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Abstract

Representation learning of graph-structured data is challenging because both graph
structure and node features carry important information. Graph Neural Networks
(GNNs) provide an expressive way to fuse information from network structure
and node features. However, GNNs are prone to adversarial attacks. Here we
introduce Graph Information Bottleneck (GIB), an information-theoretic principle
that optimally balances expressiveness and robustness of the learned representation
of graph-structured data. Inheriting from the general Information Bottleneck
(IB), GIB aims to learn the minimal sufficient representation for a given task by
maximizing the mutual information between the representation and the target, and
simultaneously constraining the mutual information between the representation
and the input data. Different from the general IB, GIB regularizes the structural as
well as the feature information. We design two sampling algorithms for structural
regularization and instantiate the GIB principle with two new models: GIB-Cat and
GIB-Bern, and demonstrate the benefits by evaluating the resilience to adversarial
attacks. We show that our proposed models are more robust than state-of-the-
art graph defense models. GIB-based models empirically achieve up to 31%
improvement with adversarial perturbation of the graph structure as well as node
features.

1 Introduction

Representation learning on graphs aims to learn representations of graph-structured data for down-
stream tasks such as node classification and link prediction [1, 2]. Graph representation learning is a
challenging task since both node features as well as graph structure carry important information [3,4].
Graph Neural Networks (GNNs) [1, 3, 5–7] have demonstrated impressive performance, by learning
to fuse information from both the node features and the graph structure [8].

Recently, many works have been focusing on developing more powerful GNNs [8–13], in a sense
that they can fit more complex graph-structured data. However, at present GNNs still suffer from a
few problems. For example, the features of a neighborhood node can contain non-useful information
that may negatively impact the prediction of the current node [14]. Also, GNN’s reliance on message
passing over the edges of the graph also makes it prone to noise and adversarial attacks that target at
the graph structure [15, 16].

Here we address the above problems and rethink what is a “good” representation for graph-structured
data. In particular, the Information Bottleneck (IB) [18, 19] provides a critical principle for represen-
tation learning: an optimal representation should contain the minimal sufficient information for the
downstream prediction task. IB encourages the representation to be maximally informative about
the target to make the prediction accurate (sufficient). On the other hand, IB also discourages the
representation from acquiring additional information from the data that is irrelevant for predicting the
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Y : The target, D: The input data (= (A,X))
A: The graph structure, X: The node features
Z: The representation

Graph Information Bottleneck:
min

P(Z|D)2⌦
GIB�(D, Y ;Z) , [�I(Y ;Z) + �I(D;Z)]

Figure 1: Graph Information Bottleneck is to optimize the representation Z to capture the minimal sufficient
information within the input data D = (A,X) to predict the target Y . D includes information from both the
graph structure A and node features X . When Z contains irrelevant information from either of these two sides,
it overfits the data and is prone to adversarial attacks and model hyperparameter change. ⌦ defines the search
space of the optimal model P(Z|D). I(·; ·) denotes the mutual information [17].

target (minimal). Based on this learning paradigm, the learned model naturally avoids overfitting and
becomes more robust to adversarial attacks.

However, extending the IB principle to representation learning on graph-structured data presents
two unique challenges. First, previous models that leverage IB assume that the training examples
in the dataset are independent and identically distributed (i.i.d.). For graph-structured data, this
assumption no longer holds and makes model training in the IB principle hard. Moreover, the
structural information is indispensable to represent graph-structured data, but such information is
discrete and thus hard to optimize over. How to properly model and extract minimal sufficient
information from the graph structure introduces another challenge that has not been yet investigated
when designing IB-based models.

We introduce Graph Information Bottleneck (GIB), an information-theoretic principle inherited from
IB, adapted for representation learning on graph-structured data. GIB extracts information from both
the graph structure and node features and further encourages the information in learned representation
to be both minimal and sufficient (Fig. 1). To overcome the challenge induced by non-i.i.d. data, we
further leverage local-dependence assumption of graph-structure data to define a more tractable search
space ⌦ of the optimal P(Z|D) that follows a Markov chain to hierarchically extract information
from both features and structure. To our knowledge, our work provides the first information-theoretic
principle for supervised representation learning on graph-structured data.

We also derive variational bounds for GIB, making GIB tractable and amenable for the design and
optimization of GNNs. Specifically, we propose a variational upper bound for constraining the
information from the node features and graph structure, and a variational lower bound for maximizing
the information in the representation to predict the target.

We demonstrate the GIB principle by applying it to the Graph Attention Networks (GAT) [5], where
we leverage the attention weights of GAT to sample the graph structure in order to alleviate the
difficulty of optimizing and modeling the discrete graph structure. We also design two sampling
algorithms based on the categorical distribution and Bernoulli distribution, and propose two models
GIB-Cat and GIB-Bern. We show that both models consistently improve robustness w.r.t. standard
baseline models, and outperform other state-of-the-art defense models. GIB-Cat and GIB-Bern
improve the classification accuracy by up to 31.3% and 34.0% under adversarial perturbation,
respectively.
Project website and code can be found at http://snap.stanford.edu/gib/.

2 Preliminaries and Notation

Graph Representation Learning. Consider an undirected attributed graph G = (V,E,X) with n

nodes, where V = [n] = {1, 2, ...n} is the node set, E ✓ V ⇥ V is the edge set and X 2 Rn⇥f

includes the node attributes. Let A 2 Rn⇥n denote the adjacency matrix of G, i.e., Auv = 1 if
(u, v) 2 E or 0 otherwise. Also, let d(u, v) denote the shortest path distance between two nodes
u, v (2 V ) over A. Hence our input data can be overall represented as D = (A,X).

In this work, we focus on node-level tasks where nodes are associated with some labels Y 2 [K]n.
Our task is to extract node-level representations ZX 2 Rn⇥f

0
from D such that ZX can be further
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Figure 2: Our GIB principle leverages local-dependence assumption. (a) The Markov chain defines the search
space ⌦ of our GIB principle, of which each step uses a local-dependence assumption to extract information from
the structure and node features. The correlation between node representations are established in a hierarchical
way: Suppose local dependence appears within 2-hops given the structure A. (b) In the graph, given the
representations Z(l)

X of the blue nodes and A that conveys the structural information that the blue nodes lie
within 2-hops of the black node, the representations Z(l+1)

X are independent between the black node and the
white nodes. However, the correlation between them may be established in Z(l+2)

X .

used to predict Y . We also use the subscript with a certain node v 2 V to denote the affiliation with
node v. For example, the node representation of v is denoted by ZX,v and its label is denoted by Yv .

Notation. We do not distinguish the notation of random variables and of their particular realizations
if there is no risk of confusion. For any set of random variables H , we use P(H), Q(H), ... to
denote joint probabilistic distribution functions (PDFs) of the random variables in H under different
models. P(·) corresponds to the induced PDF of the proposed model while Q(H) and Qi(H),
i 2 N correspond to some other distributions, typically variational distributions. For discrete
random variables, we use generalized PDFs that may contain the Dirac delta functions [20]. In this
work, if not specified, E[H] means the expectation over all the random variables in H w.r.t. P(H).
Otherwise, we use EQ(H)[H] to specify the expectation w.r.t. other distributions denoted by Q(H).
We also use X1 ? X2|X3 to denote that X1 and X2 are conditionally independent given X3. Let
Cat(�), Bernoulli(�) denote the categorical distribution and Bernoulli distribution respectively with
parameter � (2 R1⇥C

�0 ). For the categorical distribution, � corresponds to the probabilities over
different categories and thus k�k1 = 1. For the Bernoulli distribution, we generalize it to high
dimensions and assume we have C independent components and each element of � is between 0
and 1. Let Gaussian(µ,�2) denote the Gaussian distribution with mean µ and variance �

2. µ and �
2

could be vectors with the same dimension, in which case the Gaussian distribution is with the mean
vector µ and covariance matrix ⌃ = diag(�2). Let �(· : µ,�2) denote its PDF. We use [i1 : i2] to
slice a tensor w.r.t. indices from i1 to i2 � 1 of its last dimension.

3 Graph Information Bottleneck

3.1 Deriving the Graph Information Bottleneck Principle

In general, the graph information bottleneck (GIB) principle, inheriting from the principle of infor-
mation bottleneck (IB), requires the node representation ZX to minimize the information from the
graph-structured data D (compression) and maximize the information to Y (prediction). However,
optimization for the most general GIB is challenging because of the correlation between data points.
The i.i.d. assumption of data points is typically used to derive variational bounds and make accurate
estimation of those bounds to learn IB-based models [21, 22]. However, for the graph-structured
data D, this is impossible as node features, i.e., different rows of X , may be correlated due to the
underlying graph structure A. To fully capture such correlation, we are not allowed to split the whole
graph-structured data D w.r.t. each node. In practice, we typically have only a large network, which
indicates that only one single realization of P(D) is available. Hence, approximating the optimal ZX

in the general formulation GIB seems impossible without making additional assumptions.

Here, we rely on a widely accepted local-dependence assumption for graph-structured data: Given
the data related to the neighbors within a certain number of hops of a node v, the data in the rest
of the graph will be independent of v. We use this assumption to constrain the space ⌦ of optimal
representations, which leads to a more tractable GIB principle. That is, we assume that the optimal
representation follows the Markovian dependence shown in Fig. 2. Specifically, P(ZX |D) iterates
node representations to hierarchically model the correlation. In each iteration l, the local-dependence
assumption is used: The representation of each node will be refined by incorporating its neighbors
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w.r.t a graph structure Z
(l)
A

. Here, {Z(l)
A

}1lL is obtained by locally adjusting the original graph
structure A and essentially controlling the information flow from A. Finally, we will make predictions
based on Z

(L)
X

. Based on this formulation, the objective reduces to the following optimization:

min
P(Z(L)

X |D)2⌦
GIB�(D, Y ;Z(L)

X
) ,

h
�I(Y ;Z(L)

X
) + �I(D;Z(L)

X
)
i

(1)

where ⌦ characterizes the space of the conditional distribution of Z(L)
X

given the data D by following
the probabilistic dependence shown in Fig. 2. In this formulation, we just need to optimize two series
of distributions P(Z(l)

X
|Z(l�1)

X
, Z

(l)
A

) and P(Z(l)
A

|Z(l�1)
X

, A), l 2 [L], which have local dependence
between nodes and thus are much easier to be parameterized and optimized.

Variational Bounds. Even using the reduced GIB principle and some proper parameterization
of P(Z(l)

X
|Z(l�1)

X
, Z

(l)
A

) and P(Z(l)
A

|Z(l�1)
X

, A), l 2 [L], exact computation of I(Y ;Z(L)
X

) and
I(D;Z(L)

X
) is still intractable. Hence, we need to introduce variational bounds on these two terms,

which leads to the final objective to optimize. Note that variational methods are frequently used in
model optimization under the traditional IB principle [21]. However, we should be careful to derive
these bounds as the data points now are correlated. We introduce a lower bound of I(Y ;Z(L)

X
), which

is reproduced from [22, 23], and an upper bound of I(D;Z(L)
X

), as shown in Propositions 3.1 and 3.2.

Proposition 3.1 (The lower bound of I(Y ;Z(L)
X

)). For any distributions Q1(Yv|Z(L)
X,v

) for v 2 V

and Q2(Y ), we have

I(Y ;Z(L)
X

) � 1 + E
"
log

Q
v2V

Q1(Yv|Z(L)
X,v

)

Q2(Y )

#
+ EP(Y )P(Z(L)

X )

"Q
v2V

Q1(Yv|Z(L)
X,v

)

Q2(Y )

#
(2)

Proposition 3.2 (The upper bound of I(D;Z(L)
X

)). We choose two groups of indices SX , SA ⇢ [L]

such that D ? Z
(L)
X

|{Z(l)
X

}l2SX [ {Z(l)
A

}l2SA based on the Markovian dependence in Fig. 2, and
then for any distributions Q(Z(l)

X
), l 2 SX , and Q(Z(l)

A
), l 2 SA,

I(D;Z(L)
X

)  I(D; {Z(l)
X

}l2SX [ {Z(l)
A

}l2SA) 
X

l2SA

AIB(l) +
X

l2SX

XIB(l)
,where (3)

AIB(l) = E
"
log

P(Z(l)
A

|A,Z
(l�1)
X

)

Q(Z(l)
A

)

#
,XIB(l) = E

"
log

P(Z(l)
X

|Z(l�1)
X

, Z
(l)
A

)

Q(Z(l)
X

)

#
, (4)

The proofs are given in Appendix B and C. Proposition 3.2 indicates that we need to select a group of
random variables with index sets SX and SA to guarantee the conditional independence between D
and Z

(L)
X

. Note that SX and SA that satisfy this condition have the following properties: (1) SX 6= ;,
and (2) suppose the greatest index in SX is l and then SA should contain all integers in [l + 1, L].

To use GIB, we need to model P(Z(l)
A

|Z(l�1)
X

, A) and P(Z(l)
X

|Z(l�1)
X

, Z
(l)
A

). Then, we choose some
variational distributions Q(Z(l)

X
) and Q(Z(l)

A
) to estimate the corresponding AIB(l) and XIB(l) for

regularization, and some Q1(Yv|Z(L)
X,v

) and Q2(Y ) to specify the lower bound in Eq. (2). Then, plug-
ging Eq. (2) and Eq. (3) into the GIB principle (Eq. (1)), one obtains an upper bound on the objective
to optimize. Note that any model that parameterizes P(Z(l)

A
|Z(l�1)

X
, A) and P(Z(l)

X
|Z(l�1)

X
, Z

(l)
A

) can
use GIB as the objective in training. In the next subsection, we will introduce two instantiations of
GIB, which is inspired by GAT [5].

3.2 Instantiating the GIB Principle

The GIB principle can be applied to many GNN models. As an example, we apply it to the Graph
Attention Network model [5] and present GIB-Cat and GIB-Bern. Algorithm 1 illustrates the base
framework of both models with different neighbor sampling methods shown in Algorithm 2 and 3. In
each layer, GIB-Cat and GIB-Bern need to first refine the graph structure using the attention weights
to obtain Z

(l)
A

(Step 3) and then refines node representations Z(l)
X

by propagating Z
(l�1)
X

over Z(l)
A
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(Steps 4-7). Concretely, we design two algorithms for neighbor sampling, which respectively use
the categorical distribution and the Bernoulli distribution. For the categorical version, we view the
attention weights as the parameters of categorical distributions to sample the refined graph structure
to extract structural information. We sample k neighbors with replacement from the pool of nodes
Vvt for each node v, where Vvt includes the nodes whose shortest-path-distance to v over A is t. We
use T as an upper limitation of t to encode the local-dependence assumption of the GIB principle,
which also benefits the scalability of the model. For the Bernoulli version, we model each pair of
node v and its neighbors independently with a Bernoulli distribution parameterized by the attention
weights. Note that here we did not normalize it with the softmax function as in the categorical version,
however, we use the sigmoid function to squash it between 0 and 1. Here we do not need to specify
the number of neighbors one node sample (k in the categorical version). Step 4 is sum-pooling of the
neighbors, and the output will be used to compute the parameters for a Gaussian distribution where
the refined node representations will be sampled. Note that we may also use a mechanism similar to
multi-head attention [5]: We split Z̃(l�1)

X
into different channels w.r.t. its last dimension, perform

Steps 2-7 independently for each channel and then concatenate the output of different channels to
obtain new Z

(l)
X

. Moreover, when training the model, we adopt reparameterization trick for Steps
3 and 7: Step 3 uses Gumbel-softmax [24, 25] while Step 7 uses Ẑ

(l)
X,v

= µ
(l)
v + �

(l)
v � z where

z ⇠ Gaussian(0, I), z 2 R1⇥f
0

and � is element-wise product.

Algorithm 1: Framework of GIB-Cat and GIB-Bern
Input: The dataset D = (X,A);
T : An integral limitation to impose local dependence;
k: The number of neighbors to be sampled.
⌧ : An element-wise nonlinear rectifier.
Initialize: Z(0)

X
 X; For all v 2 V, t 2 [T ],

construct sets Vvt  {u 2 V |d(u, v) = t};
Weights: a 2 RT ⇥4f 0

, W (1) 2 Rf⇥2f 0
,

W
(l) 2 Rf

0⇥2f 0
, for l 2 [2, L], Wout 2 Rf

0⇥K .
Output: Z(L)

X
, Ŷv = softmax(Z(L)

X,v
Wout)

1. For layers l = 1, ..., L and For v 2 V , do:
2. Z̃

(l�1)
X,v

 ⌧(Z(l�1)
X,v

)W (l)

3. Z
(l)
A,v
 NeighborSample(Zl�1

X
, T , Vvt, a)

4. Z̄
(l)
X,v
 

P
u2Z

(l)
A,v

Z̃
(l�1)
X,v

5. µ
(l)
v  Z̄

(l)
X,v

[0 : f 0]

6. �
2(l)
v  softplus(Z̄(l)

X,v
[f 0 : 2f 0])

7. Z
(l)
X,v
⇠ Gaussian(µ(l)

v ,�
2(l)
v )

Properties. Different from traditional
GNNs, GIB-Cat and GIB-Bern depend
loosely on the graph structure since A is
only used to decide the potential neigh-
bors for each node, and we perform mes-
sage passing based on ZA. This prop-
erty renders our models extremely ro-
bust to structural perturbations/attacks
where traditional GNNs are sensitive
[15, 16]. Both our models also keep ro-
bustness to the feature perturbation that
is similar to other IB-based DNN mod-
els [21, 26]. Moreover, the proposed
models are invariant to node permuta-
tions as we may show that for any per-
mutation matrix ⇧ 2 Rn⇥n, with per-
muting A ! A⇧ = ⇧A⇧T , X !
X⇧ = ⇧X , the obtained new node rep-
resentations Z(L)

X,⇧ and ⇧Z
(L)
X

share the
same distribution (proof in Appendix E).
Permutation invariance is known to be
important for structural representation learning [13].

Algorithm 2: NeighborSample (categorical)
Input: Zl

X
, T , Vvt, a, as defined in Alg. 1;

Output: Z(l+1)
A,v

1.For t 2 [T ], do:
2. �

(l)
vt
 softmax({(Z̃(l�1)

X,v
� Z̃

(l�1)
X,u

)aT }u2Vvt)

3. Z(l+1)
A,v

 [T
t=1{u 2 Vvt|u

iid⇠ Cat(�(l)
vt
), k times}

Algorithm 3: NeighborSample (Bernoulli)
Input: Zl

X
, T , Vvt, a, as defined in Alg. 1;

Output: Z(l+1)
A,v

1.For t 2 [T ], do:
2. �

(l)
vt
 sigmoid({(Z̃(l�1)

X,v
� Z̃

(l�1)
X,u

)aT }u2Vvt)

3. Z(l+1)
A,v

 [T
t=1{u 2 Vvt|u

iid⇠ Bernoulli(�(l)
vt
)}

Objective for training. To optimize the parameters of the model, we need to specify the bounds
for I(D;Z(L)

X
) as in Eq. (3) and I(Y ;Z(L)

X
) as in Eq. (2), and further compute the bound of the

GIB objective in Eq. (1). To characterize AIB(l) in Eq. (3), we assume Q(Z(l)
A

) is a non-informative
distribution [24, 25]. Specifically, we use the uniform distribution for the categorical version: ZA ⇠
Q(ZA), ZA,v = [T

t=1{u 2 Vvt|u
iid⇠ Cat( 1

|Vvt| )} and ZA,v ? ZA,u if v 6= u; and we also adopt a

non-informative prior for the Bernoulli version: ZA,v = [T
t=1{u 2 Vvt|u

iid⇠ Bernoulli(↵)}, where
↵ 2 (0, 1) is a hyperparameter. The difference is that, unlike the categorical distribution, we have an
additional degree of freedom provided by ↵. After the model computes �(l)

vt
according to Step 4, we
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get an empirical estimation of AIB(l):

dAIB
(l)

= EP(Z(l)
A |A,Z

(l�1)
X )

"
log

P(Z(l)
A

|A,Z
(l�1)
X

)

Q(Z(l)
A

)

#
,

which is instantiated as follows for the two versions,

[AIBC
(l)

=
X

v2V,t2[T ]

KL(Cat(�(l)
vt
)||Cat(

1

|Vvt|
))

[AIBB
(l)

=
X

v2V,t2[T ]

KL(Bernoulli(�(l)
vt
)||Bernoulli(↵))

To estimate XIB(l), we set Q(Z(l)
X

) as a mixture of Gaussians with learnable parameters [27].
Specifically, for any node v, ZX ⇠ Q(ZX), we set ZX,v ⇠

P
m

i=1 wiGaussian(µ0,i,�
2
0,i) where

wi, µ0,i,�0,i are learnable parameters shared by all nodes and ZX,v ? ZX,u if v 6= u. We estimate
XIB(l) by using the sampled Z

(l)
X

:

dXIB
(l)

= log
P(Z(l)

X
|Z(l�1)

X
, Z

(l)
A

)

Q(Z(l)
X

)
=

X

v2V

"
log�(Z(l)

X,v
;µv,�

2
v
)� log(

mX

i=1

wi�(Z
(l)
X,v

;µ0,i,�
2
0,i))

#
.

Therefore, in practice, we may select proper sets of indices SX , SA that satisfy the condition in
Proposition 3.2 and use substitution

I(D;Z(L)
X

)!
X

l2SA

dAIB
(l)

+
X

l2SX

dXIB
(l)

(5)

To characterize Eq. (2), we may simply set Q2(Y ) = P(Y ) and Q1(Yv|Z(L)
X,v

) = Cat(Z(L)
X,v

Wout).
Then, the RHS of Eq. (2) reduces to the cross-entropy loss by ignoring constants, i.e.,

I(Y ;Z(L)
X

)! �
X

v2V

Cross-Entropy(Z(L)
X,v

Wout;Yv) (6)

Other choices of Q2(Y ) may also be adopted and yield the contrastive loss [22, 28] (Appendix D).
However, in our case, we use the simplest setting to illustrate the benefit of the GIB principle.
Plugging Eq. (5) and Eq. (6) into Eq. (1), we obtain the objective to train our models.

Other Formalizations of the GIB Principle. There are also other alternative formalizations of the
GIB principle, especially when modeling P(Z(l)

A
|Z(l�1)

X
, A). Generally speaking, any node-pair

representations, such as messages over edges in MPNN [29], can be leveraged to sample structures.
Applying the GIB principle to other architectures is a promising direction for future investigation.

4 Related Work

GNNs learn node-level representations through message passing and aggregation from neighbors
[1, 3, 29–31]. Several previous works further incorporate the attention mechanism to adaptively learn
the correlation between a node and its neighbor [5, 32]. Recent literature shows that representations
learned by GNNs are far from robust and can be easily attacked by malicious manipulation on
either features or structure [15, 16]. Accordingly, several defense models are proposed to increase
the robustness by injecting random noise in the representations [33], removing suspicious and
uninformative edges [34], low-rank approximation of the adjacency matrix [35], additional hinge loss
for certified robustness [36]. In contrast, even though not specifically designed against adversarial
attacks, our model learns robust representations via the GIB principle that naturally defend against
attacks. Moreover, none of those defense models has theoretical foundations except [36] that uses
tools of robust optimization instead of information theory.

Recently several works have applied contrastive loss [28] as a regularizer for GNNs. The idea
is to increase the score for positive samples while decrease the score for negative samples. This
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can be further formulated as a mutual information maximization term that aims to maximize the
mutual information between representations of nodes and their neighbor patches [37], between
representations of sub-structures and the hidden feature vectors [38], between representations of
graphs and their sub-structures [39]. In contrast, our model focuses on the compression of node
features and graph structure while at the same time improves prediction, which is orthogonal to these
previous works on unsupervised representation learning with information maximization.

Another line of related work is representation learning with the IB principle. DVIB [21] first applies
IB [18] to deep neural networks, and shows increased robustness of learned representations. Other
methods apply IB to various domains [40,41]. The difference is that we develop information-theoretic
modeling of feature, structure and their fusion on graph-structured data. Furthermore, several works
on GNNs [37–39] leverage information maximization [42] for unsupervised learning. However, we
focus on learning robust representations by controlling the information in supervised learning setting.

5 Experiments

The goal of our experiments is to test whether GNNs trained with the GIB objective are more
robust and reliable. Specifically, we consider the following two questions: (1) Boosted by GIB,
does GIB-Cat and GIB-Bern learn more robust representations than GAT to defend against attacks?
(2) How does each component of GIB contribute to such robustness, especially, to controlling the
information from one of the two sides — the structure and node features?

We compare GIB-Cat and GIB-Bern with baselines including GCN [3] and GAT [5], the most
relevant baseline as GIB-Cat and GIB-Bern are to impose the GIB principle over GAT. In addition,
we consider two state-of-the-art graph defense models specifically designed against adversarial
attacks: GCNJaccard [34] that pre-processes the graph by deleting the edges between nodes with low
feature similarity, and Robust GCN (RGCN) [33] that uses Gaussian reparameterization for node
features and variance-based attention. Note that RGCN essentially includes the term XIB (Eq. (3)) to
control the information of node features while it does not have the term AIB (Eq. (3)) to control the
structural information. For GCNJaccard and RGCN, we perform extensive hyperparameter search as
detailed in Appendix G.3. For GIB-Cat and GIB-Bern, we keep the same architectural component as
GAT, and for the additional hyperparameters k and T (Algorithm 1, 2 and 3), we search k 2 {2, 3}
and T 2 {1, 2} for each experimental setting and report the better performance. Please see Appendix
G for more details.

We use three citation benchmark datasets: Cora, Pubmed and Citeseer [43], in our evaluation. In
all experiments, we follow the standard transductive node classification setting and standard train-
validation-test split as GAT [5]. The summary statistics of the datasets and their splitting are shown in
Table 4 in Appendix F. For all experiments, we perform the experiments over 5 random initializations
and report average performance. We always use F1-micro as the validating metric to train our model.

5.1 Robustness Against Adversarial Attacks

In this experiment, we compare the robustness of different models against adversarial attacks. We use
Nettack [15], a strong targeted attack technique on graphs that attacks a target node by flipping the
edge or node features. We evaluate the models on both evasive and poisoning settings, i.e. the attack
happens after or before the model is trained, respectively. We follow the setting of Nettack [15]: for
each dataset, select (i) 10 nodes with highest margin of classification, i.e. they are clearly correctly
classified, (ii) 10 nodes with lowest margin but still correctly classified and (iii) 20 more nodes
randomly, where for each target node, we train a different model for evaluation. We report the
classification accuracy of these 40 targeted nodes. We enumerate the number of perturbations from 1
to 4, where each perturbation denotes a flipping of a node feature or an addition or deletion of an edge.
Since Nettack can only operate on Boolean features, we binarize the node features before training.

Table 1 shows the results. We see that compared with GAT, GIB-Cat improves the classification
accuracy by an average of 8.9% and 14.4% in Cora and Pubmed, respectively, and GIB-Bern improves
the classification accuracy by an average of 8.4% and 14.6% in Cora and Pubmed, respectively, which
demonstrates the effectiveness of the GIB principle to improve the robustness of GNNs. Remarkably,
when the number of perturbation is 1, GIB-Cat and GIB-Bern boost accuracy over GAT (as well as
other models) by 31.3% and 34.0% in Pubmed, respectively. GIB-Cat also outperforms GCNJaccard
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Table 1: Average classification accuracy (%) for the targeted nodes under direct attack. Each number
is the average accuracy for the 40 targeted nodes for 5 random initialization of the experiments. Bold
font denotes top two models.

Model Clean (%) Evasive (%) Poisoning (%)
1 2 3 4 1 2 3 4

C
or

a

GCN 80.0±7.87 51.5±4.87 38.0±6.22 31.0±2.24 26.0±3.79 47.5±7.07 39.5±2.74 30.0±5.00 26.5±3.79
GCNJaccard 75.0±5.00 48.5±6.75 36.0±6.51 32.0±3.25 30.0±3.95 47.0±7.37 38.0±6.22 33.5±3.79 28.5±3.79
RGCN 80.0±4.67 49.5±6.47 36.0±5.18 30.5±3.25 25.5±2.09 46.5±5.75 35.5±3.70 29.0±3.79 25.5±2.73
GAT 77.8±3.97 48.0±8.73 39.5±5.70 36.5±5.48 32.5±5.30 50.5±5.70 38.0±5.97 33.5±2.85 26.0±3.79
GIB-Cat 77.6±2.84 63.0±4.81 52.5±3.54 44.5±5.70 36.5±6.75 60.0±6.37 50.0±2.50 39.5±5.42 30.0±3.95
GIB-Bern 78.4±4.07 64.0±5.18 51.5±4.54 43.0±3.26 37.5±3.95 61.5±4.18 46.0±4.18 36.5±4.18 31.5±2.85

Pu
bm

ed

GCN 82.6±6.98 39.5±4.81 32.0±4.81 31.0±5.76 31.0±5.76 36.0±4.18 32.5±6.37 31.0±5.76 28.5±5.18
GCNJaccard 82.0±7.15 37.5±5.30 31.5±5.18 30.0±3.95 30.0±3.95 36.0±3.79 32.5±4.67 31.0±4.87 28.5±4.18
RGCN 79.0±5.18 39.5±5.70 33.0±4.80 31.5±4.18 30.0±5.00 38.5±4.18 31.5±2.85 29.5±3.70 27.0±3.70
GAT 78.6±6.70 41.0±8.40 33.5±4.18 30.5±4.47 31.0±4.18 39.5±3.26 31.0±4.18 30.0±3.06 25.5±5.97
GIB-Cat 85.1±6.90 72.0±3.26 51.0±5.18 37.5±5.30 31.5±4.18 71.0±4.87 48.0±3.26 37.5±1.77 28.5±2.24
GIB-Bern 86.2±6.54 76.0±3.79 50.5±4.11 37.5±3.06 31.5±1.37 72.5±4.68 48.0±2.74 36.0±2.85 26.5±2.85

C
ite

se
er

GCN 71.8±6.94 42.5±7.07 27.5±6.37 18.0±3.26 15.0±2.50 29.0±7.20 20.5±1.12 17.5±1.77 13.0±2.09
GCNJaccard 72.5±9.35 41.0±6.75 32.5±3.95 20.5±3.70 13.0±1.11 42.5±5.86 30.5±5.12 17.5±1.76 14.0±1.36
RGCN 73.5±8.40 41.5±7.42 24.5±6.47 18.5±6.52 13.0±1.11 31.0±5.48 19.5±2.09 13.5±2.85 5.00±1.77
GAT 72.3±8.38 49.0±9.12 33.0±5.97 22.0±4.81 18.0±3.26 38.0±5.12 23.5±4.87 16.5±4.54 12.0±2.09
GIB-Cat 68.6±4.90 51.0±4.54 39.0±4.18 32.0±4.81 26.5±4.54 30.0±9.19 14.0±5.76 9.50±3.26 6.50±2.24
GIB-Bern 71.8±5.03 49.0±7.42 37.5±7.71 32.5±4.68 23.5±7.42 35.0±6.37 19.5±4.81 11.5±3.79 6.00±2.85

Table 2: Average classification accuracy (%) for the ablations of GIB-Cat and GIB-Bern on Cora
dataset.

Model Clean (%) Evasive (%) Poisoning (%)
1 2 3 4 1 2 3 4

XIB 76.3±2.90 57.0±5.42 47.5±7.50 39.5±6.94 33.0±3.71 54.5±2.09 41.0±3.79 36.0±5.18 31.0±4.54
AIB-Cat 78.7±4.95 62.5±5.86 51.5±5.18 43.0±3.26 36.0±3.35 60.5±3.26 47.5±5.00 36.0±3.35 31.5±6.27
AIB-Bern 79.9±3.78 64.0±4.50 51.5±6.50 42.0±5.40 37.0±5.70 58.5±3.80 46.0±4.50 39.0±4.20 30.0±3.10

GIB-Cat 77.6±2.84 63.0±4.81 52.5±3.54 44.5±5.70 36.5±6.75 60.0±6.37 50.0±2.50 39.5±5.42 30.0±3.95
GIB-Bern 78.4±4.07 64.0±5.18 51.5±4.54 43.0±3.26 37.5±3.95 61.5±4.18 46.0±4.18 36.5±4.18 31.5±2.85

and RGCN by an average of 10.3% and 12.3% on Cora (For GIB-Bern, it is 9.8% and 11.7%), and
by an average of 15.0% and 14.6% on Pubmed (For GIB-Bern, it is 15.2% and 14.8%), although
GIB-Cat and GIB-Bern are not intentionally designed to defend attacks. For Citeseer, GIB-Cat
and GIB-Bern’s performance are worse than GCNJaccard in the poisoning setting. This is because
Citeseer has much more nodes with very few degrees, even fewer than the number of specified
perturbations, as shown in Table 13 in Appendix J. In this case, the most effective attack is to connect
the target node to a node from a different class with very different features, which exactly matches
the assumption used by GCNJaccard [34]. GCNJaccard proceeds to delete edges with dissimilar
node features, resulting in the best performance in Citeseer. However, GIB does not depend on such
a restrictive assumption. More detailed analysis is at Appendix J.

Ablation study. To see how different components of GIB contribute to the performance, we perform
ablation study on Cora, as shown in Table 2. Here, we use AIB-Cat and AIB-Bern to denote the
models that only sample structures with dAIB (Eq. (5)) in the objective (whose NeighborSample()
function is identical to that of GIB-Cat and GIB-Bern, respectively), and use XIB to denote the model
that only samples node representations with dXIB (Eq. (5)) in the objective. We see that the AIB
(structure) contributes significantly to the improvement of GIB-Cat and GIB-Bern, and on average,
AIB-Cat (AIB-Bern) only underperforms GIB-Cat (GIB-Bern) by 0.9% (0.4%). The performance
gain is due to the attacking style of Nettack, as the most effective attack is typically via structural
perturbation [15], as is also confirmed in Appendix J. Therefore, next we further investigate the case
that only perturbation on node features is available.

5.2 Only Feature Attacks

To further check the effectiveness of IB for node features, we inject random perturbation into the
node features. Specifically, after the models are trained, we add independent Gaussian noise to each
dimension of the node features for all nodes with increasing amplitude. Specifically, we use the
mean of the maximum value of each node’s feature as the reference amplitude r, and for each feature
dimension of each node we add Gaussian noise � · r · ✏, where ✏ ⇠ N(0, 1), and � is the feature
noise ratio. We test the models’ performance with � 2 {0.5, 1, 1.5}. Table 3 shows the results. We
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Table 3: Classification F1-micro (%) for the trained models with increasing additive feature noise.
Bold font denotes top 2 models.

Dataset Model Feature noise ratio (�)
0.5 1 1.5

Cora

GCN 64.0±2.05 41.3±2.05 31.4±2.81
GCNJaccard 61.1±2.18 41.2±2.28 31.8±2.63

RGCN 57.7±2.27 39.1±1.58 29.6±2.47
GAT 62.5±1.97 41.7±2.32 29.8±2.98

AIB-Cat 67.9±2.65 49.6±5.35 38.4±5.06
AIB-Bern 68.8±1.85 49.0±2.87 37.1±4.47
GIB-Cat 67.1±2.21 49.1±3.67 37.5±4.76

GIB-Bern 69.0±1.91 51.3±2.62 38.9±3.38

Pubmed

GCN 61.3±1.52 50.2±2.08 44.3±1.43
GCNJaccard 62.7±1.25 51.9±1.53 45.1±2.04

RGCN 58.4±1.74 49.0±1.65 43.9±1.29
GAT 62.7±1.68 50.2±2.35 43.7±2.43

AIB-Cat 64.5±2.13 50.9±3.83 43.0±3.73
AIB-Bern 61.1±2.70 47.8±3.65 42.0±4.21
GIB-Cat 67.1±4.33 57.2±5.27 51.5±4.84

GIB-Bern 64.9±2.52 54.7±1.83 48.2±2.10

Citeseer

GCN 55.9±1.33 40.6±1.83 32.8±2.19
GCNJaccard 56.8±1.49 41.3±1.81 33.1±2.27

RGCN 51.4±2.00 36.5±2.38 29.5±2.17
GAT 55.8±1.43 40.8±1.77 33.8±1.93

AIB-Cat 55.1±1.26 43.1±2.46 35.6±3.19
AIB-Bern 55.8±2.01 43.3±1.67 36.3±2.47
GIB-Cat 54.9±1.39 42.0±1.92 34.8±1.75

GIB-Bern 54.4±5.98 50.3±4.33 46.1±2.47

see across different feature noise ratios, both GIB-Cat and GIB-Bern consistently outperforms other
models without IB, especially when the feature noise ratio is large (� = 1.5), and the AIB models
with only structure IB performs slightly worse or equivalent to the GIB models. This shows that GIB
makes the model more robust when the feature attack becomes the main source of perturbation.

6 Conclusion and Discussion
In this work, we have introduced Graph Information Bottleneck (GIB), an information-theoretic prin-
ciple for learning representations that capture minimal sufficient information from graph-structured
data. We have also demonstrated the efficacy of GIB by evaluating the robustness of the GAT
model trained under the GIB principle on adversarial attacks. Our general framework leaves many
interesting questions for future investigation. For example, are there any other better instantiations of
GIB, especially in capturing discrete structural information? If incorporated with a node for global
aggregation, can GIB break the limitation of the local-dependence assumption? May GIB be applied
to other graph-related tasks including link prediction and graph classification?

Broader Impact

Who may benefit from this research: Graphs have been used to represent a vast amount of real-
world data from social science [44], biology [45], geographical mapping [46], finances [47] and
recommender systems [48], because of their flexibility in modeling both the relation among the data
(structures) and the content of the data (features). Graph neural networks (GNN), naturally entangle
both aspects of the data in the most expressive way, have attracted unprecedented attention from both
academia and industry across a wide range of disciplines. However, GNNs share a common issue
with other techniques based on neural networks. They are very sensitive to noise of data and are
fragile to model attacks. This drawback yields the potential safety problems to deploy GNNs in the
practical systems or use them to process data in those disciplines that heavily emphasize unbiased
analysis. The Graph Information Bottleneck (GIB) principle proposed in this work paves a principled
way to alleviate the above problem by increasing the robustness of GNN models. Our work further
releases the worries about the usage of GNN techniques in practical systems, such as recommender
systems, social media, or to analyze data for other disciplines, including physics, biology, social
science. Ultimately, our work increases the interaction between AI, machine learning techniques and
other aspects of our society, and could achieve far-reaching impact.
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Who may be put at disadvantage from this research: Not applicable.

What are the consequences of failure of the system: Not applicable.

Does the task/method leverage biases in the data: The proposed GIB principle and the GIB-GAT
model as an instantiation of GIB leverage the node features and structural information which in
general are not believed to include undesirable biases. The datasets to evaluate our approaches are
among the most widely-used benchmarks, which in general are not believed to include undesirable
biases as well.
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