cij [h] = PY,bY⇠h(X)(Y = i, bY = j),

where bY ⇠ h(X) denotes a random draw of label from h(X). For fairness settings, we will also be
interested in the group-specific confusion matrices:

C
a
ij [h] = PX,Y,bY⇠h(X)(Y = i, bY = j, A(X) = a)

Complex objectives and constraints. We will consider performance metrics ̄ and constraint
functions �̄k’s that are general functions of the confusion matrix of classifier h. This includes several
common examples, including those that are non-decomposable and cannot be expressed as a simple
expectation of errors on individual examples.

• Class-imbalanced metrics such as the G-mean, H-mean and Q-mean that emphasize equal perfor-
mance acrossa all classes [27, 24, 39, 42, 26, 28] and metrics used in signal detection [41]:

G-mean = 1�
⇣Qn

i=1
Cii
⇡i

⌘1/n
; H-mean = 1� n

⇣Pn
i=1

⇡i
Cii

⌘�1

Q-mean =

r
1
n

Pn
i=1

⇣
1� Cii

⇡i

⌘2
; Min-max = maxi2[n]

⇣
1� Cii

⇡i

⌘

• Fairness constraints used to control the discrepancy in the performance of a classifier across
different protected groups [17]:

Demographic Parity: maxa2[m]

��� 1
⌫a
(Ca

01 + C
a
11)� 1

m

Pm
b=1

1
⌫b

�
C

b
01 + C

b
11

����  ✏

Equal Opportunity: maxa2[m]

��� 1
⇡a,1

C
a
11 � 1

m

Pm
b=1

1
⇡b,1

C
b
11

���  ✏,

where ✏ is an acceptable slack.
• Coverage constraints that require the proportion of predictions in a particular class to match a

target value [16, 10, 8], and the related KL-divergence metric used in the quantification literature
[12, 14, 21]:

Binary Coverage: C01 + C11  ✏

KL-divergence:
Pn

i=1 ⇡i log
⇣

⇡iPn
j=1 Cji

⌘
 ✏.

Confusion vectors. For ease of presentation, we will work with a generalized version of a confusion
matrix, which we refer to as a confusion vector. For a classifier h, we overload notation and define a
confusion vector C[h] 2 Rd as:

Ci[h] = EX,Y [EbY⇠h(X)[�i(X,Y, bY)]],

for some sufficient statistics �i : X ⇥ [n]⇥ [n] ! [0, 1] computed on the instance X , true labels Y
and predicted labels bY . For example, when �i(X,Y, bY) = 1(Y = i, bY = i), we get the diagonal
elements of the standard confusion matrix with d = n. When we set �i(X,Y, bY) = 1(Y = j, bY =
k), we get back the jk-th entry of the standard confusion matrix, with the entire matrix can be
represented by a n

2-dimensional confusion vector. When we set �i(X,Y, bY) = 1(A(X) = a, Y =
j, bY = k), we get back the jk-th entry of the group-specific confusion matrix for group a. The set of
m group-specific matrices can then be represented by a mn

2-dimensional confusion vector.

3

Figure 1: An illustration of Algorithm 1 for a toy 2-class
problem, with equal prior probabilities and with class con-
ditionals X|Y = 0 and X|Y = 1 distributed as a standard
normal with means +1 and �1 respectively. The goal is
to minimize H-mean subject to a coverage constraint that
forces the fraction of class 1 predictions to be not more than
0.3. The objective and constraint functions are given by:
 (C) = 1�2

�
0.5
C00

+ 0.5
C11

��1 and �(C) = C11+C01�0.3.

3 Reduction-based Algorithm

We now describe our approach for solving the learning problem in (OP1) by reducing the problem
into a sequence of plug-in classifier learning tasks. We will work with objectives and constraints
defined in terms of a confusion vector C[h] of dimension d, for some suitable choice of sufficient
statistics �i’s. Specifically, we consider an objective ̄(h) = (C[h]) defined by a convex function
 : [0, 1]d!R of the confusion vector for h, and constraint functions �̄k(h) = �k(C[h]) defined by
convex functions �k : [0, 1]d!R of the confusion vector for h.

3.1 Optimization Over Intersection of Convex Sets

Our key idea is to reformulate (OP1) as an optimization problem over the intersection of two convex
sets. To this end, we define the set of all confusion vectors that can be achieved by some classifier h:

Achievable Confusion Vectors: C = {u 2 Rd : u = C[h], h : X!�n},

and the set of confusion vectors that satisfy the K constraints:

Feasible Confusion Vectors: F = {u 2 Rd : �k(u)  0, 8k 2 [K]}.

Proposition 1. C and F are convex sets.

The convexity of C follows from the use of randomised classifiers and the fact that C[h] is defined
as an expectation over random draw from h. The convexity of F follows from the convexity of the
constraint functions �k. Also notice that while the set of achievable confusion vectors C depends on
the data distribution D, the set of feasible confusion vectors does not. This means that optimizing
over F does not require access to D or a sample drawn form D.

Equipped with these two sets, we can reformulate the learning problem in (OP1) over the space of
classifiers, as an equivalent d-dimensional optimization problem over the intersection of C and F :

min
u2C\F

 (u). (OP2)

We will denote the solutions to the problems (OP1) and (OP2) by h
⇤ and u⇤ respectively. Note that

C[h⇤] = u⇤. In Figure 1, we provide a simple illustration of an objective function and constraints on
a toy problem, and show the corresponding sets C and F .

3.2 Linear Minimization Oracles

The formulation (OP2) converts a classifier learning problem into a finite dimensional optimization
problem, but it still has one major issue: we do not have direct access to the set C. However, as we
shall see shortly, performing a linear minimization over this set amounts to a cost-sensitive learning
problem, which can be solved using a plug-in method. Similarly, performing a linear minimization
over F amounts to solving a convex program.

So, we assume access to the following linear minimization oracles (LMOs):

LMOC : Given a 2 Rd, returns argmin
u2C

ha,ui,

LMOF : Given b 2 Rd, returns argmin
v2F

hb,vi.

4

Algorithm 1 The Split Bayes-Frank-Wolfe (SBFW) Algorithm

1: Input: : [0, 1]d ! R+, Linear minimization oracle over F
Training sample S = {(x1, y1), . . . , (xN , yN)}

2: Parameters: � > 0, Step sizes ⌘t = C/t, and �t = 4⌘t

� for t 2 [T], where C is some constant.
3: Initialize: Initialize classifier h0 : X!�n and vectors u0 = v0 = C[h0], w0 = 0.
4: For t = 1 to T do:
5: bgt, eut = plug-in(at�1;S), where at�1 = ruL(ut�1,vt�1,wt�1) (LMO over C)
6: evt = argminv2F

hbt�1,vi, where bt�1 = rvL(ut�1,vt�1,wt�1) (LMO over F)
7: (ut,vt, ht) = (1� �t)(ut�1,vt�1, ht�1) + �t(eut, evt, bgt)
8: wt = wt�1 + ⌘t�1(ut � vt)
9: end For

10: Return: Return bh = hBest, where Best = argmint>T/2 ||ut � vt||2

Of the two oracles, LMOF does not need access to the data and can performed with standard convex
solvers. So, we will be primarily interested in the number of calls needed to be made to LMOC . Also
note that in practice, one may not be able to solve the minimization over C exactly. In our theoretical
analysis in Section 4, we take this into account and show that our approach is robust to approximation
errors in the linear minimization.

3.3 Frank-Wolfe Based Algorithm

The challenge now is to optimize over the intersection of the two sets C \ F . For this, we adopt
the Frank-Wolfe based approach of Gidel et al. (2018) [15] that enables optimization of a convex
objective over the intersection of two convex sets with access to only linear minimization oracles for
the individual sets. To this end, we introduce auxiliary variables v in (OP2) and decouple the two
constraint sets. This gives us the following equivalent optimization problem:

min
u2C,v2F

 (u) + (v) s.t. u� v = 0. (OP3)

We then define the augmented Lagrangian L : [0, 1]d ⇥ [0, 1]d ⇥ Rd!R of the above problem as:

L(u,v,w) = (u) + (v) +w>(u� v) +
�

2
||u� v||2, (1)

where w 2 Rd denotes the Lagrange multipliers for the equality constraints and � > 0 is a constant.

Gidel at al. (2018) [15] propose a simple gradient ascent step for w, a linear minimization step for
u over C and a linear minimization step for v over F . Specifically, at each iteration, we perform
a Frank-Wolfe style update for u and v [18]. We linearize the Lagrangian with respect to u and
minimize the linearized objective over C using LMOC :

at�1 = ruL(ut�1,vt�1,wt�1); eut 2 argminu2C
hat�1,ui. (2)

We also linearize L with respect to v and minimize the linearized objective over F using LMOF :

bt�1 = rvL(ut�1,vt�1,wt�1); evt 2 argminv2F
hbt�1,vi. (3)

This is followed by a set of simple updates on the optimization variables:

ut = (1� �t)ut�1 + �teut; vt = (1� �t)vt�1 + �tevt; (4)
wt = wt�1 + ⌘t�1(ut � vt), (5)

where the coefficients �t and ⌘t are step-size parameters. The procedure outlined in Algorithm 1
maintains both a confusion vector and the corresponding classifier at each iteration, and returns a
classifier bh that combines multiple classifiers via randomization.

3.4 Plug-in Classifier for LMO over C

All that remains is to perform the linear minimization over C in Equation 2. We show below that this
can be solved using a plug-in method.

5

Algorithm 2 Plug-in Method for LMOC

1: Input: Weight vector a 2 Rd, Training sample S = {(x1, y1), . . . , (xN , yN)}
2: Given: A conditional probability model b⌘ : X!�n pre-trained with samples {(xi, yi)}N/2

i=1 ,
Sufficient statistic functions �i : X ⇥ [n]⇥ [n]![0, 1]

3: Define L : X!Rn⇥n by Lj,k(x) =
Pd

i=1 ai�i(x, j, k)
4: Construct bg : X![n] as bg(x) = argminby2[n]

Pn
j=1 b⌘j(x)Lj,by(x),

5: Estimate confusion vector eui =
2
N

PN
j=N/2 �i(xj , yj , bg(xj)) from samples {(xi, yi)}Ni=N/2

6: Return: Confusion vector eu and corresponding classifier bg

Proposition 2 (LMOC through Bayes-optimal Classifier). Suppose we wish to minimize ha,ui
over u 2 C. Define the example-dependent loss matrix L : X!Rn⇥n as Lj,k(x) =Pd

i=1 ai�i(x, j, k). Then the solution to the linear minimization problem is directly given by the
Bayes-optimal classifier for this loss matrix. Specifically, construct a classifier g⇤ : X![n] with

g
⇤(x) = argmin

by2[n]

nX

j=1

⌘j(x)Lj,by(x),

where ⌘j(x) = P(Y = 1|x) is the class-conditional probability. Then C[g⇤] 2 argminu2C
ha,ui.

The classifier g⇤ defined above is a deterministic classifier that thresholds the conditional probability
⌘ based on the example-dependent loss matrix L(x). For the special case where the confusion vectors
represent the set of confusion matrices for the m groups, the weight vector a 2 Rmn2

effectively
describes m loss matrices L1

, . . . ,Lm 2 Rn⇥n, one for each group. For a given instance x, the
classifier g⇤ picks the loss matrix LA(x) associated with the protected group attribute A(x), and
then uses the conditional probability vector ⌘(x) to make the optimal prediction for that loss matrix:
g
⇤(x) = argminby2[n]

Pn
j=1 ⌘j(x)L

A(x)
j,by (x).

The above characterization directly motivates the use of a plug-in method to solve the LMO over
C. Specifically, we can use an estimator b⌘ : X ! �n of the conditional probabilities ⌘ to construct
an approximate version of g⇤. The confusion vector C[g⇤] can then be estimated from samples.
This procedure is outlined in Algorithm 2 and returns both a confusion vector that approximately
solves the linear minimization over C and the corresponding classifier bg. Notice that the conditional
probability estimator b⌘ (e.g. logistic regression) needs to be trained only once, and can be re-used for
every call to the plug-in routine.

Figure 1 shows the iterates of the proposed algorithm over a simple toy dataset. The trajectory of ut

is given in blue and the trajectory of vt is given in yellow. It can be seen that both these trajectories
approach the optimal solution C[h⇤].

4 Consistency Results

In this section we give the main theoretical result of the paper. We show that with O(1/✏2) calls to
the plug-in LMO routine, Algorithm 1 outputs a classifier bh that is O(✏+

p
⇢)-close to the optimal-

value and satisfies the constraint �k’s with a slack of O(✏+
p
⇢), where ⇢ is a term which depends

on the approximation level of the plug-in LMO. This result then directly implies that Algorithm 1 is
statistically consistent, i.e. converges to the optimal-feasible classifier in the limit of infinite samples.

We will make a few regularity assumptions. We assume that the objective function and constraint
functions �k are L-Lipschitz and objective function is �-smooth. We will also assume that (OP2)
is strictly feasible.
Assumption 1. 9u 2 C \ F , r > 0 such that B(u, r) \ affine-space(C) ✓ C \ F .

We stress that these assumptions are not very restrictive and can be verified to be satisfied by all of the
objectives and constraints described in Section 2, as long as the prior probabilities ⇡a,i are non-zero
for all classes i 2 [n] and protected groups a 2 [m].

6

Theorem 3. Let h⇤ denote the optimal feasible solution for (OP1), i.e. �k(C[h⇤])  0, 8k and
 (C[h⇤])  (C[h]) for all h that is feasible. Under the regularity assumptions, for large enough �
and an appropriate step-size parameter C, there exists an ✏̄ > 0 such that, for all ✏  ✏̄, and T � c

✏2
,

with probability 1� � over draw of the training samples S i.i.d. from D, the classifier bh returned by
Algorithm 1 is near-optimal and near-feasible:

Optimality : (C[bh])  (C[h⇤]) + c
p
⇢+ ✏,

Feasibility : �k(C[bh])  c
p
⇢+ L✏, 8k 2 [K],

where ⇢ =
p
dE||⌘(X)� b⌘(X)||1 + d

q
d log(d)+log(Nn2)+log(1/�)

N captures the approximation level
of the LMO given by Algorithm 2, and c > 0 is a constant not dependent on the number of iterations
T and the training samples.

The key to proving this convergence result is (i) establishing that the plug-in classifier solves the
linear minimization problem over C approximately, (ii) applying the convergence results of Gidel
et al. (2018) [15] (extended to handle an approximate LMO) to get a bound on the duality gap for
(OP2), and (iii) translating this to a bound on the optimality and feasibility for (OP2).

Remark (Consistency). The term ⇢ in Theorem 3 has two sources of error: the error E||⌘(X) �
b⌘(X)||1 in the class probability model b⌘ used to construct the plug-in classifier and the sample error
eO
⇣
d

q
d
N

⌘
. If the conditional-class estimator is such that E||⌘(X)� b⌘(X)||1 ! 0 as the sample size

N!1, which is the case when e.g. b⌘ is learned by minimizing a strictly proper composite loss over
a suitably flexible function class [40], then Algorithm 1 is guaranteed to be statistically consistent.
Specifically, setting ✏ =

p
1/N and running Algorithm 1 for the prescribed O(1/✏2) iterations, we

have that as N ! 1, (C[bh]) P�! (C[h⇤]) and �k(C[bh]) P�! 0, 8k.

Remark (Improvements over COCO [29]). The previous reduction-based algorithm of Narasimhan
(2018) [29] for (OP1), referred to as COCO by the author, similarly poses the problem as an
optimization over C but retains explicit constraints �k(C)  0, 8k. The idea is to then formulate
the Lagrangian for the constrained problem with one Lagrange multiplier for each constraint, and
maximize the Lagrangian over the multipliers using gradient ascent. Each gradient step, however,
involves a full run of the classical Frank-Wolfe method [18] over C using an LMO, resulting in an
algorithm with multiple levels of nesting. Our approach is better than COCO in the following aspects:

• Better convergence rate. In the large N setting, COCO requires O(1/✏3) calls to the plug-in routine
to reach a solution that is O(✏)-optimal and O(✏)-feasible. In contrast, by posing (OP1) as an
optimization over two convex sets, we avoid the nested structure, and need only O(1/✏2) calls to
the plug-in routine to reach a solution of the same quality.

• Weaker dependence on the number of constraints. While COCO maintains one optimization
parameter per constraint, the number of parameters in our algorithm (i.e. u, v) is only twice the
dimension d of the confusion vector, and depends on the number of constraints K only through the
LMO over F . This has the added advantage of being able to use specialized solvers for this step
that better exploit the redundancies in the constraint set.

Remark (Prior 3-player approach [30]). As noted in the introduction, another closely re-
lated method for solving complex constrained classification problems is the 3-player approach
of Narasimhan et al. (2019) [30]. Their idea is to introduce additional slack variables, formulate the
Lagrangian for the problem with one parameter per constraint, and find an equilibrium of the resulting
min-max game between the primal and dual variables. They first provide an idealized version of
their algorithm which makes use of an oracle (similar to LMOC) to optimize a linear metric over the
space of classifiers, and requires a similar number of calls to the oracle as our approach to reach a
near-optimal near-feasible solution. However, they do not provide a full-fledged consistency analysis
for this idealized algorithm. Instead they prescribe a “practical” alternative which replaces the oracle
with stochastic gradient updates on a relaxed Lagrangian, where the entries of the confusion matrix
are replaced with surrogate relaxations, and this variant does not come with consistency guarantees.
We compare with this surrogate-based algorithm in our experiments. Again, an important difference
between our approach and Narasimhan et al. (2019) is that we do not maintain an explicit parameter
for each constraint and access the constraint set only through an LMO.

7

Table 1: Minimizing Q-mean s.t. Demographic Parity  0.05. We report test Q-mean and constraint
violations (in parentheses) measured as the positive part of Demographic Parity�0.05. Lower values
are better. Bold indicates that the method has the least objective and the least violation, among the
last three columns.

Dataset Unconstrained Error-Con COCO 3-Player Proposed

Adult 0.18 (0.05) 0.30 (0.00) 0.31 (0.00) 0.18 (0.00) 0.18 (0.00)
COMPAS 0.32 (0.10) 0.36 (0.00) 0.35 (0.03) 0.33 (0.00) 0.32 (0.00)

Crimes 0.16 (0.22) 0.30 (0.01) 0.30 (0.01) 0.24 (0.05) 0.22 (0.03)
Default 0.33 (0.01) 0.54 (0.00) 0.35 (0.00) 0.36 (0.00) 0.33 (0.00)

Lawschool 0.21 (0.25) 0.47 (0.00) 0.35 (0.16) 0.24 (0.03) 0.25 (0.02)

Table 2: Minimizing G-mean s.t. Equal Opportunity  0.05. We report G-mean and constraint
violations measured as the positive part of Equal Opportunity � 0.05. Lower values are better.

Dataset Unconstrained Error-Con COCO 3-Player Proposed

Adult 0.18 (0.00) 0.24 (0.01) 0.17 (0.03) 0.18 (0.01) 0.18 (0.00)
COMPAS 0.32 (0.09) 0.35 (0.00) 0.32 (0.00) 0.33 (0.00) 0.32 (0.00)

Crimes 0.15 (0.17) 0.19 (0.09) 0.16 (0.06) 0.16 (0.08) 0.16 (0.03)
Default 0.33 (0.00) 0.51 (0.00) 0.39 (0.00) 0.36 (0.00) 0.34 (0.00)

Lawschool 0.21 (0.23) 0.47 (0.00) 0.23 (0.00) 0.22 (0.04) 0.26 (0.03)

We provide more details about the prior COCO and 3-player methods in Appendix B.

5 Experiments

We show that the proposed algorithm performs comparable to or better than than prior methods for
constrained classification on a number of benchmark datasets for fair classification.

Datasets. We ran experiments on five datasets: (1) COMPAS, where the goal is to predict recidivism
with gender as the protected attribute [4]; (2) Communities & Crime, where the goal is to predict if a
community in the US has a crime rate above the 70th percentile [13], and we consider communities
having a black population above the 50th percentile as protected [23]; (3) Law School, where the
task is to predict whether a law school student will pass the bar exam, with race (black or other)
as the protected attribute [43]; (4) Adult, where the task is to predict if a person’s income exceeds
50K/year, with gender as the protected attribute [13]; (5) Default, where the task is to predict if a
credit card user defaulted on a payment, with gender as the protected attribute [13]. The details are
summarized in Table 4 in Appendix C. We used 2/3-rd of the data for training and 1/3-rd for testing.
All experiments use a linear model.1

Comparisons. We compare our method against (i) the approach of optimizing the given objective
without constraints [33] (Unconstrained), (ii) the approach of optimizing classification error subject
to the given constraints, e.g. [1] (Error-Con), (iii) the prior COCO method [29] for solving the
constrained learning problem at hand, and (iv) the 3-player approach [30] which solves the constrained
learning problem with surrogates. We describe how we choose hyper-parameters in Appendix C

Objectives and Constraints. We consider the following constrained learning tasks:
1. Minimizing Q-mean s.t. Demographic Parity Violation  0.05
2. Minimizing G-mean s.t. Equal Opportunity Violation  0.05
3. Minimizing H-mean s.t. Coverage for Class 1  0.25

We report the objectives and constraint violations (the positive part of �(h) � ✏) for the different
methods in Tables 1–3. On a majority of the datasets, the proposed method is able to closely satisfy the
constraints while achieving comparable or better objectives. As expected, unconstrained optimization
of the objective performs poorly on the constraints. Similar, optimizing for plain error rate subject
to the specified constraints fares poorly on the desired objective, demonstrating the need to directly
optimize for the metric one cares about. Among the SBFW (proposed), COCO and 3-Player methods,
our approach is able to more often achieve the least objective and the least violation.

1Code available at: https://github.com/shivtavker/constrained-classification.

8

https://github.com/shivtavker/constrained-classification

Table 3: Minimizing H-mean s.t. Class-1 Coverage  0.25. We report etst H-mean and constraint
violations measured as the positive part of Coverage � 0.25. Lower values are better. Bold indicates
that the method has the least objective and the least violation, among last three columns.

Dataset Unconstrained Error-Con COCO 3-Player Proposed

Adult 0.18 (0.09) 0.26 (0.00) 0.21 (0.00) 0.21 (0.00) 0.21 (0.00)
COMPAS 0.32 (0.23) 0.44 (0.00) 0.45 (0.00) 0.45 (0.00) 0.44 (0.00)

Crimes 0.16 (0.11) 0.21 (0.01) 0.21 (0.01) 0.23 (0.00) 0.21 (0.01)
Default 0.33 (0.16) 0.62 (0.00) 0.34 (0.00) 0.42 (0.00) 0.34 (0.00)

Lawschool 0.21 (0.47) 0.56 (0.01) 0.58 (0.00) 0.56 (0.00) 0.55 (0.01)

Figure 2: Training G-mean (left) and equal opportunity violation (right) on COMPAS for varying
number of calls to the plug-in routine. The hyper-parameters were tuned separately for each method
using the heuristic of Cotter et al. (2019) [10] to trade-off between the objective and the violations.

Figure 3: Robustness to hyper-parameters: Train G-mean and equal opportunity violation for six step
sizes (lower is better) on the COMPAS dataset. For the proposed algorithm, all choices achieved
similar objectives and near-zero violations.

Convergence Analysis. We next compare the number of plug-in calls needed by the proposed algo-
rithm and the previous COCO method for the task of minimizing G-mean with an equal opportunity
constraint. The 3-player method does not use a plug-in subroutine. Figure 2 shows the train G-mean
and the train equal opportunity violation (the positive part of �(h)� ✏) for varying numbers of plug-in
calls for the COMPAS dataset. In this case, our algorithm converges to a classifier with zero violation
on the training set, with an objective similar to COCO, but with fewer calls ( 100). We also provide
similar plots for other datasets in Figure 4 in Appendix C. On Crimes and Law School, COCO fails
to converge to zero training violation even after 2000 calls. In contrast, on all five datasets, when
provided the same number of plug-in calls, the proposed algorithm is able to achieve zero training
violations (often within the first 100 calls). On Adult alone, COCO exhibits faster convergence.

Robustness to Hyper-parameter Choices. In our final experiment, we demonstrate the robustness
of our approach to the choice of step-size ⌘t. We ran COCO, 3-player and the proposed SBFW
methods for minimizing G-mean objective with an equal opportunity constraint on the COMPAS
dataset, with 6 different choices of step-sizes (10�4

, 10�3
, . . . , 10), and report the G-mean and equal

opportunity violation in Figure 3 (and also as a scatter plot in Figure 5 in the Appendix). While all 6
choices achieved close-to-best objectives and near-zero violations for the proposed SBFW algorithm,
only 2 (3 resp.) choices led to similar metrics for COCO (3-player resp.).

6 Conclusion

In numerous real-word prediction tasks, one is required to learn a classifier that optimizes a complex
evaluation metric subject to a set of constraints. In this paper, we developed a consistent learning
algorithm for handling objectives and constraints that are convex functions of the confusion matrix and
provided improved convergence guarantees. In our experiments, we demonstrated the effectiveness
of our approach, and also showed its robustness to hyper-parameter choices. In the future, it would
be interesting to explore lower bounds on the number of calls to the LMO, replace the plug-in

9

LMO routine with more direct cost-sensitive learning methods (e.g. [38, 45]), and explore other
optimization methods in place of the augmented Lagrangian Frank-Wolfe algorithm.

Broader Impact

There’s an increasing impetus in the machine learning community to design algorithms that are fair
and free from bias and inequity. Most existing approaches for enforcing group-based fairness goals
have been limited to simple objectives and constraints. In this paper, we allow a user to specify for
more nuanced definitions of utilities and fairness goals than allowed by standard methods in the
literature, and provide an algorithm to directly and efficiently optimize for these goals. We show
theoretically that our algorithm is able to achieve a desired trade-off between overall utility and the
specified fairness criteria.

As with prior work on group-based fairness (and more generally with constrained supervised learning),
a drawback of our approach is that while we guarantee that the fairness criterion is likely to be satisfied
on new examples, there is a small probability that it isn’t, and these rare failures can have an adverse
impact in practice. Moreover, our algorithm requires the use of stochastic classifiers, which may
bring in additional ethical considerations. See Cotter et al. [8] for a discussion on the practical
ramifications of deploying a stochastic classifier, and for ways to convert a stochastic classifier into a
similar performing deterministic classifier.

All experiments in this paper were carried out with publicly available datasets.

Acknowledgments and Disclosure of Funding

SKT and HGR thank the Robert Bosch Center for Data Science and Artificial Intelligence at IIT
Madras for their support. The authors thank Shivani Agarwal for helpful discussions.

References
[1] A. Agarwal, A. Beygelzimer, M. Dudik, and J. Langford. A reductions approach to fair classification. In

FAT/ML, 2017.

[2] A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, and H. Wallach. A reductions approach to fair
classification. In ICML, 2018.

[3] D. Alabi, N. Immorlica, and A. Kalai. Unleashing linear optimizers for group-fair learning and optimization.
In COLT, 2018.

[4] J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias. ProPublica, May, 23, 2016.

[5] L. E. Celis, L. Huang, V. Keswani, and N. K. Vishnoi. Classification with fairness constraints: A
meta-algorithm with provable guarantees. In FAT, 2019.

[6] N. Cesa-Bianchi and D. Haussler. A graph-theoretic generalization of the sauer-shelah lemma. Discrete
Applied Mathematics, 1998.

[7] A. Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction instru-
ments. Big data, 5(2):153–163, 2017.

[8] A. Cotter, M. Gupta, and H. Narasimhan. On making stochastic classifiers deterministic. In Advances in
Neural Information Processing Systems, pages 10912–10922, 2019.

[9] A. Cotter, H. Jiang, and K. Sridharan. Two-player games for efficient non-convex constrained optimization.
In ALT, 2019.

[10] A. Cotter, H. Jiang, S. Wang, T. Narayan, M. Gupta, S. You, and K. Sridharan. Optimization with non-
differentiable constraints with applications to fairness, recall, churn, and other goals. JMLR (to appear),
arXiv preprint arXiv:1809.04198, 2019.

[11] M. Donini, L. Oneto, S. Ben-David, J. Shawe-Taylor, and M. Pontil. Empirical risk minimization under
fairness constraints. In NeurIPS, 2018.

10

[12] A. Esuli and F. Sebastiani. Optimizing text quantifiers for multivariate loss functions. ACM Transactions
on Knowledge Discovery and Data, 9(4):Article 27, 2015.

[13] A. Frank and A. Asuncion. UCI machine learning repository. URL: http://archive.ics.uci.
edu/ml, 2010.

[14] W. Gao and F. Sebastiani. Tweet sentiment: From classification to quantification. In ASONAM, 2015.

[15] G. Gidel, F. Pedregosa, and S. Lacoste-Julien. Frank-wolfe splitting via augmented lagrangian method. In
International Conference on Artificial Intelligence and Statistics, pages 1456–1465, 2018.

[16] G. Goh, A. Cotter, M. Gupta, and M. Friedlander. Satisfying real-world goals with dataset constraints. In
NIPS, 2016.

[17] M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. In NIPS, 2016.

[18] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In ICML, 2013.

[19] Q. Jiang, O. Adigun, H. Narasimhan, M. M. Fard, and M. Gupta. Optimizing black-box metrics with
adaptive surrogates. ArXiv:2002.08605, 2020.

[20] T. Joachims. A support vector method for multivariate performance measures. In ICML, 2005.

[21] P. Kar, S. Li, H. Narasimhan, S. Chawla, and F. Sebastiani. Online optimization methods for the quantifica-
tion problem. In KDD, 2016.

[22] P. Kar, H. Narasimhan, and P. Jain. Online and stochastic gradient methods for non-decomposable loss
functions. In NIPS, 2014.

[23] M. Kearns, S. Neel, A. Roth, and Z. Wu. Preventing fairness gerrymandering: Auditing and learning for
subgroup fairness. In ICML, 2018.

[24] J.-D. Kim, Y. Wang, and Y. Yasunori. The Genia event extraction shared task, 2013 edition-overview. ACL,
2013.

[25] O. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent binary classification with generalized
performance metrics. In NIPS, 2014.

[26] S. Lawrence, I. Burns, A. Back, A.-C. Tsoi, and C. Giles. Neural network classification and prior class
probabilities. In Neural Networks: Tricks of the Trade, LNCS, pages 1524:299–313. Springer, 1998.

[27] D. Lewis. Evaluating text categorization. In HLT Workshop on Speech and Natural Language, 1991.

[28] A. Menon, H. Narasimhan, S. Agarwal, and S. Chawla. On the statistical consistency of algorithms for
binary classification under class imbalance. In ICML, 2013.

[29] H. Narasimhan. Learning with complex loss functions and constraints. In AISTATS, 2018.

[30] H. Narasimhan, A. Cotter, and M. Gupta. Optimizing generalized rate metrics with three players. In
NeurIPS, 2019.

[31] H. Narasimhan, A. Cotter, Y. Zhou, S. Wang, and W. Guo. Approximate heavily-constrained learning with
Lagrange multiplier models. In NeurIPS, 2020, to appear.

[32] H. Narasimhan, P. Kar, and P. Jain. Optimizing non-decomposable performance measures: A tale of two
classes. In ICML, 2015.

[33] H. Narasimhan, H. Ramaswamy, A. Saha, and S. Agarwal. Consistent multiclass algorithms for complex
performance measures. In ICML, 2015.

[34] H. Narasimhan, R. Vaish, and S. Agarwal. On the statistical consistency of plug-in classifiers for non-
decomposable performance measures. In NIPS, 2014.

[35] S. Parambath, N. Usunier, and Y. Grandvalet. Optimizing F-measures by cost-sensitive classification. In
NIPS, 2014.

[36] S. Sabato, S. Ben-David, and S. Shalev-Shwartz. Multiclass learnability and the erm principle. In
Conference on Learning Theory, 2003.

[37] A. Sanyal, P. Kumar, P. Kar, S. Chawla, and F. Sebastiani. Optimizing non-decomposable measures with
deep networks. Machine Learning, 107(8-10):1597–1620, 2018.

11

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[38] C. Scott. Surrogate losses and regret bounds for cost-sensitive classification with example-dependent costs.
In International Conference on Machine Learning, 2011.

[39] Y. Sun, M. Kamel, and Y. Wang. Boosting for learning multiple classes with imbalanced class distribution.
In ICDM, 2006.

[40] E. Vernet, R. C. Williamson, and M. D. Reid. Composite multiclass losses. In NIPS, 2011.

[41] P. Vincent. An Introduction to Signal Detection and Estimation. Springer-Verlag, 1994.

[42] S. Wang and X. Yao. Multiclass imbalance problems: Analysis and potential solutions. IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(4):1119–1130, 2012.

[43] L. Wightman. Lsac national longitudinal bar passage study. Law School Admission Council, 1998.

[44] B. Yan, O. Koyejo, K. Zhong, and P. Ravikumar. Binary classification with karmic, threshold-quasi-concave
metrics. In ICML, 2018.

[45] B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-proportionate example weighting.
In International Conference on Data Mining, 2003.

[46] M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and K. P. Gummadi. Fairness constraints: Mechanisms for
fair classification. In AISTATS, 2017.

12

