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Abstract

We consider the framework of non-stationary stochastic optimization [Besbes
et al., 2015] with squared error losses and noisy gradient feedback where the
dynamic regret of an online learner against a time varying comparator sequence
is studied. Motivated from the theory of non-parametric regression, we introduce
a new variational constraint that enforces the comparator sequence to belong to
a discrete k" order Total Variation ball of radius C,,. This variational constraint
models comparators that have piecewise polynomial structure which has many
relevant practical applications [Tibshirani, 2014]. By establishing connections to
the theory of wavelet based non-parametric regression, we design a polynomial

~ 1 oy
time algorithm that achieves the nearly optimal dynamic regret of O(n?+3 Cp**?).
The proposed policy is adaptive to the unknown radius C,,. Further, we show that
the same policy is minimax optimal for several other non-parametric families of
interest.

1 Introduction

In time series analysis, estimating and removing the trend are often the first steps taken to make
the sequence “stationary”. The non-parametric assumption that the underlying trend is a piecewise
polynomial or a spline [de Boor, 1978], is one of the most popular choices, especially when we do not
know where the “change points” are and how many of them are appropriate. The higher order Total
Variation (see Assumption A3) of the trend can capture in some sense both the sparsity and intensity
of changes in underlying dynamics. A non-parametric regression method that penalizes this quantity
— trend filtering [Tibshirani, 2014] — enjoys a superior local adaptivity over traditional methods such
as the Hodrick-Prescott Filter [Hodrick and Prescott, 1997]. However, Trend Filtering is an offline
algorithm which limits its applicability for the inherently online time series forecasting problem. In
this paper, we are interested in designing an online forecasting strategy that can essentially match
the performance of the offline methods for trend estimation, hence allowing us to apply time series
models forecasting on-the-fly. In particular, our problem setup (see Figure 1) and algorithm are
applicable to all online variants of trend filtering problem such as predicting stock prices, server
payloads, sales etc.

Let’s describe the notations that will be used throughout the paper. All vectors and matrices will be
written in bold face letters. For a vector = € R™, z[i] or x; denotes its value at the i*" coordinate.
x[a : b] or xq4.p is the vector [x]al, ..., x[b]]. ||-||, denotes finite dimensional L, norms. ||x||o is the

number of non-zero coordinates of a vector x. [n] represents the set {1,...,n}. D' ¢ R(»=)xn
denotes the discrete difference operator of order ¢ defined as in [Tibshirani, 2014] and reproduced
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below.

-1 1 0 0 0
o -1 1 ... 0 O

Dl _ ) c ]R(n—l)xn7
0 0o o0 ... -1 1

and D' = D' - D1 v > 2 where D' is the (n —i) x (n — i+ 1) truncation of D*.

The theme of this paper builds on the non-parametric online forecasting model developed in [Baby
and Wang, 2019]. We consider a sequential n step interaction process between an agent and an
adversary as shown in Figure 1.

1. Fix a time horizon n.
2. Agent declares a forecasting strategy S
3. Adversary chooses a sequence 6.,
4. Fort=1,...,n
(a) Agent outputs a prediction S(t).
(b) Adversary reveals y; = 61.,[t] + €

5. After n steps, agent suffers a cumulative loss >, (S(i) — 01.,]i])°.

Figure 1: Interaction protocol

A forecasting strategy S is defined as an algorithm that outputs a prediction S(t) at time ¢ only based
on the information available after the completion of time ¢ — 1. Random variables ¢; for ¢ € [n] are
independent and subgaussian with parameter 0. This sequential game can be regarded as an online
version of the non-parametric regression setup well studied in statistics community.

In this paper, we consider the problem of forecasting sequences that obey n*|| D*+10,., ||, < C,,,
k > 0and ||01.,]lco< B. The constraint n*||D**16,.,|,< C,, has been widely used in the rich
literature of non-parametric regression. For example, the offline problem of estimating sequences
obeying such higher order difference constraint from noisy labels under squared error loss is studied
in [Mammen and van de Geer, 1997, Donoho et al., 1998, Tibshirani, 2014, Wang et al., 2016,
Sadhanala et al., 2016, Guntuboyina et al., 2017] to cite a few. We aim to design forecasters whose
predictions are only based on past history and still perform as good as a batch estimator that sees the
entire observations ahead of time.

Scaling of n*. The family {01.,, | n*||D**101., |1 < C,} may appear to be alarmingly restrictive
for a constant C), due to the scaling factor n*, but let us argue why this is actually a natural construct.
The continuous T'V* distance of a function f : [0,1] — R is defined as fol\ fE+D(2)|dx, where
FE+D s the (k4 1)t" order (weak) derivative. A sequence can be obtained by sampling the function
at z; = i/n, i € [n]. Discretizing the integral yields the TV* distance of this sequence to be

n*||D¥*+10.,||1. Thus, the n¥||D*+101.,||; term can be interpreted as the discrete approximation to
continuous higher order TV distance of a function. See Figure 2 for an illustration for the case k = 1.

Non-stationary Stochastic Optimization. The setting above can also be viewed under the frame-
work of non-stationary stochastic optimization as studied in [Besbes et al., 2015, Chen et al., 2018b]
with squared error loss and noisy gradient feedback. At each time step, the adversary chooses a
loss function f;(z) = (z — ;). Since Vfi(x) = 2(z — 6;), the feedback V f,(z) = 2(x — ;)
constitutes an unbiased estimate of the gradient V f;(z). [Besbes et al., 2015, Chen et al., 2018b]
quantifies the performance of a forecasting strategy S in terms of dynamic regret as follows.
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where the last equality follows from the fact that when f;(z) = (2 —01.,[t])?, inf, (z — 01.,[t])* = 0.
The expectation above is taken over the randomness in the noisy gradient feedback and that of the
agent’s forecasting strategy. It is impossible to achieve sublinear dynamic regret against arbitrary



ground truth sequences. However if the sequence of minimizers of loss functions f;(x) = (x — 6;)?
obey a path variational constraint, then we can parameterize the dynamic regret as a function of the
path length, which could be sublinear when the path-length is sublinear. Typical variational constraints
considered in the existing work includes >°,|6; — 0¢_1|, >,10: — 0:—1[%, (3,1 fe — fi-1]2)"/*
[see Baby and Wang, 2019, for a review]. These are all useful in their respective contexts, but do not
capture higher order smoothness.

The purpose of this work is to connect ideas from batch non-parametric regression to the framework
of online stochastic optimization and define a natural family of higher order variational functionals
of the form || D**16.,||; to track a comparator sequence with piecewise polynomial structure. To
the best of our knowledge such higher order path variationals for k£ > 1 are vastly unexplored in the
domain of non-stationary stochastic optimization. In this work, we take the first steps in introducing
such variational constraints to online non-stationary stochastic optimization and exploiting them to
get sub-linear dynamic regret.
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Figure 2: A TV'' bounded comparator sequence 01.,, can be obtained by sampling the continuous
piecewise linear function on the left at points i/n, i € [n]. On the right, we plot the TV distance
(which is equal to n||D?01., ||, by definition) of the generated sequence for various sequence lengths
n. As n increases the discrete TV distance converges to a constant value given by the continous
TV distance of the function on left panel.

2 Summary of results

In this section, we summarize the assumptions and main results of the paper.

Assumptions. We start by listing the assumptions made and provide justifications for them.

(A1) The time horizon is known to be n.
(A2) The parameter o2 of subgaussian noise in the observations is a known fixed positive constant.

(A3) The ground truth denoted by 8., has its k*" order total variation bounded by some positive
C,, i.e., we consider ground truth sequences that belongs to the class

TVH(C,) = {01, € R™ : 0*||DFF10,., |1 < Cn}

We refer to n*||D**10.,||; as TV* distance of the sequence 6.,,. To avoid trivial cases,
we assume C,, = Q(1

(A4) The TV order k is a known fixed positive constant.
(A5) [|01.1]|c0o< B for a known fixed positive constant B.

Though we require the time horizon to be known in advance in assumption (A1), this can be easily
lifted using standard doubling trick arguments. The knowledge of time horizon helps us to present the
policy in a most transparent way. If standard deviation of sub-gaussian noise is unknown, contrary
to assumption (A2), then it can be robustly estimated by a Median Absolute Deviation estimator
using first few observations, see for eg. Johnstone [2017]. This is indeed facilitated by the sparsity of
wavelet coefficients of 7'V* bounded sequences. Assumption (A3) characterizes the ground truth



sequences whose forecasting is the main theme of this paper. The TVk (C) class features a rich
family of sequences that can potentially exhibit spatially non-homogeneous smoothness. For example
it can capture sequences that are piecewise polynomials of degree at most k. This poses a challenge
to design forecasters that are locally adaptive and can efficiently detect and make predictions under
the presence of the non-homogeneous trends. Though knowledge of the TV order k is required in
assumption (A4), most of the practical interest is often limited to the lower orders k = 0,1, 2, 3, see
for eg. [Kim et al., 2009, Tibshirani, 2014] and we present (in Appendix D) a meta-policy based
on exponential weighted averages [Cesa-Bianchi and Lugosi, 2006] to adapt to these lower orders.
Finally assumption (A5) is standard in the online learning literature.

Our contributions. We summarize our main results below.

e When the revealed labels are noisy realizations of sequences that belong to TV*(C,,)
we propose a polynomial time policy called Ada-VAW (Adaptive Vovk Azoury Warmuth

. - ) S 1 s
forecaster) that achieves the nearly minimax optimal rate of O <n 23 O ) for Raynamic

with high probability. The proposed policy optimally adapts to the unknown radius C,,.

e We show that the proposed policy achieves optimal Rgyqmic When revealed labels are
noisy realizations of sequences residing in higher order discrete Holder and discrete Sobolev
classes.

e When the revealed labels are noisy realizations of sequences that obey || D*8;., o<

I, [101:n]lo < B, we show that the same policy achieves the minimax optimal O(J,,)
rate for for Rgynamic With high probability. The policy optimally adapts to unknown J,.

Notes on key novelties. It is known that the VAW forecaster is an optimal algorithm for online
polynomial regression with squared error losses [Cesa-Bianchi and Lugosi, 2006]. With the side
information of change points where the underlying ground truth switches from one polynomial
to another, we can run a VAW forecaster on each of the stable polynomial sections to control the
cumulative squared error of the policy. We use the machinery of wavelets to mimic an oracle that
can provide side information of the change points. For detecting change points, a restart rule is
formulated by exploiting connections between wavelet coefficients and locally adaptive regression
splines. This is a more general strategy than that used in [Baby and Wang, 2019]. To the best of our
knowledge, this is the first time an interplay between VAW forecaster and theory of wavelets along
with its adaptive minimaxity [Donoho et al., 1998] has been used in the literature.

Wavelet computations require the length of underlying data whose wavelet transform needs to be
computed has to be a power of 2. In practice this is achieved by a padding strategy in cases where
original data length is not a power of 2. We show that most commonly used padding strategies — eg.
zero padding as in [Baby and Wang, 2019] — are not useful for the current problem and propose a
novel packing strategy that alleviates the need to pad. This will be useful to many applications that
use wavelets which can be well beyond the scope of the current paper.

Our proof techniques for bounding regret use properties of the CDJV wavelet construction [Cohen
et al., 1993]. To the best of our knowledge, this is the first time we witness the ideas from a general
CDIJV construction scheme implying useful results in an online learning paradigm. Optimally
controlling the bias of VAW demands to carefully bound the /5 norm of coefficients computed by
polynomial regression. This is done by using ideas from number theory and symbolic determinant
evaluation of polynomial matrices. This could be of independent interest in both offline and online
polynomial regression.

3 Related Work

In this section, we briefly discuss the related work. A discussion on preliminaries and a detailed
exposition of related literature is deferred to Appendix A and B respectively. Throughout this paper

when we refer as O(nﬁ) as optimal regret we assume that C,, = n¥||D¥*18,.,,||; is O(1).

Non-parametric Regression As noted in Section 1, the problem setup we consider can be regarded
as an online version of the batch non-parametric regression framework. It has been established
(see for eg, [Mammen and van de Geer, 1997, Donoho et al., 1998, Tibshirani, 2014] that mini-
max rate for estimating sequences with bounded T'V'* distance under squared error loss scales as
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nz++3 (n¥|| D¥10,.,||1) 7+ modulo logarithmic factors of n. In this work, we aim to achieve the
same rate for minimax dynamic regret in online setting.

Non-stationary Stochastic Optimization Our forecasting framework can be considered as a special
case of non-stationary stochastic optimization setting studied in [Besbes et al., 2015, Chen et al.,
2018b]. It can be shown that their proposed algorithm namely, restarting Online Gradient Descend
(OGD) yields a suboptimal dynamic regret of O (n'/2(||D81.,||1)'/?) for our problem. However,
it should be noted that their algorithm works with general strongly convex and convex losses. A
summary of dynamic regret of various algorithms are presented in Table 1. The rationale behind how
to translate existing regret bounds to our setting is elaborated in Appendix B.

Table 1: Regret bounds for sequences that satisfy n*||D**10,.,|1< C,, with 0[1 : k + 1] = 0,
|01.1||co< B and k > 1. The proposed policy doesn’t require the knowledge of C,, apriori while
still attains the optimal dynamic regret modulo log factors. The bound for Ada—-VAW holds even
without the constraint on initial sequence values.

Policy Dynamic Regret Known C,? Lower bound
Moving Averages, R
Restarting OGD O(v/nCh) Yes
[Besbes et al., 2015]
OGD ~
[Zinkevich, 2003] O(VnCy) Yes 0 (n1 Sk t3) (2 /(2k+3))
Ader ~ "
[Zhang et al., 2018a] O(VnCh) No
Arrows 5 (. 1/32/3
[Baby and Wang, 2019] 0 (n Cn ) No
Ada-VAW (This paper) | O (nl/(%*?’)Cz/(%H)) No

Prediction of Bounded Variation sequences Our problem setup is identical to that of [Baby and
Wang, 2019] except for the fact that they consider forecasting sequences whose zeroth order Total
Variation is bounded. Our work can be considered as a generalization to any TV order k. Their

algorithm gives a suboptimal regret of O(n/3|| D6y.,||3/?) for k > 1.
Competitive Online Non-parametric Regression [Rakhlin and Sridharan, 2014] considers an on-

line learning framework with squared error losses where the learner competes against the best function
in a non-parametric function class. Their results imply via a non-constructive argument, the existence

of an algorithm that achieves the regret of O(nﬁ) for our problem.

4 Main results
We present below the main results of the paper. All proofs are deferred to the appendix.

4.1 Limitations of linear forecasters

We exhibit a lower-bound on the dynamic regret that is implied by [Donoho et al., 1998] in batch
regression setting.
Proposition 1 (Minimax Regret). Let y; = 01.,[t] + € fort = 1,...,n where 0;., € TVHE(C,),
|01.,[t]|< B and e; are iid o? subgaussian random variables. Let Ap be the class of all forecasting
strategies whose prediction at time t only depends on y1, . ..,y;—1. Let sy denote the prediction at
time t for a strategy s € Ap. Then,
n 2
inf sup ZE [(s¢ — 01.[t])°] = Q (min{n,n%lm Cptt? }) ,
SEAF 9., eTV® (Cn) (=1

where the expectation is taken wrt to randomness in the strategy of the player and e;.
We define linear forecasters to be strategies that predict a fixed linear function of the history. This

includes a large family of polices including the ARIMA family, Exponential Smoothers for Time
Series forecasting, Restarting OGD etc. However in the presence of spatially inhomogeneous



smoothness — which is the case with TV bounded sequences — these policies are doomed to perform
sub-optimally. This can be made precise by providing a lower-bound on the minimax regret for linear
forecasters. Since the offline problem of smoothing is easier than that of forecasting, a lower-bound
on the minimax MSE of linear smoother will directly imply a lower-bound on the regret of linear
forecasting strategies. By the results of [Donoho et al., 1998], we have the following proposition:

Proposition 2 (Minimax regret for linear forecasters). Linear forecasters will suffer a dynamic regret
of at least Q(n'/ Ck+2)) for forecasting sequences that belong to TV*(1).

Thus we must look in the space of policies that are non-linear functions of past labels to achieve a
minimax dynamic regret that can potentially match the lower-bound in Proposition 1.

4.2 Policy

In this section, we present our policy and capture the intuition behind its design. First, we introduce
the following notations.

e The policy works by partitioning the time horizon into several bins. ¢}, denotes start time of
the current bin and ¢ be the current time point.

e W denotes the orthonormal Discrete Wavelet Transform (DWT) matrix obtained from a
CDJV wavelet construction [Cohen et al., 1993] using wavelets of regularity & + 1.

e T(y) denotes the vector obtained by elementwise soft-thresholding of y at level o/ log!
where [ is the length of input vector.

o x; € RF+D denotes the vector [1,t —t), +k+1,...,(t —t, + k4 1)¥]T.
o A, =1+ Zizthsk Toxsl

e recenter(y[s : e]) function first computes the Ordinary Least Square (OLS) polynomial
fit with features x, . . ., .. It then outputs the residual vector obtained by subtracting the
best polynomial fit from the input vector y[s : e].

e Let L be the length of a vector uy.;. pack(u) first computes [ = [log, L. It then returns
the pair
(1.9, Us_o141.¢). We call elements of this pair as segments of w.

Ada-VAW: inputs - observed y values, TV order k, time horizon n, sub-gaussian parameter o,
hyper-parameter 3 > 24 and 6 € (0, 1]

1. Fort =1to k — 1, predict 0
2. Initialize t;, = k
3. Fort=kton:
(a) Predict g, = (x4, Ay ' S0 4 ysts)
(b) Observe y; and suffer loss (4; — 01.,,[t])?
(c) Lety, =recenter(y[t, — k : t]) and L be its length

(d) Let (y1,9,) = pack(y,)

(e) Let (dl,dg) = (T(Wyl),T(WYQ))

(f) Restart Rule: If ||&1||2+]|&2||2> o then
i. sett, =t+1

The basic idea behind the policy is to adaptively detect intervals that have low T'V* distance. If
the T'V* distance within an interval is guaranteed to be low enough, then outputting a polynomial
fit can suffice to obtain low prediction errors. Here we use the polynomial fit from VAW [Vovk,
2001] forecaster in step 3(a) to make predictions in such low 7'V* intervals. Step 3(e) computes
denoised wavelets coefficients. It can be shown that the expression on the LHS of the inequality in
step 3(f) can be used to lower bound v/L times the TV'* distance of the underlying ground truth with
high probability. Informally speaking, this is expected as the wavelet coefficents for a CDJV system
with regularity k£ are computed using higher order differences of the underlying signal. A restart is
triggered when the scaled 7V* lower-bound within a bin exceeds the threshold of o. Thus we use



the energy of denoised wavelet coefficients as a device to detect low T'V* intervals. In Appendix E
we show that popular padding strategies such as zero padding, greatly inflate the TV'* distance of the
recentered sequence for k£ > 1. This hurts the dynamic regret of our policy. To obviate the necessity
to pad for performing the DWT, we employ a packing strategy as described in the policy.

4.3 Performance Guarantees

Theorem 3. Consider the the feedback model y; = 01.,[t]+€:t = 1,...,n where € are independent

0'2 Subguassian noise and |01n[t]|§ B. Ifﬂ =24 + 811%(51/)5), then with probablllty at least 1 — (5,

- 2 -
Ada-VAW achieves a dynamic regret of O (nﬁ (n* || D*T101.,, 1) 2’““) where O hides poly-

logarithmic factors of n, 1/6 and constants k,o, B that do not depend on n.
Proof Sketch. Our proof strategy falls through the following steps.

1. Obtain a high probability bound of bias variance decomposition type on the total squared
error incurred by the policy within a bin.

2. Bound the variance by optimally bounding the number of bins spawned.

3. Bound the squared bias using the restart criterion.

Step 1 is achieved by using the subgaussian behaviour of revealed labels y;. For step 2, we first
connect the wavelet coefficients of a recentered signal to its 7V'* distance using ideas from theory of
Regression Splines. Then we invoke the “uniform shrinkage” property of soft thresholding estimator
to construct a lowerbound of the TV* distance within a bin. Such a lowerbound when summed
across all bins leads to an upperbound on the number of bins spawned. Finally for step 3, we use a
reduction from the squared bias within a bin to the regret of VAW forecaster and exploit the restart
criterion and adpative minimaxity of soft thresholding estimator [Donoho et al., 1998] that uses a
CDJV wavelet system. O

Corollary 4. Consider the setup of Theorem 3. For the problem of forecasting sequences 6., with

n*||Dk*10,.,]1 < Cp and ||01.0]|0 < B, Ada—-VAW when run with 3 = 24 + 811%((%5) yields a

dynamic regret of O (nﬁ (Ch) ""Czﬁ) with probability atleast 1 — 0.
Remark 5. (Adaptive Optimality) By combining with trivial regret bound of O(n), we see that
dynamic regret of Ada—-VAWmatches the lower-bound provided in Proposition 1. Ada—VAW optimally

adapts to the variational budget C,,. Adaptivity to time horizon n can be achieved by the standard
doubling trick.

Remark 6. (Extension to higher dimensions) Let the ground truth 01.,[t] € R and let v; =
01014, ..., 010[n][i]], A; = n*|| D v;||y for each i € [d]. Let Z?Zl A; < Cyp. Then by

running d instances of Ada—VAW in parallel where instance i predicts ground truth sequence along

. . ~ 2%kt1 1 =2 .
co-ordinate i, a regret bound of O | d2x+3 nze+3 C7**+° > can be achieved.

Remark 7. (Generalization to other losses) Consider the protocol in Figure 1. Instead of squared
error losses in step (5), suppose we use loss functions fi(x) such that argmin f(x) = 01.,,[t] and

~ _2
fi(x) is y-Lipschitz. Under this setting, Ada—VAW yields a dynamic regret of O (7n2‘k1+3 Cprts
with probability at least 1 — §. Concrete examples include (but not limited to):

05(56 - 0[1:n] [t])2 |£Z? - G[Ln] [t]|§ w

< I-Livschits i i
wW(|z = Op.p[t]|—w/2)  otherwise 1 frkpseiic i grd

1. Huber loss, ft(w)(ac) = {
dient.

2. Log-Cosh loss, fi(x) = log(cosh(z — 0[y.,[t])) is I-Lipschitz in gradient.

3. e-insensitive logistic loss [Dekel et al., 2005], ft(e)(m) = log(1 + e*~Oumltl=€) 4 log(1 +
e~ HOumltl=€) _ 2log(1 + e€) is 1/2-Lipschitz in gradient.



The rationale behind both Remark 6 and Remark 7 is described at the end of Appendix C.2
Proposition 8. There exist an O (((k + 1)n)?) run-time implementation of Ada~VAW.

The run-time of O(n?) is larger than the O(n log n) run-time of the more specialized algorithm of
[Baby and Wang, 2019] for £ = 0. This is due to the more complex structure of higher order CDJV
wavelets which invalidates their trick that updates the Haar wavelets in an amortized O(1) time.

5 Extensions

In this section, we discuss the potential applications of the proposed algorithm which broadens its
generalizability to several interesting use cases.

5.1 Optimality for Higher Order Sobolev and Holder Classes

So far we have been dealing with total variation classes, which can be thought of as ¢;-norm of the
(k 4+ 1)th order derivatives. An interesting question to ask is “how does Ada—VAW behave under
smoothness metric defined in other norms, e.g., #2-norm and ¢,-norm?” Following [Tibshirani, 2014],
we define the higher order discrete Sobolev class S*+1(C!,) and discrete Holder class H**1(L’)) as
follows.

SHCr) = {01 : n*|DFT 010 [12< C
HkJrl(L/n) = {01 : nk”DkJrlel:n”ooS L’/IL}’

where k > 0. These classes feature sequences that are spatially more regular in comparison to
the higher order TV'* class. It is well known that (see for eg. [Gyorfi et al., 2002]) the following

embedding holds true:
Hk+1 <C7L> g Sk+1 (C’”) g Tvk(cn)
n Vn
Ca

Here WV and % are respectively the maximal radius of a Sobolev ball and Holder ball enclosed
within a TV*(C,,) ball. Hence we have the following Corollary.
Corollary 9. Assume the observation model of Theorem 3 and that 0., € SFTY(C!). If

08 =24+ 811%((%5), then with probability at least 1 — §, Ada—VAW achieves a dynamic regret

of O (nﬁm]ﬁ).

It turns out that this is the optimal rate for the Sobolev classes, even in the easier, offline non-
parametric regression setting [Gyorfi et al., 2002]. Since a Holder class can be sandwiched between
two Sobolev balls of same minimax rates [see, e.g., Gyorfi et al., 2002], this also implies the adaptive
optimality for the Holder class. We emphasize that Ada-VAW does not need to know the C,,, C/, or
L!, parameters, which implies that it will achieve the smallest error permitted by the right norm that
captures the smoothness structure of the unknown sequence 01.,.

5.2 Optimality for the case of Exact Sparsity

Next, we consider the performance of Ada—VAW on sequences satisfying an £p-(pseudo)norm measure
of the smoothness, defined as

gk+1(Jn) = {Hl:n . ||Dk+101:n||0§ J’ru ||01n||oo§ B}
This class captures sequences that has at most .J,, jumps in its (k + 1)*" order difference, which

covers (modulo the boundedness) kth order discrete splines [see, e.g., Schumaker, 2007, Chapter 8.5]
with exactly J,, knots, and arbitrary piecewise polynomials with O(.J,,/k) polynomial pieces.

The techniques we developed in this paper allows us to establish the following performance guarantee
for Ada—-VAW, when applied to sequences in this family.

Theorem 10. Let y; = 01.,[t]+ ¢, fort = 1,...,n where ¢, are iid sub-gaussian with parameter o>
and || D¥ 101, (| < Jy with 1.0 [t]|< B and Jy, > 1. If B = 24 + S50 shen with probability

at least 1 — 0, Ada—-VAW achieves a dynamic regret of 0 (Jn) where O hides polynmial factors of
log(n) and log(1/9).



We also establish an information-theoretic lower bound that applies to all algorithms.

Proposition 11. Under the interaction model in Figure I, the minimax dynamic regret for forecasting
sequences in ET1(J,) is Q(J,,).

Remark 12. Theorem 10 and Proposition 11 imply that Ada—-VAW is optimal (up to logarithmic
factors) for the sequence family E*(.J,,). It is noteworthy that the Ada—-VAW is adaptive in J,,, so it
is essentially performing as well as an oracle that knows how many knots are enough to represent
the input sequence as a discrete spline and where they are in advance (which leaves only the J,
polynomials to be fitted).

6 Conclusion

In this paper, we considered the problem of forecasting 7'V* bounded sequences and proposed the
first efficient algorithm — Ada—VAW- that is adaptively minimax optimal. We also discussed the
adaptive optimality of Ada-VAW in various parameters and other function classes. In establishing
strong connections between the locally adaptive nonparametric regression literature to the adaptive
online learning literature in a concrete problem, this paper could serve as a stepping stone for future
exchanges of ideas between the research communities, and hopefully spark new theory and practical
algorithms.
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Broader Impact

1. Who may benefit from the research? This work can be applied to the task of estimating
trends in time series forecasting. For example, financial firms can use it to do stock market
predictions, distribution sector can use it do inventory planning, meterological observatories
can use it for weather forecast and health and planning sector can forecast the spread of
contagious diseases etc.

2. Who may be put at disadvantage? Not applicable

3. What are the consequences of failure of the system? There is no system to speak off, but
failure of the strategy can lead to financial losses for the firms deploying the strategy to
do forecasting. Under the assumptions stated in the paper though, the technical results are
formally proven and come with the stated mathematical guarantee.

4. Method leverages the biases in data? Not applicable.
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