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Abstract

We study the problem of online learning with primary and secondary losses. For
example, a recruiter making decisions of which job applicants to hire might weigh
false positives and false negatives equally (the primary loss) but the applicants
might weigh false negatives much higher (the secondary loss). We consider the
following question: Can we combine “expert advice” to achieve low regret with
respect to the primary loss, while at the same time performing not much worse
than the worst expert with respect to the secondary loss? Unfortunately, we show
that this goal is unachievable without any bounded variance assumption on the
secondary loss. More generally, we consider the goal of minimizing the regret with
respect to the primary loss and bounding the secondary loss by a linear threshold.
On the positive side, we show that running any switching-limited algorithm can
achieve this goal if all experts satisfy the assumption that the secondary loss does
not exceed the linear threshold by o(7") for any time interval. If not all experts
satisfy this assumption, our algorithms can achieve this goal given access to some
external oracles which determine when to deactivate and reactivate experts.

1 Introduction

The online learning problem has been studied extensively in the literature and used increasingly in
many applications including hiring, advertising and recommender systems. One classical problem in
online learning is prediction with expert advice, in which a decision maker makes a sequence of T'
decisions with access to K strategies (also called “experts”). At each time step, the decision maker
observes a scalar-valued loss of each expert. The standard objective is to perform as well as the best
expert in hindsight. For example, a recruiter (the decision maker) sequentially decides which job
applicants to hire with the objective of minimizing errors (of hiring an unqualified applicant and
rejecting a qualified one). However, this may give rise to some social concerns since the decision
receiver has a different objective (getting a job) which does not receive any attention. This problem
can be modeled as an online learning problem with the primary loss (for the decision maker) and
secondary loss (for the decision receiver). Taking the social impact into consideration, we ask the
following question:

Can we achieve low regret with respect to the primary loss, while performing
not much worse than the worst expert with respect to the secondary loss?

Unfortunately, we answer this question negatively. More generally, we consider a bicriteria goal of
minimizing the regret to the best expert with respect to the primary loss while minimizing the regret
to a linear threshold ¢T" with respect to the secondary loss for some c¢. When the value of c is set to the
average secondary loss of the worst expert with respect to the secondary loss, the objective reduces to
no-regret for the primary loss while performing no worse than the worst expert with respect to the
secondary loss. Other examples, e.g., the average secondary loss of the worst expert with respect
to the secondary loss among the experts with optimal primary loss, lead to different criteria of the
secondary loss. Therefore, with the notion of regret to the linear threshold, we are able to study a
more general goal. Based on this goal, we pose the following two questions:
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1. If all experts have secondary losses no greater than ¢T" + o(T') for some ¢, can we achieve
no-regret (compete comparably to the best expert) for the primary loss while achieving
secondary loss no worse than ¢I" 4 o(7")?

2. If we are given some external oracles to deactivate some “bad” experts with unsatisfactory
secondary loss, can we perform as well as each expert with respect to the primary loss
during the time they are active while achieving secondary loss no worse than ¢I" + o(T')?
These two questions are trivial in the i.i.d. setting as we can learn the best expert with respect to the
primary loss within O(log(7")) rounds and then we just need to follow the best expert. In this paper,
we focus on answering these two questions in the adversarial online setting.

1.1 Contributions

An impossibility result without a bounded variance assumption We show that without any
constraints on the variance of the secondary loss, even if all experts have secondary loss no greater
than ¢TI, achieving no-regret with respect to the primary loss and bounding secondary loss by
¢TI + O(T) is still unachievable. This answers our motivation question that it is impossible to achieve
low regret with respect to the primary loss, while performing not much worse than the worst expert
with respect to the secondary loss. This result explains why minimizing one loss while bounding
another is non-trivial and applying existing algorithms for scalar-valued losses after scalarizing
primary and secondary losses does not work. We propose an assumption on experts that the secondary
loss of the expert during any time interval does not exceed ¢T" by O(T*) for some « € [0, 1).

Then we study the problem in two scenarios, a “good” one in which all experts satisfy this assumption
and a “bad” one in which experts partially satisfy this assumption and we are given access to an
external oracle to deactivate and reactivate experts.

Our results in the ““good” scenario In the “good” scenario, we show that running an algorithm
with limited switching rounds such as Follow the Lazy Leader [Kalai and Vempala, |2005] and
Shrinking Dartboard (SD) [Geulen et al.,|2010] can achieve both regret to the best with respect to

the primary loss and regret to cI' with respect to the secondary loss at O(THTQ ). We also provide a
lower bound of Q(7%).

From another perspective, we relax the “good” scenario constraint by introducing adaptiveness to the
secondary loss and constraining the variance of the secondary loss between any two switchings for
any algorithm instead of that of any expert. We show that in this weaker version of “good” scenario,

the upper bound of running switching-limited algorithms matches the lower bound at @(THT& ).

Our results in the “bad” scenario In the “bad” scenario, we assume that we are given an external
oracle to determine which experts to deactivate as they do not satisfy the bounded variance assumption.
We study two oracles here. One oracle deactivates the experts which do not satisfy the bounded
variance assumption once detecting and never reactivates them. The other one reactivates those
inactive experts at fixed rounds. In this framework, we are limited to select among the active experts
at each round and we adopt a more general metric, sleeping regret, to measure the performance of the
primary loss. We provide algorithms for the two oracles with theoretical guarantees on the sleeping
regrets with respect to the primary loss and the regret to ¢I" with respect to the secondary loss.

1.2 Related work

One line of closely related work is online learning with multi-objective criterion. A bicriteria setting
which examines not only the regret to the best expert but also the regret to a fixed mixture of all
experts is investigated by |Even-Dar et al.|[2008]], Kapralov and Panigrahy| [201 1], |Sani et al.[[2014].
The objective by |[Even-Dar et al.|[2009] is to learn an optimal static allocation over experts with
respect to a global cost function. Another multi-objective criterion called the Pareto regret frontier
studied by |[Koolen| [2013]] examines the regret to each expert. Different from our work, all these
criteria are studied in the setting of scalar-valued losses. The problem of multiple loss functions
is studied by |(Chernov and Vovk| [2009] under a heavy geometric restriction on loss functions. For
vector losses, one fundamental concept is the Pareto front, the set of feasible points in which none
can be dominated by any other point given several criteria to be optimized [Hwang and Masud,
2012} |Auer et al.| | 2016]. However, the Pareto front contains unsatisfactory solutions such as the one
minimizing the secondary loss, which implies that learning the Pareto front can not achieve our goal.
Another classical concept is approachability, in which a learner aims at making the averaged vector
loss converge to a pre-specified target set [Blackwell et al.,|1956| |Abernethy et al.,|2011]]. However,



we show that our fair solution is unapproachable without additional bounded variance assumptions.
Approachability to an expansion target set based on the losses in hindsight is studied by Mannor et al.
[2014]. However, the expansion target set is not guaranteed to be meet our criteria. Multi-objective
criterion has also been studied in multi-armed bandits [Turgay et al., [2018]].

2 Model

We consider the adversarial online learning setting with a set of K experts H = {1,..., K}.
Atround t = 1,2,...,T, given an active expert set H; C H, an online learner .A computes a
probability distribution p; € Ak over H with support only over H; and selects one expert from p.
Simultaneously an adversary selects two loss vectors égl), EEQ) € [0, 1]%, where éil,z and ﬁgz are the
primary and secondary losses of expert h € H at time t. Then .A observes the loss vector and incurs

expected losses Et A=Dy é( fori € {1,2}. Let LT h = Zt N4 denote the loss of expert / and

L%?A = thl ptTﬁg ?) denote the loss of algorithm A for i € {1, 2} during the first 7" rounds. We
will begin by focusing on the case that the active expert set H; = H.

2.1 Regret notions

Traditionally, the regret (to the best) is used to measure the scalar-valued loss performance of a
learner, which compares the loss of the learner and the best expert in hindsight. Similar to [Even-Dar
et al.|[2008]], we adopt the regret notion of A with respect to the primary loss as
1 1 . 1
Reg M 2 ax <ng7)A - irélﬁLgﬂ)h, 1) .

We introduce another metric for the secondary loss called regret to ¢I" for some ¢ € [0, 1], which
compares the secondary loss of the learner with a linear term cT’,

Regg) £ max (Lg?_?A — T, 1) .

Sleeping experts are developed to model the problem in which not all experts are available at all
times [Bluml {1997, [Freund et al.,[1997]]. At each round, each expert i € H decides to be active or
not and then a learner can only select among the active experts, i.e. have non-zero probability p;
over the active experts. The goal is to perform as well as h* in the rounds where h* is active for all
h* € ‘H. We denote by H; the set of active experts at round ¢. The sleeping regret for the primary
loss with respect to expert h* is defined as

SleepReg™V (h*) max( Z Z D, hét W= Z E( e ) .

t:h*€Hy heHy t:h*c€H;,
The sleeping regret notion we adopt here is different from the regret to the best ordering of experts in
the sleeping expert setting of |[Kleinberg et al.|[2010]. Since achieving the optimal regret bound in
Kleinberg’s setting is computationally hard [Kanade and Steinke}, 2014]], we focus on the sleeping
regret notion defined above.

2.2 Assumptions

Following a standard terminology, we call an adversary oblivious if her selection is independent of
the learner’s actions. Otherwise, we call the adversary adaptive. First, we assume that the primary
loss is oblivious. This is a common assumption in the online learning literature and this assumption
holds throughout the paper.

Assumption 1. The primary losses {62(51) }ee|r) are oblivious.

For an expert i € H, we propose a bounded variance assumption on her secondary loss: the average
secondary loss for any interval does not exceed ¢ much. More formally, the assumption is described
as below.
Assumption 2. For some given ¢, d, « € [0,1] and for all expert h € H, for any Ty, T5 € [T] with
Ty <71,

T>

> (67 — o) < o7

t=T\



We show that such a bounded variance assumption is necessary in Section[3] We call a scenario “good”
if all experts satisfy assumption[2] Otherwise, we call the scenario “bad”. This “good” constraint can
be relaxed by introducing adaptiveness to the secondary loss. We have a relaxed version of the “good”
scenario in which the average secondary loss between any two switchings does not exceed ¢ much
for any algorithm. More formally,

Assumption 2'. For some given c, 6, o € [0, 1), for any algorithm A, let Ay € H denote the selected
expert at round t. For any expert h € H and Ty € [T] such that Ay, = h and A, _1 # h (where
Ar1 = T Ay = 0 for notation simplicity), we have

mings 7y A, 20 t—1

> (@ -c) <ot

T:Tl

In the “good” scenario, the active expert set H; = H for all rounds and the goal is minimizing both
Reg(l) and Reg?). In the “bad” scenario, we consider that we are given an oracle which determines
H, at each round and the goal is minimizing SleepReg " (h*) for all h* € # and Reg'®.

3 Impossibility result without any bounded variance assumption

In this section, we show that without any additional assumption on the secondary loss, even if all
experts have secondary loss no greater than ¢ for some ¢ € [0, 1], there exists an adversary such
that any algorithm incurs E[max(Reg™™, Reg®)] = Q(T).

Theorem 1. Given a fixed expert set H, there exists an adversary such that any algorithm will incur

C
the randomness of the adversary.

E[max(Reg”, Reg®)] = Q(T) with ¢ = maxpex Lg?’)h/T, where the expectation is taken over

Proof. To prove this theorem, we construct a binary classification example as below.

In a binary classification problem, for each sample with true label y € {4, —} and prediction
y € {+,—}, the primary loss is defined as the expected 0/1 loss for incorrect prediction, i.e.,
E,5 [1{@¢y}] and the secondary loss is defined as the expected 0/1 loss for false negatives, i.c.,
E,5 []l{g¢y7y=+}]. We denote by h(b) the expert predicting — with probability b and + otherwise.
Then every expert can be represented by a sequence of values of b. At round ¢, the true label is negative
with probability a. We divide T into two phases evenly, {1,...,7/2} and T'/2 + 1,...,T, in each
of which the adversary generates outcomes with different values of a and two experts H = {hq, h2}
have different values of b in different phases. We construct two worlds with different values of a
and b in phase 2 and any algorithm should have the same behavior in phase 1 of both worlds. The
adversary randomly chooses one world with equal probability. The specific values of a and b are
given in Table[I] Let ¢ = 1/16.

Table 1: The values of a and b in different phases for the binary classification example.

experts\phase | 1:a =2

2:a=2(world]) | 2:a =2 (worldII)

hy | b=% | b=0 \ b=35
b [ b=0 | b=f | b=0
The loss of expert h(b) is Eilz(b) = (1—-a)b+a(l —b)and éf}i(b) = (1 — a)b. In phase 1 and

phase 2 of world IT, £} = 7/12,£1%) =1/16, (') =5/8 and ({°) = 0. In phase 2 of world I,
EE},}H = 3/4, 65/321 =0, 8%2 =1/2and 65/72}22 = 1/8. For any h € H, we have Lg,?)h <T/16.

For any algorithm which selects h; for T3 (in expectation) rounds in phase 1 and 7% (in expectation)
rounds in phase 2 of world L If T} < T'/4, then Reg)) > (T/2 — T})/24 > T/96 in world
IL; else if T} > T/4 and Ty > T} /4, then Reg'® > Tp/4 — T1/24 > T/192 in world I; else
Reg® = T,/16 + (T/2 — T»)/8 — T/16 = (T} — 2T5)/16 > T/128 in world 1. In any case, we
have E[max(Reg), Reg®)] = Q(T). O

C



The proof of Theorem [I] implies that an expert with total secondary loss no greater than ¢T" but
high secondary loss at the beginning will consume a lot of budget for secondary loss, which makes
switching to other experts with low primary loss later costly in terms of secondary loss. The theorem
answers our first question negatively, i.e., we are unable to achieve no-regret for primary loss while
performing as well as the worst expert with respect to the secondary loss.

4 Results in the ‘“‘good” scenario

In this section, we consider the problem of minimizing max(Reg(l), Regg)) with Assumption

or |2/l We first provide lower bounds of (7'%) under Assumptionand of Q(THTQ) under Assump-
tion |2’} Then we show that applying any switching-limited algorithms such as Shrinking Dartboard
(SD) [Geulen et al.,[2010] and Follow the Lazy Leader (FLL) [Kalai and Vempalal 2005] can achieve

14+

max(Reg!), Reg'?) = O(T"2") under Assumption or which matches the lower bound under
Assumption

4.1 Lower bound

Theorem 2. If Assumption 2| holds with some given c, 0, cv, then there exists an adversary such that
any algorithm incurs E[max(Reg”, Reg(?)] = Q(T).

Proof. We construct a binary classification example to prove the lower bound.

The losses and the experts H = {hq, ha} are defined based on h(b) in the same way as that in the
proof of Theorem [I] We divide T" into 3 phases, the first two of which have 7 rounds and the third
has T'— 27 rounds. Each expert has different bs in different phases as shown in Table[2] At each
time ¢, the sample is negative with probability 3/4. We set ¢ = 0.

Since (Ei,lﬁ(mifﬁ(m) = (3/4,0) and (4,1}2(1)’4,22(1)) = (1/4,1/4), the cumulative loss for both
experts are (L(Tl,)h, L(T2)h) = (3T/4—T%/2,T*/4). Any algorithm A achieving L(Tl)h <3T/4-T%/4

will incur Reg(® > T°/8. O

Table 2: The values of b in different phases for the binary classification example.

experts\phase | 1:7% | 2: 7% | 3:T — 2T
hy | b=1]b=0] b=0
hy | b=0|b=1] b=0

Combined with the classical lower bound of 2(+/T) in online learning [Cesa-Bianchi and Lugosi,
2006], E[max(Reg™, Reg?)] = Q(max(T*,v/T)). In the relaxed version of the “good” scenario,
we have the following theorem.

Theorem 3. If Assumption holds with some given ¢, d, «, then there exists an adversary such that

any algorithm incurs Elmax(Reg”, Reg(?)] = Q(T2%).

Sketch of the proof Inspired by the proof of the lower bound by |Altschuler and Talwar| [2018]],

1+
T)

we construct an adversary such that any algorithm achieving Reg(l) = 0O(T has to switch

for some number of times. For the secondary loss, the adversary sets 42}2 = conly if h has been
selected for more than 7" rounds consecutively until time ¢ — 1; otherwise fﬁf = ¢+ ¢. In this case,

every switching will increase the secondary loss. Then we can show that either Reg(l) or Regf) is
Q(THT& ). The complete proof can be found in Appendix

4.2 Algorithm

Under Assumption2|or[2/] we are likely to suffer an extra 7' secondary loss every time we switch
from one expert to another. Inspired by this, we can upper bound maX(Reg(l), Regg)) by limiting
the number of switching times. Given a switching-limited learner £ on scalar-valued losses, e.g.,
Shrinking Dartboard (SD) [Geulen et al.l [2010] and Follow the Lazy Leader (FLL) [Kalai and
Vempala, 2005]], our algorithm Agy, (L) is described as below.



We divide the time horizon into 7'~ epochs evenly and within each epoch we select the same
expert. Lete; = {(: — 1)T* +1,...,i¢T“} denote the i-th epoch and Egl)h = iee, Ei,l,Z/TO‘ denote
the average primary loss of the i-th epoch. We apply £ over {gg,)h}he?t fori=1,..., 717 Let
ss(F) and rg1,(E) denote the expected number of switching times and the regret of running £ for
E rounds. Then we have the following theorem.

Theorem 4. Under Assumption or given a switching-limited learner L, Asy, (L) achieves
Reg!!) < Trsp,(T'*) and Reg'® < 6T (ssL(T'~) 4+ 1). By adopting SD or FLL as the
learner L, Asy,(SD) and Asy,(FLL) achieve max(Reg", Reg®) = O(y/log(K)T1+2),

Proof. It is obvious that RegY) < Trgp,(T1~*). We denote by S the random variable of the
total number of switching times and 71, ..., 7s the time steps the algorithm switches. For no-

tation simplicity, let 7o = 1 and 7941 = T + 1. Then Reg!®? = E A[Zle(éat —0o)] <
EA[YS o it (0P — o)) < B[S 8T = 6T%(ssL(T"®) + 1). Both SD and FLL

t=7g
have ssp,(T1~%) = O(y/log(K)T*~) and r1, (T =) = O(y/log(K)T1~<) [Geulen et al., 2010,
Kalai and Vempalal 2005]], which completes the proof. L]

AsL(SD) and Agp, (FLL) match the lower bound at ©(T"" ) under Assumption 2/} But there is a

gap between the upper bound O(THTQ) and the lower bound Q(7'%) under Assumption [2| which
is left as an open question. We investigate this question a little bit by answering negatively if the
analysis of Agr,(£) can be improved to achieve O(T'%). We define a class of algorithms which
depends only on the cumulative losses of the experts, i.e., there exists a function g : R?X — AK

such that p;, = g(Lgi)l, Lz(i)1>~ Many classical algorithms such as Exponential Weights [Littlestone
et al.,|1989]] and Follow the Perturbed Leader [Kalai and Vempala, 2005| are examples in this class.
The following theorem show that any algorithm dependent only on the cumulative losses cannot

achieve a better bound than Q(T" " ), which provides some intuition on designing algorithms for
future work. The detailed proof can be found in Appendix [B]

Theorem S. Under Assumption |2} for any algorithm only dependent on the cumulative losses of the
experts, E[max(Reg", Reg™®)] = Q(T%%).

5 Results in the ‘“bad’ scenario

In the “bad” scenario, some experts may have secondary losses with high variance. To compete
with the best expert in the period in which it has low variance, we assume that the learner is given
some fixed external oracle determining which experts to deactivate and reactivate. In this section,

we consider the goal of minimizing SleepReg'" (h*) for all h* € H and Reg®. Here we study two
oracles: one deactivates the “unsatisfactory” expert if detecting high variance of the secondary loss
and never reactivates it again; the other one deactivates the “unsatisfactory” expert if detecting high
variance of the secondary loss and reactivates it at fixed time steps.

5.1 The first oracle: deactivating the ‘“unsatisfactory’ experts

The oracle is described as below. The active expert set is initialized to contain all experts H; = H.
Attimet = 1,..., T, welet AH, = {h € H, : 3 < t,5'_,, (ff,{ —¢) > 0T} denote the
set of active experts which do not satisfy Assumption 2] Then we remove these experts from the
active expert set, i.e., H; 11 = H; \ AH;. We assume that there always exist some active experts, i.e.

Hr # 0.

One direct way is running Agr,(£) as a subroutine and restarting Agy,(£) at time ¢ if there exist
experts deactivated at the end of ¢t — 1, i.e., AH;_; # (). However, restarting will lead to linear
dependency on K for sleeping regrets. To avoid this linear dependency, we construct pseudo primary
losses for each expert such that if & is active at time ¢, 251,3 = éi}}z; otherwise, Z?}z = 1. The
probability of selecting inactive experts degenerates due to the high pseudo losses. For those inactive
experts we cannot select, we construct a mapping f : ‘H — H, which maps each expert to an active
expert. If Agy,(£) decides to select an inactive expert h at time ¢, we will select f(h) instead. The
detailed algorithm is described in Algorithm[I] Although the algorithm takes « as an input, it is
worth to mention that the algorithm only uses « to decide the length of each epoch. We can choose a
different epoch length and derive different regret upper bounds.



Algorithm 1 A,

: Input: T, H, o and a learner £
: Initialize f(h) = hforall h € H.
: Start an instance Agy, (£).
fort=1,...,T do
Get expert h; from Agp,(£).
Select expert f(h;).
Feed 0\ to Asy.(L).
For all h with f(h) € AHy, set f(h) = hg, where hg is any expert in H4 1.
end for

—

W Uk

Theorem 6. Let T}« denote the number of rounds where expert h* is active. Running Algorithm|[I]
with learner L being SD or FLL can achieve

SleepRegV (h*) = O(y/1og(K)Tj-T?) (D)
forall h* € H and
Reg® = O(y/log(K) T+ + KT%) . 2)
Proof. Since Eg?h < Efi?h, we have
e Ty T+ Ty
SleepReg") (h*) = (Z EA [41” - nglﬁ> < (Z Ea [Elf)t] - ZZ%)
t=1 = t=1 t=1

:O( IOg(K)Th*TO‘) ;

where the last step uses the results in Theorem @ It is quite direct to have Regf) =

O(0T*(\/log(K)T'—= + K)) = O(y/log(K)T1*+> + KT*), where the first term comes from

the number of switching times for running Agy, and the second term comes from an extra switching
caused by deactivating one expert. O

For the sleeping regret for expert h*, the right hand side in Eq. (I)) is o(T},+ ) if Tj» = w(T'®), which
is consistent with the impossibility result without bounded variance in Section (3] When « > 1/2, the
right hand side of Eq. (2) is dominated by K'T*. This linear dependency on K is inevitable if we

want to have SleepRegg*) = 0o(Ty~) for all h* € H. The proof is given in Appendix
Theorem 7. Let Ty« = w(T®) for all h* € H. There exists an adversary such that any algorithm
achieving SleepReg,(:*) = o(Ty-) for all b* € H will incur Reg'?) = Q(KT®) for K = O(log(T)).

5.2 The second oracle: reactivating at fixed times

Now we consider the oracle which deactivates the unsatisfactory experts once detecting and reactivate
them at fixed times. The oracle is described as follows. At given N + 1 fixed time steps tg =
Lty .., tx witht, 1 —t, = Q(T?) for some 3 > o (where t 1 = T+ 1 for notation simplicity),
the active expert set H; is reset to H. Attime ¢t =¢,,,...,t,41 —2foranyn =0, ..., N, the experts
AHy = {h € H; : It suchthatt,, < t' <t Zi:t,(ﬁgz —¢) > 6T} will be deactivated, i.e.
Hip1 = He \ AH;. We assume that there always exists some satisfactory experts, i.e. Hy, 1 # 0
foralln=1,...,N + 1.

Restarting Algorithm|l|at ¢ = g, ...,tx is one of the most direct methods. Let 7™ denote the

h*

number of rounds ~* is active during t = t,,,...,t+1 — 1 and Ty = Zﬁ;o T;(Lf) denote the total
number of rounds h* is active. Then we have SleepReg;ll*) = O(ZZLO log(K )T}(Lf)T‘l) =
O(\/1og(K)T,»T*N) and Reg® = O (V1og(K)T%(tyi1 — tn) + KT))

O(\/1og(K)T™oN + NKT®).

However, if all experts are active all times, then the upper bound of SleepReg(l) (h*) for the algorithm
of restarting is O(y/log(K)T't*N) = O(y/log(K)T?*+>=F), which is quite large. We consider



a smarter algorithm with better sleeping regrets when Tj~ is large. The algorithm combines the
methods of constructing meta experts for time-selection functions by |Blum and Mansour| [2007] to
bound the sleeping regrets and inside each interval, we select experts based on SD [Geulen et al.|
2010]] to bound the number of switching times. We run the algorithm in epochs with length T
and within each epoch we play the same expert. For simplicity, we assume that the active expert
set will be updated only at the beginning of each epoch, which can be easily generalized. Let

={(@—1)T*+1,...,77*} denote the i-th epoch and E' = {e; };c|11-~] denote the set of epochs.
We let éél,)L D otce Eil,Z/TO‘ and 62134 = ice Z(l) ,/T denote the average primary loss of expert
h and the algorithm. And we let H, and AH, denote the active expert set at the beginning of epoch
e and the deactivated expert set at the end of epoch e. Then we define the time selection function for
epoch e as I« (e) = 1(h* is active in epoch e) for each h* € H. Then we construct K meta experts
for each time selection function. Similar to Algorithm|I] we adopt the same expert mapping function
f and using pseudo losses Z(l) = Z(li if h is active and Z( ) = 1 if not. The detailed algorithm is
shown as Algorithm[2] Then we have the following theorem the detailed proof of which is provided
in Appendix [D]

Theorem 8. Running Algorithm l can achieve

SleepReg™ (h O(v/10g(K)T™He + Ty« /log(K)To=1) |
forall h* € H and
Reg'? = O(y/log(K)T*e +log(K)T*N + NKT®) .
Algorithm 2 I achieves o(T},~ ) sleeping regrets for h* with Ty« = w(T" ") and outperforms restarting
Algorithm |I|when NTj,- = w(T). SleepReg™ (h*) of Algorlthmls O(y/log(K)T,}+*) when
Ty~ = O(T), which matches the results in Theorem 4]

Algorithm 2 A,
1: Input: T, H, o and n

2: Initialize f(h) = h forall h € H.

3: wh, = & forall h € 1, forall h* € H.

4: form=1,...,T' > do

50 Wi = Y p Ins(em)w mh,W =3, Wi,p and ppy p, = T

6: ifm e {(t, — 1)/T1 @ + 1}, then get h,, from p,,. else

7:  With prob. m, get hyy, = Ay —1; with prob. 1 — — "_Llhh - get Pl from pp,.
8: endif

9:  Select expert f(hy,).

10 Update wh, , , = wh’,yne em =Tl 0+ for all b, h* € M.

11:  Forall h with f(h) € AH,, , set f(h) = ho, where hg is any expert in Hepir
12: end for

6 Discussion

We introduce the study of online learning with primary and secondary losses. We find that achieving
no-regret with respect to the primary loss while performing no worse than the worst expert with
respect to the secondary loss is impossible in general. We propose a bounded variance assumption
over experts such that we can control secondary losses by limiting the number of switching times.
Therefore, we are able to bound the regret with respect to the primary loss and the regret to ¢I" with
respect to the secondary loss. Our work is only a first step in this problem and there are several open
questions.

One is the optimality under Assumption As aforementioned, our bounds of max(Reg(l)7 Regf))
in the “good” scenario are not tight and we show that any algorithm only dependent on the cumulative

losses will have Reg(l) = Q(THTQ ), which indicates that the optimal algorithm cannot only depends

on the cumulative losses if the optimal bound is o(T' N ). Under Assumption [2’] the upper bound
of the algorithm of limiting switching matches the lower bound. This possibly implies that limiting
switching may not be the best way to make use of the information provided by Assumption



In the “bad” scenario with access to the oracle which reactivates experts at fixed times, our sleeping
regret bounds depend not only on 7}~ but also on 7', which makes the bounds meaningless when
Ty~ is small. It is unclear if we can obtain optimal sleeping regrets dependent only on 7}~ for all
h* € H. The algorithm of Adanormalhedge by |Luo and Schapire|[2015]] can achieve sleeping regret
of O(v/Ty+) without bound on the number of switching actions. However, how to achieve sleeping
regret of o(T},~) with limited switching cost is of independent research interest.

In the “bad” scenario where Assumption[2]does not hold, we assume that ¢ is pre-specified and known
to the oracle. Theorem show that achieving max(Reg", Reg(?) = o(T') with ¢ = max, ng, )h is
impossible without any external oracle. How to define a setting an unknown c and design a reasonable

oracle in this setting is an open question.

Broader Impact

This research studies a society-constrained online decision making problem, where we take the
decision receiver’s objective into consideration. Therefore, in a decision making process (e.g.
deciding whether to hire a job applicant, whether to approve a loan, or whether to admit a student
to an honors class), the decision receiver (e.g., job applicants, loan applicants, students) could
benefit from our study at the cost of increasing the loss of the decision maker (e.g., recruiters,
banks, universities) a little. The consequences of failure of the system and biases in the data are not
applicable.
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A Proof of Theorem

Theorem 3. If Assumption[2| holds with some given c, §, o, then there exists an adversary such that
14+ )

any algorithm incurs E[max(Reg!), Reg®)] = Q(T =

Proof. We construct an adversary with oblivious primary losses and adaptive secondary losses to
prove the theorem. The adversary is inspired by the proof of the lower bound by |Altschuler and
Talwar] [2018]]. We divide T into 7'~ epochs evenly and the primary losses do not change within
each epoch. Let [t]. = ming,,.,,7e> mT* denote the last time step of the epoch containing time
step t. For each expert h € H, at the beginning of each epoch, we toss a fair coin and let 651,2 =0if
it is head and Eglli = 1ifiitis tail. It is well-known that there exists a universal constant a such that

E [minpey Zp] = E/2 — ar/Elog(K) where Zj, ~ Bin(FE, 1/2). Then we have

For algorithm A, let A, denote the selected expert at time ¢. Then we construct adaptive secondary
losses as follows. First, for the first 7'“ rounds, 42}3 =c+dforallh € H.Fort > T +1,

6(2) _ C if h = At—l =...= At_Ta
th ¢+ 6 otherwise ’

This indicates that the algorithm can obtain EE?}M = c only by selecting the expert she has consecu-

tively selected in the last 7' rounds and that each switching leads to 42}% = ¢+ 0. Let S denote the
total number of switchings and 74, . . ., 75 denote the time steps .4 switches. For notation simplicity,

let s,y = T+1. IfE {L;l)A] > T/2—aT™5* \/log(K) /2, then E [Reg“)} > a5 \/log(K) /2;
otherwise,

T 1 @ T o

3~ 5E <E {L(Tl{d <3- aT % \/log(K)/2,
where Eq. (a) holds due to that the s-th switching helps to decrease the expected primary loss by at

most min (7541 — s, [Ts]e + 1 — 75) /2. Since the s-th switching increases the secondary loss to
¢+ ¢ for at least min (7541 — 1 — 75, T*) rounds, then we have

S
Zmin (Tsa1 — Tsy [Ts]e + 1 — 75)
s=1

E[L{,] 2T+ oE ZS: min(7, 41 — 75, T°)
s?
>cT + 0E Zmin (Ts1 — Tsy [Ts]e + 1 — Ts)‘|
s=1
>cT + 6aT Vog(K),
which indicates that E [Reg?)} = Q(THTH) Therefore, E {max (Reg(l), Regf))} >
max (IE {Reg(l)} JE [Regf)]) = Q(THTQ) U

B Proof of Theorem 3

Theorem 5. Under Assumption 2] for any algorithm only dependent on the cumulative losses of the
experts, E[max(Reg("), Reg(?)] = Q(T%%).

Proof. We divide T into 7"~ intervals evenly with 8 = 12 and construct 7" ~# + 1 worlds with

2 experts. For computation simplicity, we let § = 1/2. The adversary selects a random world W at
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the beginning. She selects world 0 with probability 1/2 and world w with probability 1/271~# for
allw € [T*7].

In world 0, we design the losses of experts as shown in Table[3] During the w-th interval with w €
[T"7) being odd, we set (£}) | £2) [ ¢8)) 02) ) = (0,c+0T% 7, 1,c— T P) for the first T7 /2

rounds and (Eilgl éizle 6;1}?2 6%2) = (1,¢,0, ¢) for the second 7 /2 rounds. For w being even, we

swap the losses of the two experts, i.e., (ft I 42}12 €§1h2 €§2h2) (1,c—6T*7P,0,c+6T*P) for
the first 7% /2 rounds and (61(52,21 , 472}31 oY) s €§2h2) = (0,¢,1,c) for the second T /2 rounds.

The intuition of constructing world w € [T*~#] is described as below. In world w, the secondary loss
is the same as that in world 0. The primary losses of each expert h € H in the first w — 1 intervals
are an approximately random permutation of that in world 0. Therefore, any algorithm will attain
almost the same expected primary loss (around (w — 1)77/2) in the first w — 1 intervals of world w.
The primary losses during the first 7 /2 rounds in the w-th interval are the same as those in world
0. Therefore, the cumulative losses from the beginning to any time ¢ in the first half of the w-th
interval are almost the same in world 0 and world w, which makes the algorithm only dependent on
the cumulative losses behave nearly the same during the first half of the w-th interval in two worlds.
Fort = (w—1/2)T% +1,...,T, we set Et , = 1forall h € H, which indicates that any algorithms
are unable to improve their primary loss after t = (w — 1/2)T# + 1. To prove the theorem, we show
that if the algorithm selects expert i with loss (1, ¢ — 67>~ ?) during the first half of the w-th interval
with large fraction, then Reg( ) will be large in world w; otherwise, Reg( ) will be large in world 0.

More specifically, for the first w — 1 intervals in world w, we need to make the cumulative primary
losses to be (w — 1)7% /2 with high probability. Let ' = (w — 1)T” — 2,/ (w — 1)T? log(T). For
t=1,...,t, Egl,z are i.i.d. samples from Ber(1/2) for all h € H. We denote by E}(Lw) the event of

Zil 1(6(1) —-1/2) ‘ < /(w —1)TPlog(T) and denote by E the event of Mj,cy we[Tl—B]E(W). If

E(w) N E(w) holds we compensate the cumulative primary losses by assigning Kt , = 1for (w—

)Tﬂ/2 e h ) rounds and £") . = 0 for the remaining rounds during ¢ = ¢'+1,..., (w—1)T"
forallh € H such that the cumulatlve primary losses in the first w — 1 intervals for both experts are

(w—1)T? /2 ; otherwise, we set 5(1) = 1 forall h € H duringt =t +1,..., (w— 1)T”. Hence, if

E,(:”lu) N E(w) the cumulative losses L( e = = (w—1)T?/2 for all h € H. To make it clearer,

the values of the secondary losses in world w for an even w if E, (w) NnE, (w) holds are illustrated in
Table @]

_ 8
Let g, = 2 Zii(wli 21))TT,3 L E []1 (Eiljlf = O)] /T? denote the expected fraction of selecting the

expert with losses (0, c + d7%#) in w-th interval in world 0 as well as that in world w when E
holds. We denote by Reg(h'*) = L%’ff) — L(Tlf) and Reg(1 w) L(1 w) _ L(I;L”) with hg =

arg ming 4 L% ’,i“) being the best expert in hindsight the regret with respect to the primary loss for

all times and the regret incurred during ¢ = 1, ...t in world w. We denote by Regg’“’)

cT" with respect to the secondary loss in world w. Then we have
0(2qy — 1)T*
E[Reg®™) W =0] = 3" o290 -~ UT7

2
we[T1—F]

the regret to

and for all w € [T1~4],

E[Reg(l’W”W:w,E} >(1—-gq )%—&—E[Regt, W = w, E} (w—-1)T° )

(1—qw>f —2y/(w — )T log(T).
Due to Hoeffding’s inequality and union bound, we have P [ﬂEéw)} < % for all h € H and

we [T Pland P[-E] < —. Let Q = Z‘“Tll 52 denote the average of q,, over all w € [T174].

By taking expectation over the adversary, we have
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E {max (Reg(l), Reggz))}
>P[E] - E [max (Reg<1> Reg ) |E]

T8
> (1 - Tﬁﬂ) 2T1 i O E [Reg"™) W = w, B + %IE [Reg®™) W =0, B]

w=1

T'=F

2% 27_‘%6 Z(l*(]w7722\/w71Tﬁ10g iZQQw

w

é(1 —Q)T? — \/Tlog(T) + §(2Q —1)Ti-Ate
2% e _ T log(T), 3)
where Eq. (3) holds by setting 5 = “£% and § = 1/2. O
Table 3: The losses in world 0.
experts\ime | T%/2 | TF/2 | TF/2 | TP/2| TP/2 | ...
I | @ 0 I 1 |0 | 0 | ...
‘ (@ ‘c+5T“’/5 ‘ c ‘cféTa*ﬁ ‘ c ‘c+5TQ’ﬂ ‘
hy | @ 1 o0 | 0 |1 1 | ...
‘ (@ ‘ c— 0T 8 ‘ c ‘ c+ 0T h ‘ c ‘ c— 0T 8 ‘
Table 4: The primary losses in world w (which is even) if Ef(;f) N Ef(;:) holds.
experts\time | t | (w=1)TF ¢ | TF/2 | TP)2 | T-TF
hy ‘ ¢ ‘ ii.d. from Ber(1/2) ‘ compensate ‘ 1 ‘ 1 ‘ 1
ho | M | iid. fromBer(1/2) | compensate | 0 | 1 | 1

C Proof of Theorem

Theorem 7. Let T}« = w(T'%) for all h* € H. There exists an adversary such that any algorithm
achieving SleepRegEll*) = o(Ty,-) for all b* € H will incur Reg'® = Q(KT?) for K = O(log(T)).
Proof. The idea is to construct an example in which the best expert with respect to the primary

loss is deactivated sequentially while incurring an extra ©(7) secondary loss. In the example, we
set H = [K]. Let T}, = TR for k € [K] and TO = O For each expert k € H, we set

(Eilk),fm)) (1,¢) fort < Ty_q and (61(51,3,6(2)) (0,c+ = -) fort > Tj;,—1 + 1. Then expert
k will be deactivate at time ¢ = T},. For any algorithm w1th SleepRegg) = o(Ty) forall k € H,
expert k should be selected for Tk — 2Ty 1 — o(T}) rounds during t = T,_1 + 1, ..., Ty. Therefore,
we have Reg(? > > okelK] Tk Tk ~(Thk — 2Tj—1 — o(Tk)) = Q(KT?). O

Ty —

D Proof of Theorem

Theorem 8. Running Algorithm l can achieve

SleepReg!" (h*) = O(y/log(K) T + Ty /log(K) T 1) ,
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forall h* € H and

Reg® = O(\/log(K )T+ + log(K)T*N + NKT®) .

Proof. Let f;ll’h*) = Zﬁ: Ih*(em)%efj’h and Zfi’h*) = ZT I (em)@( 4 denote the cumu-

m=1
lative pseudo primary losses of expert i and algorithm A during the time when h* is active. First,
: h* — o™ o Ine (em) (B =l )41 A NG)
since we update wy,, | , = W), 7 <, , withn € [1/v/2,1] and experts

will not be reactivated between (not 1nc1ud1ng) t, and ¢, 11, the probability of following the first
rule on Line 7 in Algorithm [2| which is w”:n*ilh”:” is legal. Then we show that at each epoch m,
the probability of getting h,,, = his P [hy, = h] = pm,p. The proof follows Lemma 1 by [Geulen
et al., 2010]. For an reactivating epoch m € {(t, — 1)/T® + 1}_, h,, is drawn from p,,, and thus,
P [hymm = h| = pm.p holds. For other epochs m ¢ {(t, — 1)/T> + 1}}_,, we prove it by induction.
Assume that P [h,,—1 = h] = pm—1., then

Bl = 1= Bl =1 5 Bl = 4 (1 )
Wm—1,h heH Wm—1,h'

Wm—1,h W, h Wm,, h Wm—1,n’ Wm,h!
= . + 1— .
h'eH

Wmfl Wm—1,h Wm Wmfl Wm—1,n’

= Pm,h -

To prove the upper bound on sleeping regrets, we follow Claim 12 by Blum and Mansour| [2007] to
show that 37, . wp , < Kn™ ! forallm € [T'~%].

First, we have

W 2(1 oA =Wn Z Pm, nll em7h - Z W, nll ewh - Z Z Ih*(em)wg,hzteij,h - @

heH heH heH h*cH

Then according to the definition of w” , , we have

wh
W41,k
heH ,h*eH
. ) 5
= E wﬁn,hnlh*(e”‘)wﬁm,h N, a)FL

heH ,h*eH

mh’

<n > wh, (1 — (L= n)Ip- (em)zifj,h) (1 +(1- n)Ih*(em)z(eiz,A)

heH ,h*eH

. * 1 1
Sl D D AT SRt N SR (Vi I A
heH ,h*eH heH ,h*eH

— E h*
=n wm,h )
heH ,h*eH

where the last inequality adopts Eq. (@). Combined with w{‘h = 1 forall h € H, h* € H, we have

e m
h* m h* _ N D 1Ih*(61)€ h - > 1Ih*(et) e; A+m
> hhe Woprp < K™ Since w4y g, = win < Ko™,

we have
_ 7(1,h™) 2log(K)
O F0m A=y + wgtifm
b "
By setting n = 1 — /2log(K)/T'~, we have SleepReg(l)(h*) < 2y/log(K)THe +

2T« +/log(K)T 1.

To derive Reg(2) we bound the number of switching times. We denote by S,, the number of epochs
in which some experts are deactivated during (t,, — 1)/7* + 1 <m < (tp+1 — 1)/T* + 1 and by
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T1,...,Ts, the deactivating epochs, i.e., AH,, # () fori € [S,,]. We denote by a, the probability
of following the second rule at line 7 in Algorithm 2] which is getting h,,, from p,,,. Then we have

O =Y Plhm=1] (h“”“”’) D - (1_ Wi ) _ Wmv_vl ~ W
m—1

Wy — _ Wy —
heH m—1,h heH m—1 m—1,h

Since W, , /Wi, 41 > n?m+177=1) we have

Tit1 Tit1 Tip1 - .
O < 1— log(1 — ) = 1 — oo [V Y Z 1410 m)
> S log(l—an) > o () o (e

m=1;+1 m=1;+2 m=r1;+2
<1+ 2\/§(Ti+1 =11 —-n)=1+4(ri41 — 1 — 1)/log(K)/T1—=.
Therefore, during time (¢, — 1)/7T“ < m < (tp41 — 1)/T?, the algorithm will switch at most K +
A(tny1—tn)\/1og(K)/TT=>+1 times in expectation, which results in Reg® < 46 /log(K)T o+
IN(K +1)T* = O(\/log(K)T*> + NKT®) O
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