A Dataset Information

A.1 ImageNet-10
Table 6: Classes in ImageNet-10 dataset.
The ImageNet-10 is a subset of images from

ILSVRC 2012 ImageNet-1K dataset [36] of Class no. ImageNet id Class name
1000 classes. All images corresponding to the

10 classes from CIFAR-10 as listed in Table 6 ! n02690373 -~ “airliner’
. 2 n04285008 sports car

are sampled from the full dataset. The classes in g )

o . . 3 n01560419 bulbul
CIFAR-10 are: airplane, automobile, bird, cat, . . s
deer, dog, frog, horse, ship and truck 4 n02124075 Egyptian cat

e ’ ’ ’ 5 n02430045 ‘deer’

The class n02430045: ‘deer’ is not present in 6 n02099601  ‘golden retriever’
the ImageNet-1K subset and was scraped from 7 n01641577 ‘bullfrog’
the full ImageNet-22K database [7]. Each class 8 n03538406 ‘horse cart’
is divided into 1300 images for training and 50 9 n03673027 ‘ocean liner’
images for validation. 10 n04467665 ‘trailer truck’

Typical on-device models for real-world appli-
cations deal with limited classes (e.g. intruder detection). ImageNet-10 is a good proxy for this task
with medium resolution natural images.

A.2 Visual Wake Words

This is a binary classification dataset [6] dealing with the presence and absence of a person in the
image. The dataset is derived by re-labeling the images available in the MS COCO dataset [30] with
labels corresponding to whether a person is present or not. The training set has 115K images and the
validation set has 8K images. The labels are balanced between the two classes: 47% of the images in
the training dataset of 115k images are labeled as ‘person’.

A.3 WIDER FACE

This is a face detection dataset [47] with 32,203 images containing 393,703 labeled faces varying
in scale, pose, and occlusion. It is organized based on 61 event classes. Each event class has
40%/10%/50% data as training, validation, and testing sets. The images in the dataset are divided
into Easy, Medium, and Hard cases. The Hard case includes all the images of the dataset, and the
Easy and Medium cases are subsets of the Hard case. The hard case includes images with a large
number of faces or tiny faces along with the data from Easy and Medium cases.

A4 SCUT HEAD

This is a head detection dataset [35]. We use PartB of this dataset for our experiments. PartB includes
2405 images with 43940 heads annotated. 1905 images of PartB are for training and 500 for testing.

B RNN as a spatial operator and comparison with ReNet

Since ReNet [42], there have been a few methods that have been built upon it to solve various vision
tasks. The fundamental difference, mathematically, between these approaches, and ours is how the
RNN is used to extract spatial information. In ReNet based methods, the RNN is used to find a
pixel-wise mapping from a voxel of the input activation map to that of the output map. However, in
our method, we are using RNNs to spatially summarize a big patch of the input activation map to a
1x1 voxel of the output activation map. Note that in ReNet the hidden states of every timestep of
RNN contribute to one voxel of the output, whereas in our case only the last hidden states of the
traversals are taken for both row/column-wise summarizations and bidirectional summarizations.

ReNet based approaches either insert RNN based layers in existing networks or replace a single
convolution layer (thus resulting in increasing computations). In ReNet, the RNNs are applied over
the whole input map, whereas RNNPool is applied patch by patch, which is semantically similar to a
pooling operator. Our usage of RNN for spatial information extraction is so powerful that we can
eliminate a large amount of RAM and compute heavy convolution layers and still preserve accuracy.
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Multi-Dimensional Scaling on Synthetic Lines Dataset
h 100°
P

"‘:- 160°

o Permuted

D § Bl images of

(1) Instances of 32 x 32 images with
a line segment and background noise

(2) Instances of 32 x 32 and 64 x (3) Instances of 64 f) g 80° class
64 images with smoothed line X 64 images with w - Fermuter:
segments and background noise multiple shapes - 1008 chast

Figure 4: (left) Examples from three multi-class and multi-label synthetic datasets used for probing
RNNPool. (right) A 2-dimensional Multi-Dimensional Scaling visualization of the 128 dimensional
output of RNNPool operator for the multi-class dataset (1). Some test images (plotted using black
and brown dots) were modified by randomly permuting rows and columns.

For ReNet to do the same, patches of size equal to the stride have to be flattened to construct an input
to the RNN, which makes it further inefficient in terms of compute and parameters and results in
loss of spatial dependencies. RNNPool results in a decrease in computations and parameters while
ReNet based methods will increase the same with respect to the baseline model. The comparisons in
Table 2 & 3 show that ReNet in fact results in a significant loss in accuracy too.

C Probing the Efficacy of RNNPool

C.1 Capturing Edges, Orientations and Shapes

To probe RNNPool’s efficacy at capturing edges, orientation, and shapes, we attempt to fit an
RNNPool operator to the following synthetic datasets of small 8-bit monochrome images with
background noise as shown in Figure 4. We conduct experiments on synthetic datasets to prove that
RNNPoolLayer can learn spatial representations.

1. A multi-class dataset consisting of images with one line segment of varying lengths and positions.
There are 9 classes corresponding to lines ranging from O to 160° at 20° intervals.

2. A multi-label dataset with images consisting of multizple line segments with varying lengths and
positions. There are 9 labels corresponding to lines with orientations of 0 to 160° at 20° intervals.

3. A multi-label dataset consisting of images with a subset of shapes (5 in total) — circle, triangle,
square, pentagon, and hexagon.

We sweep over the hi, ho parameters in pow- Table 7: Minimum required hyperparameter configura-
ers of 2 for the smallest RNNPool operator that ~tions for synthetic experiments.

can enable a single FC layer to classify or la-
bel the test set with 100% accuracy. We do so o
with and. without a pref:edlng CNN layer of 8 @ 3232 b = he— 8 b = hy = 39
qonvolutlons of 3 x 3 size and stride 2. Table 7 (2)  6ax64  hy =8 hy =16 By = hy = 32
lists the least h1, ho required for each task. We (3) 64x64 h1=8=hy=16  h; =hy =232
observe that a single RNNPool module fits to

100% accuracy on all these datasets.

Data Image Size With Conv. Without Conv.
32 x 32 hi=4,ho =16  hy =16,hy =32

We conclude that the horizontal and the vertical passes of the RNN allows a single RNNPool operator
to capture the orientation of edges and simple shapes over patches of size up to 64 x 64. Further,
adding a single convolutional layer before the RNNPool layer makes the model much more parameter
efficient. In effect, the convolution layer detects gradients in a local 3 x 3 patch, while the RNNPool
detects whether gradients across 3 x 3 patches aggregate into a target shape.

Further, we use multi-dimensional scaling [32] to visualize the 4 - ho = 128 dimensional output of
RNNPool operator on the multi-class dataset (1) in Figure 4 (left). Dataset (1) consists of various
lines in the image at a discrete set of angles, and the classification task is to detect the angle of
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the line. Some images from the test set of classes 80° and 100° are multiplied with a permutation
matrix to randomly permute rows and columns. These resulting images are added to the original
test dataset and the output of the RNNPool is plotted in Figure 4 (right). The outputs for each class
form well-separated tight clusters indicating RNNPool indeed learns various orientations, while the
outputs for the permuted images are scattered across the plot indicating that it is not exploiting certain
gross aggregations in the data.

C.2 Comparing Performance with Pooling Operators

We now contrast the down-sampling power of RNNPool against standard pooling operators. That
is, we investigate if the pooling operators maintain accuracy for a downstream task even when the
pooling receptive field is large. To this end, we consider the image classification task with CIFAR-10
dataset [25] but the pooling operator is required to down-sample the input 32 x 32 imagetoa 1 x 1
voxel in one go i.e. both patch size and stride are 32. This is followed by a fully connected (FC)
layer. The number of output channels after pooling was ensured to be the same. For Max and Average
pooling models, a 1 x 1 convolution is used to ensure the same output dimension. For this task,
RNNPool achieves an accuracy of 70.63 %, while the convolution layer, max pooling, and average
pooling’s accuracy are 53.13%, 20.04% and 26.53%, respectively. This demonstrates the modeling
power of the RNNPool operator over other pooling methods. Table 2 (Rows 2-5) reinforces the same
but on bigger image classification datasets.

Details. We use h; = ho = 32 for the RNNPool operator with patch size and stride as 32. For the
strided convolution we use a convolution layer of 4 x ho = 128 filters. For Max and Average pooling
first we pool down to 1 x 1 x 3 from input of 32 x 32 x 3 and then use a 1 x 1 convolution of 128
filters. All the above have the same patch size and stride size and are followed by a fully connected
layer projection to 10 from 128.

D Lower bounds on space required for multi-layer networks

We now lower bound the memory requirements of computation of multi-layer convolutional networks
when recomputation is not permitted. Suppose we have an [-layer (! > 1) convolutional network.
Let Y denote the nodes in the final layer which form a grid of size m x n. Suppose that the size
of the receptive field of each node in Y in an intermediate layer [ is (2k + 1) x (2k + 1),k > 0

and that y; ; € Y depends on the activations of nodes xl(f;,,i’ ef{i—k,...;i,...i+k},j €
{j—k,...,J,...j + k} in the intermediate layer [. Suppose further that the convolution operations
have stride 1 and are generic and not separable, i.e., can not in the general case be factored into
depth-wise separable operations. An execution of this network “disallows recomputation” if once
a node z in an intermediate layer (layers that are neither the input nor output of the network) is

computed, all nodes y € Y that depend on = must be computed before z is evicted from memory.

Claim 1 Fix column j € [n]. Suppose that nodes y; ;, i € I C [m] have been completed at some
point in an execution order. Then at the same point in the execution order, at least 2k contiguous

0 0 @

ACtiVALIONS Ty 1 q 5> T _io s Lpyy s for some i* € [m] will need to be saved in memory

until another node from column j is computed.

Proof. Since I C [m], there exists index i* € [m] \ I such that either i* +1 € Tori* —1 € I.

Suppose without loss of generality that ¢* — 1 € I. Then, nodes xE?_ka xl(,l@)_k_ﬂ’j, e ,:cz(.i)%,_l’j
must have been loaded into memory. However, y;+ ; also depends on these intermediate nodes, and
has not yet been computed. So these 2k intermediate nodes must be retained in memory, thus proving
the statement. The case where ¢* 4 1 € I is similar.

With this claim, we are ready to prove Proposition 1.

Proof of Proposition 1. Fix any execution order of the network, and label the nodes in the final
layer Y in the order they are evaluated: (p1,q1), (P2, G2), - - - s (Pmns @mn). Thatis y,, 4, is evaluated
before ¥, 4, and so on. Let

It = Ut

Dry, Ji= UtleqT, and t* = mtin{\lt| =mor |J;| =n}.
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That is, once ¥p,. 4, s executed, either (a) at least one node in each row of the final layer has been
executed, or (b) at least one node in each column of the final layer has been executed, and at the
moment Yp,,. , q,-_, 1S computed, there is an entire row, say r, and an entire column, say c, in the
final layer where no nodes have been executed.

Suppose that case (b) holds. Then, at step ¢t* — 1, nodes in n — 1 columns [n] \ {c} have been
executed, and in each column, at least one row has not been executed. By Claim 1, each such column
would need to have 2k, activations at layer ¢ in memory at this point of execution, and all these
nodes are unique (that the nodes required to be in memory by Claim 1 for different columns are
non-overlapping). Therefore, at least 2 Zfl;ll ¢cqkq X (n—1) memory is required to hold the necessary
nodes in each intermediate layer for this execution.

A similar analysis of case (a) yields a lower bound of 2 251;11 cqkq % (m — 1) from which the lemma
follows. ]

If convolution operators have a stride larger than 1, then we can similarly state the following claim
based on the overlap between the nodes in an intermediate layer that are common dependencies
across two consecutive rows/columns of the output.

Claim 2 Fix column j € [n]|. Suppose that nodes y; ;, i € I C [m] have been completed at
some point in an execution order. Suppose that the stride at layer q is s,. Restrict sq to 1 in
a layer with 1 x 1 convolutions, i.e., assume activations are not simply thrown away. Then at
the same point in the execution order, at least k' = 2k + 1 — HlT:qsr contiguous activations

xl(.il k2] +1,57 acgi)_kdrz oo xgi)Jr (k2] ; Jor some i* € [m] will need to be saved in memory until

another node from column j is computed.
This allows us to restate Proposition 1 in networks where stride is greater than 1.

Proposition 2 Consider an l-layer (I > 1) convolutional network with a final layer of size m X n.
Suppose the for each node in the output layer, the size of receptive field in intermediate layer q € [I—1]
is (2kg + 1) x (2kq + 1), ky > 0 and that this layer has cq channels and stride s,. Restrict sqto 1 in

a layer with 1 x 1 convolutions. Suppose that k:; =2k, +1- HZT;ZS,.. Any serial execution order
of this network that disallows re-computation requires at least 251;11 cqkl x min((ILZL s, )m —
1, (IliZ s, )n — 1) memory for nodes in the intermediate layers.

Claim 3 The lower bound in Proposition 1 is matched by an execution order that computes the
network in a row or column-first order, whichever is smaller. That is, execute all the intermediate
nodes needed to compute the first row of the output, retain those intermediate nodes required for
the calculation of the second row of the output, compute the second row of output, and so on. Let
Sy = Hi:qsr, and restrict sq to 1 in a layer with 1 X 1 convolutions. This schedule has a memory

requirement ofzz_:ll cq(2kg + 1 — Sg)min(Qqm — 1+ 2k, Syn — 1 + 2k,) if we account for the
padding at either ends of the row in each intermediate layer, and

~
I

1
cq(2kq +1 = Sg)min(Sgm — 1, Sqn — 1),
1

q

if the padding is not counted.

Claim 4 Suppose we follow the row (or column)-wise execution order in Claim 3, and that each row
in the output depends on kg layers at the input. Suppose that the input is required to be in memory
before the start of the execution and the output is required to be in memory at the end of the execution.
Let c¢;y, and c,y: denote the number of channels in the input and output. Let S; = Hi.:qsr, and let
ky = ko — Sy be the number of rows/columns in the input layer that are common dependencies
between two consecutive rows/columns of the output. The memory requirement including those of
the input and output layers is

-1

max{ M, NinCin+koNoutCouts MoutMout cout—l—k(’)nmcm}—i—z cq(2kg+1-S,)min(Sym—1, Syn—1),
q=1
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with padding added on the fly for convolutions at the boundaries of activation maps. This is obtained
by reclaiming the footprint of the input for the output one row at time (with a lag of ko rows) once all
the nodes that depend on it are completed.

E Details about Compute and Peak RAM Calculation

In this section, we quantify the memory requirements of the networks analyzed in this paper.

E.1 Optimal memory requirements without recomputation

First, we analyze the minimum memory requirements and optimal execution orders of components —
inverted residual block, separable residual block, dense block, and inception block — assuming that
no re-computation is allowed. That is, we wish to find the minimum value, over all valid execution
orders E of the block, of the maximum memory requirement of the execution order. Then, we analyze
the memory requirement of image classification architectures discussed in this paper.

E.1.1 Memory requirements of various block

We assume that the execution always starts with the input of the block in memory, and terminates
with output in memory. We denote that the size of input [ is h;, X w;, x C, where h;,, and w;,, are
the height and the width of the activation and c;,, is the number of channels. Likewise, denote the
size of O to be hoyt X Wout X Cout. In what follows, suppose also that iy, > Wiy, and by > Woyt-
Otherwise we can flip rows and columns and meet the same constraints.

1. Inverted bottleneck residual block (a.k.a. MBConv, see Fig. 3b of [37]) : The first layer is a
point-wise convolution (C1) that expands the number of channels to ¢;,, X t where ¢ is expansion
factor. Then there is a depth-wise separable 3 x 3 convolution (C2) with stride either 1 or 2,
followed by another point-wise convolution (C3) which reduces the number of output channels.
We can use the row-wise order suggested in Claim 4, which results in a schedule where the first
row of the output is generated, then the second row and so on. This schedule has a memory
footprint of max{hinwincin + (3 - S)wout Couts PoutWoutCout + (3 - 3)wi7LCin} + (3 - S)tcinwin’
where s is the stride of the 3 x 3 convolution.

2. Residual Block (see Fig. S(left) of [16]) : We consider a residual block consisting of two
convolution layers with 3 x 3 kernels, of which the first has a stride s of 1 or 2, and the second
has stride 1. The we have Wyt = Wi /s and Aoyt = hin/s. Using Claim 4, we can see that
the best case memory footprint is max{hi, WinCin + (5 — 8)WinCout /5, RinWinCout /8> + (5 —
$)WinCin} + 2WinCout /S, assuming that the number of channels of intermediate layer is equal to
Cout S 18 the norm here.

3. Inception block (see Fig. 2b of [40]): Denote the output of each of the 4 paths in the block by
01,042, 03 and O4. We consider the case where all convolutions are of stride 1. We can apply the
arguments of Section D simultaneously for all four paths with slight modification. We consider
a minimal set of contiguous rows at the start of the input — which would be first 5 row in the
referenced image as its the largest convolution size — and compute all channels in the first row
of the output of all four paths. We then drop the first row of input, materialize the second row
of output on all four paths and so on. If we denote by c,,; the number of output channels of
all four networks, then the memory requirement is max{h;, Win Cin + 4Wout Couts Rout WoutCout +
Qwincin} + (2¢9 + 4es)w;y, where co and c3 are the number of intermediate channels in O and
O3 respectively.

4. Dense block (see Fig. 4 of URL) : At any point in the execution of a dense block, we need to
store the input to the dense block and outputs of all previous dense layers, since the last layer
needs all the activation maps concatenated as its input. The total activation maps being stored will
reach the peak just after the last dense layer. Therefore the peak memory requirement is the output
of the dense block.

E.1.2 Memory requirements of image classification networks

We calculate the lowest possible memory requirements of networks using calculations in the previous
subsection for individual blocks and the following methodology: find a partitioning of a multi-layer
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Table 8: Comparison of accuracy, compute and minimum memory requirement for inference with and without
RNNPoolLayer on ImageNet-10. The memory calculations reflect the application of Proposition 2 and Claim 4

| Base | RNNPool

Model

\ Accuracy (%) Parameters Peak RAM MAdds \ Accuracy (%) Parameters Peak RAM MAdds
MobileNetV2 94.20 2.20M 0.84MB 0.30G 94.40 2.00M 0.24MB 0.23G
EfficientNet-B0O 96.00 4.03M 0.84MB 0.39G 96.40 3.90M 0.24MB 0.33G
ResNet18 94.80 11.20M 0.81MB 1.80G 94.40 10.60M 0.38MB 0.95G
DenseNet121 95.40 6.96M 2.38MB 2.83G 94.80 5.60M 0.77MB 1.04G
GoogLeNet 96.00 9.96M 1.01MB 1.57G 95.60 9.35M 0.59MB 0.81G

network into disjoint contiguous sets of layers that minimizes the least memory requirement of the
most memory-intensive partition. Using this, we calculate the memory requirements of networks in
Table 1 and list the requirements in Table 8. We now discuss the specifics of each network, and in
particular, the partition of the layers of the network that requires the maximum memory (and thus
lower bonds the memory requirement of a network).

GoogLeNet has a initial convolution layer (C1) of stride 2, followed by a max pooling layer (P1),
another convolution layer (C2) of stride 2 and then a max pooling layer (P2). Output of P2 is of size
28 x 28 x 192. Applying Proposition 2 to the set of layers starting with the input image (/) and
output of P2 (O), the RAM required is 112 x (11-4) x 64 + 56 x (5-2) x 64 + 56 x (3-2) x 192
added to O and 7 rows of input, is lesser than the requirement for inception (3b). For the inception
(3b) block, the input is ( 28 x 28 x 256) and the output is of size 14 x 14 x 480. Therefore using
Proposition 2, the RAM required is 28 x (7-2) x 32 + 28 x (5-2) x 128 + 28 x (3-2) x 64 + 28 X
(3-2) x 480 (the first three terms are intermediate activations of the inception block and have different
receptive fields), added to the input size (28 x 28 x 256) + 14 x (7-2) x 480, results in 1.01MB.

DenseNet121 has a 2-strided convolution layer (C1) in the beginning followed by a max pool of
stride 2 (P1) and then D1-the first Dense block which has 6 Dense layers. Each Dense layer has 1 x 1
convolution with 128 output channels followed by a 3 x 3 convolution with 128 input and 32 output
channels. The output of each Dense layer is concatenated to the input to form the input to the next
Dense layer which is why the 1 x 1 convolution in each Dense layer has different input channels. D1
is followed by a 1 x 1 convolution which reduces channels of activation map to half followed by P2,
another Max Pool layer. For determining the peak RAM required, we apply Proposition 2 to the set
of layers starting with the output of P1 (/) until the output of P2 (O), so that we can go from 56 x 56
X 64 to 28 x 28 x 128 directly bypassing 56 x 56 x 256 sized Op;. The receptive field of O on I
can be calculated to be 14x 14. The RAM for intermediate activations will be 56 x (14-2) x 128 +
56 x (12-2) x 32 +56 x (12-2) x 128 + 56 x (10-2) x 32 + ...+ 56 X (4-2) x 32. The total peak
RAM along with I (56x 56 x 64) + 28 x (14-2) x 128, which is 2.38MB.

ResNet18. A similar calculation as above can be done for ResNet18. The architecture consists of a
convolution layer (C1) of stride 2 followed by a max pool layer (P1), followed by residual blocks. In
this case, let us apply Proposition 2 to the block of layers starting with the input RGB image of size
224 x 224 x 3 (denoted I) until the output of P1 (denoted O). Between I and O we have 2 layers:
C1 and P1. Therefore the total RAM requirement will be 112 x (3-2) x 64 added to O (56 x 56 X
64) + 224 x (11-4) x 3, which is 0.81MB.

MobileNetV2 has a convolution layer C1 of stride 2 followed by a MBConv block MB1 which has
stride 1. MB1 contributes to the peak memory (2.29MB). Denote by I the input RGB image of size
224 x 224 x 3 and denote by O the output of MB1. The receptive field of O on output of C1 is 3,
on output of first layer of MBI is 3 and after the 1 for the rest two layers of MB1. Therefore, using
Proposition 1, the RAM required is 112 x (3-1) x 32+ 112 x (3-1) x 32 added to O ( 112 x 112 x
16)) + 224 x (7-2) x 3, which is 0.84MB.

EfficientNet-B0 has exactly the same calculation as MobileNetV2 as the first convolution block and
first MBConv block are identical.

RNNPool Versions : Similar to GoogLeNet we can also reduce peak RAM of GoogLeNet-RNNPool.
Here inception (4e) is the bottleneck. Lets take I as the input to inception (3b)( 14 x 14 x 528) and
O as the output of the pooling layer after inception (3b). Size of O is 7 x 7 x 832. Therefore using
Proposition 1, the RAM required is 14 x (7-2) x 32 + 14 x (5-2) x 160 + 14 x (3-2) x 128 + 14 x
(3-2) x 832, added to input (14 x 14 x 528) + 7 x (7-2) x 832, resulting in 0.59MB.
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The peak memory requirements of RNNPool versions of ResNet18, DenseNet121, MobileNetV2
and EfficientNet-BO in Table 1 cannot be reduced further by better schedules as we replace the
most memory-intensive blocks and operate patch-by-patch, which is more local and granular that
row-by-row schedules used above.

E.2 Memory requirement (without recomputation) estimates according to prior conventions

In this subsection, we follow the scheduling convention of Chowdhery et al. [6] to estimate the
memory requirements of individual blocks and networks that use them. Note that the memory
requirements listed here can be higher than in Section E.1 as the schedules may not be optimal from
memory requirement perspective.

E.2.1 Memory requirements of individual blocks

1. Inverted bottleneck residual block (a.k.a. MBConv) : Give input [ of size h;, X w;, X C,
a pointwise convolution (C1) first expands the number of channels to C' x ¢ where ¢ is
expansion factor. Then there is a depthwise separable 3 x 3 convolution (C2) with stride
either 1 or 2, followed by another pointwise convolution (C3) which reduces the channel to
the number of output channels (O) associated with the MBConv block. To avoid storing the
large output (O¢1) of C1 and bloating the memory, O is constructed channel by channel,
so at first 1 filter of the C' x ¢ filters of C1 will be convolved with I, then this single 2D vector
will be convolved by C2. Since C2 is depthwise separable and input channels independently
contribute to an output channel, we again get a 2D map. This map is convolved with all
filters of C3 and we get an output of O number of channels. We keep doing this, going
one by one through each filter of C1 and adding to the output of the MBConv block of O
channels, to get the final output. Hence, the memory requirement is the size of input added
to that of the output of the MBConv block.

2. Residual Block : The memory requirement is the maximum of input and output maps of
the block. As the residual connection adds the input to the output values can be discarded
after being added to the output values being computed.

3. Inception block: Denote the input to the inception block I and the outputs of each of the 4
paths in the block O1, O2, O3 and Oy4. Since we can get rid of the input [ after computing
the last output, we can order the computation in increasing order of the number of channels
in O;. Therefore, the peak RAM while computing the full block will be the sum of input
added to the sum of the 3 smallest outputs.

4. Dense block: A dense block needs to store the input as well as outputs of all previous dense
layers since the last layer needs all the activation maps concatenated. The volume activation
maps stored will reach the peak just after the last dense layer. Therefore the peak RAM
usage is the size of the output of the dense block.

E.2.2 Memory requirements of image classification networks in Table 1

We now use the above results to compute the memory requirements of image classification networks,
assuming all computations are in 32-bit floating-point. We assume the layer-by-layer convention of
[6] for RAM computation. The peak memory requirement of both MobileNetV2 and EfficientNet-BO
is contributed by the first MBConv block in these architectures. The input map size to the block is
112 x 112 x 32 and the output map size is 112 x 112 x 16, adding up to a peak memory requirement
of 2.29MB.

The peak memory requirement of the RNNPool inserted versions is the MBConv block right after
the RNNPool replacement. The input size is 28 x 28 x 64 and output size is 14 x 14 x 64 for
MobileNetV2-RNNPool, adding up to 0.24MB. The input size is 28 x 28 x 64 and output size is
14 x 14 x 80 for EfficientNetBO-RNNPool, adding up to 0.25MB.

For ResNet18, DenseNet121, and GoogLeNet the maximum memory requirement is to host the
activation map just after the first convolution layer which is of size 112 x 112 x 64. For ResNet18-
RNNPool, the maximum requirement comes from the residual block just after RNNPool, i.e., the
first residual block out of the two of conv4_x. The input to this is of size 28 x 28 x 128 and the
output size is 14 x 14 x 256. The maximum of these two is 0.38MB. For DenseNet121-RNNPool,
the largest memory requirement comes from the output of D3 (see Figure 2), the size of which
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14 x 14 x 1024 i.e. 0.77MB. For GoogLeNet, the peak requirement comes from the last inception
block on the spatial resolution of 14 x 14 — inception (4e). Here the size of the input is 14 x 14 x 528
and sizes of the 3 smallest outputs are 14 x 14 x 128, 14 x 14 x 128 and 14 x 14 x 256, totaling
0.78MB.

E.2.3 Memory requirement of face detection networks in Table 4 without recomputation

We use convention of considering the largest activation map to be the peak RAM requirement.
For EagleEye, FaceBoxes, EXTD and LFFD architectures, the largest activation map is the output
of the first convolution, their sizes being 320 x 240 x 4 (=1.17MB), 160 x 120 x 24 (=1.76MB),
320 x 240 x 64 (=18.75MB) and 320 x 240 x 64 (=18.75MB) respectively. For RNNPool-Face-A and
RNNPool-Face-B, the largest activation map is the output of the RNNPool, which is 160 x 120 x 16
(=1.17MB) and 160 x 120 x 24 (=1.76MB) respectively. For RNNPool-Face-C and RNNPool-Face-
Quant, peak memory requirement is contributed by the MBConv block right after the RNNPool. The
input size of this block for RNNPool-Face-C is 160 x 120 x 64 and output size is 160 x 120 x 24,
the total being 6.44MB. The input size of this block for RNNPool-Face-Quant is 80 x 60 x 32 and
output size is 80 x 60 x 16, the total being 224KB as we quantize to 1 byte unsigned integer.

E.3 Memory requirements of image classification networks in Table 1 with recomputation

As explained in Section E.2.2, the RAM calculations for RNNPool based models revealed that the
convolution block after RNNPoolLayer contributes to the peak RAM. Let’s denote this block in
both the base architecture and RNNPool-based version as ConvBlock-A. In the memory-optimized
scheme, we fix the peak RAM of the base model to be that of the convolution block whose RAM
usage is a bit more than that of the RNNPool version. We denote by ConvBlock-B the convolution
block that lies before ConvBlock-A, and such that there exists no block that lies between this block
and ConvBlock-A which has a RAM usage less than that of ConvBlock-A. Note that ConvBlock-B is
present only in the base model and not the RNNPool model. Since we fix the peak RAM, we have to
reconstruct an activation map (denoted by Activation-A) that comes before ConvBlock-B patch by
patch. Note that Activation-A need not necessarily be the activation map just before ConvBlock-B.
Activation-A is chosen as the earliest occurring activation map (nearer to the input image) which
ensures that there is no intermediate layer or block between it and ConvBlock-B which can contribute
to more RAM usage. We do construct Activation-A by loading a patch of the image (one at a time),
which is of the size of the receptive field of Activation-A w.r.t. the input image, and feed it forward to
getal X 1 x channel gctivation—a voxel of Activation-A. When we load the next patch we have
to re-compute some convolution and pooling outputs which come in the overlapping region of the
two consecutive patches. We keep doing this until we reconstruct Activation-A completely. The total
number of MAdds is the sum of the MAdds of the base network and the extra re-computations in
order to compute patch-by-patch.

F Architectures

F.1 Image Classification

F.1.1 RNNPoolLayer in the beginning replacing multiple blocks

Table 9: RNNPool settings for image classification.

Model | Hidden Size | Patch Size
MobileNetV2-RNNPool hi=hy =16 6
EfficientNet-BO-RNNPool hy1 = hy =16 6
ResNet18-RNNPool h1 = hy = 32 8
DenseNet121-RNNPool h1 = hy =48 8
GoogLeNet-RNNPool h1 = hy = 32 8
MobileNetV2-RNNPool (0.35x) | hy = hy =8 6

As discussed in Figure 2, we can use RNNPoolLayer in the beginning of the architecture to rapidly
downsample the image leading to smaller working RAM and compute requirement. Table 9 presents
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the hidden state size and patch size used by RNNPoolLayer when applied to various models
discussed in Table 1. Note that the last row refers to the model used for Visual Wake Words
experiments (Figure 3).

Furthermore, Table 10 presents the exact architecture used by MobileNet-v2-RNNPool(0.35x) archi-
tecture applied to the Visual Wakeword problem (Section 5.2).

Table 10: MobileNetV2-RNNPool: RNNPool Block with patch-size 6 x 6 and hidden sizes h1 = ha = 16 is
used. The rest of the layers are defined as in [37]. Each line denotes a sequence of layers, repeated n times. The
first layer of each bottleneck sequence has stride s and rest use stride 1. Expansion factor ¢ is multiplied to the
input channels to change the width. The number of output classes is [.

Input \ Operator [t ¢ |n]s
2242 x 3 conv2d 3 x 3 1 32 112
1122 x 32 | RNNPoolBlock | 1 | 64 | 1|4
282 x 64 bottleneck 6| 64 |42
142 x 64 bottleneck 6] 9 |31
142 x 96 bottleneck 6| 160 | 3|2
72 x 160 bottleneck 61320 | 1]1
72 x 320 conv2d 1 x 1 1128011
72 x 1280 avgpool 7 x 7 1 - 111

1 x1x1280 conv2d 1 x 1 1 l -1

F.1.2 RNNPoolLayer replacing Average Pooling at the end

Typical image classification models use average pooling before the final feed-forward layer to produce
the class probabilities. As RNNPoolLayer is syntactically equivalent to standard pooling layers, we
can use it to perform the pooling in the penultimate layer, replacing the average pool layer. To this
end, we use RNNPool operator with by = hy = [/4 where [ is the number of channels in the last
activation map before the average pooling layer. Such a replacement does not significantly contribute
to the number of parameters and MAdds. In Table 2, Row 2 refers to such a replacement in the
base MobilnetV2, DenseNet121, and MobilenetV2-0.35x models, while Row 7 refers to similar
replacement in the corresponding RNNPool models. In Figure 3, all RNNPool based architectures
use RNNPool both in the beginning layer and in the penultimate layer of the network.

F.1.3 RNNPoolLayer replacing intermediate Pooling layers

These experiments have been tried on DenseNetl21 as the base model (Section-4), where we
are replacing single max-pooling layers appearing in intermediate positions in the network with
RNNPool. Given 7;, X c;n X k;y, size input activation map to the pooling layer, the hidden sizes for
RNNPool is taken as hy; = hy = ky;,, /4, patch size as 4 and stride as 2. Note that we also further
drop dense layers (1 x 1 convolution followed by 3 x 3 convolution) in D3 and D4. The number of
channels in the output of any dense block is the sum of the number of input channels and output of
each dense layer. Hence, reducing the number of dense layers reduces the number of channels of the
output activation maps of these dense blocks and hence the input to the pooling layer. However, for
the RNNPool the same strategy of hy = ho = k;,, /4 is followed where k;, is lesser now.

F.2 Face Detection

Our detection network builds upon the backbone structure of S3FD [50]. Each RNNPool-Face model
is created by placing RNNPool Block directly after the input image or after a strided convolution
(RNNPool-Face-Quant). Following the RNNPoolLayer, we apply standard S3FD architecture for
detection. Detection layers are placed at strides of 4, 8, 16, 32, 64, and 128, for square anchor boxes
of sizes 16, 32, 64, 128, 256, and 512 as in S3FD.

Following S3FD architecture, we fix the required receptive field size of each of the detection layers,
which is then used to compute the number of MBConv Blocks or convolution layers after RNNPool
and before each detection layer. We also use S3FD’s anchor matching strategy and the max-out
background label technique.
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Table 11: The architecture of RNNPool-Face-C

Input | Operator |t] ¢ |n|s

640 x 480 x 3 | RNNPoolLayer | 1 | 64 | 1| 4
160 x 120 x 64 bottleneck 624 |21
160 x 120 x 24 bottleneck 6] 32 |3]2
80 x 60 x 32 bottleneck 6| 64 | 4|2

40 x 30 x 64 bottleneck 6| 96 | 3|2

20 x 15 x 96 bottleneck 6160 | 2|2

10 x 7 x 160 bottleneck 6132012

Images are trained on 640 x 640 images. A multi-task loss is used where cross-entropy loss is used
for classification of anchor box and smooth L1 loss is used as regression loss for bounding box
coordinate offsets. We use multi-scale testing and Non-Maximal Suppression during inference to
determine final bounding boxes.

Table 11 contains the architecture of RNNPool-Face-C. There is a detection layer after every
bottleneck stack. The detection layer contains two 3 x 3 constitutional kernels which predict the
class probability (2 outputs per pixel) and bounding box offsets(4 outputs per pixel). The convention
followed in the table below is the same as in Table 10. t is the expansion coefficient, c is the number
of output channels, n is the number of repetitions of the MBConv' layer and s is the stride associated
with the first of those stack of layers. RNNPool’s hidden state sizes are fixed to be: h; = hy = 16.

Table 12: The architecture of RNNPool-Face-B

Input \ Operator | t] ¢ |n|s

640 x 480 x 3 | RNNPoolLayer | 1 | 24 | 1 | 4
160 x 120 x 24 conv2d 3 x 3 1124 |41
160 x 120 x 24 conv2d 3 x 3 1196 |12
80 x 60 x 96 conv2d 1 x 1 1132 (|11

80 x 60 x 32 bottleneck 6| 32 |31

80 x 60 x 32 bottleneck 6| 64 |32

40 x 30 x 64 bottleneck 6128|212

20 x 15 x 128 bottleneck 61160 | 1|2
10 x 7 x 160 bottleneck 61320112

Architecture for RNNPool-Face-B is shown in Table 12. The detection heads are after the second
row of the table and then after each stack of bottleneck layers. RNNPool’s hidden state sizes are
fixed to be: hy = hy = 6.

Architecture for RNNPool-Face-A is shown in Table 13. The detection heads are after the second
row of the table and then after each stack of bottleneck layers. RNNPool’s hidden state sizes are
fixed to be: h; = hy = 16. Depthwise+Pointwise refers to a depthwise separable 3 x 3 convolution
followed by a pointwise 1 x 1 convolution.

The architecture for RNNPool-Face-Quant is shown in Table 14. The detection heads are after the
second row of the table and then after each stack of bottleneck layers. The first detection head has
a strided 3 x 3 convolution to reach a total stride of 4 (following S3FD). RNNPool’s hidden state
sizes are fixed to be: h; = hy = 4.

'We use the terms “bottleneck’, MBConv, and inverted residual interchangeably, they refer to the same block.

Table 13: The architecture of RNNPool-Face-A

Input \ Operator [t] ¢ |n]s

640 x 480 x 3 RNNPoolLayer 1] 16 |1 ]4
160 x 120 x 16 | Depthwise+Pointwise | 1 | 16 | 4 | 1
160 x 120 x 16 | Depthwise+Pointwise | 1 | 16 | 1 | 2
80 x 60 x 16 bottleneck 116 |31

80 x 60 x 16 bottleneck 1124 |32

40 x 30 x 24 bottleneck 132 (22

20 x 15 x 32 bottleneck 201281 |2

10 x 7 x 128 bottleneck 21160 |1 ]2
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Table 14: The architecture of RNNPool-Face-Quant
Input | Operator [t] c|n]|s

Table 15: The architecture of RNNPool-Face-M4

640 x 480 x 3 | conv2d3x3 | 1] 4 |1 |2 Input | Operator |t]|c|n]|s
320 x 240 x 4 conv2d 3 x 3 114|111 320 x 240 x 1 conv2d 3 x 3 114|112
320 x 240 x 4 | RNNPoolLayer | 1 | 32 | 1 | 4 160 x 120 x 4 | RNNPoolLayer | 1 | 64 | 1 | 4
80 x 60 x 32 bottleneck 211641 40 x 30 x 64 bottleneck 2132|111
80 x 60 x 16 bottleneck 2124412 40 x 30 x 32 bottleneck 2132|111
40 x 30 x 24 bottleneck 2132122 40 x 30 x 32 bottleneck 216412
20 x 15 x 32 bottleneck 2164112 20 x 15 x 64 bottleneck 2164111
10 x 7 x 64 bottleneck 219|112

Table 15 shows the RNNPool-Face-M4 architecture for our cheapest model deployed on a M4 device.
The model has 4 detection layers after each MBConv Block. RNNPool’s hidden state sizes are fixed
tobe: hy = hy = 16.

The RNNPool models decrease MAdds drastically while maintaining performance. Figure 5, shows
the difference we are making. When restricted to the methods with <2G MAdds requirement, our
model attains even better MAP (for easy and medium dataset) than the state-of-the-art EXTD and
LFFD architectures (which need about 10G MAdds per inference.

m RNNPool Models

& Prior Art
0.95 EASY 09 MEDIUM HARD
’ RNNPool-C : ®RNNPool-C o o 08 EXTD o
L] *o EXTD  LFFD - °
0.9 4 0.85
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Figure 5: WIDER Face Dataset: MAdds vs MAP of various methods including RNNPool +S3FD.

G Hyperparameters

Models are trained in PyTorch [34] using SGD with momentum optimizer [39] with weight decay
4 x 10~° and momentum 0.9. We do data-parallel training with 4 NVIDIA P40 GPUs and use a
batch size of 256 for classification and 32 for face detection. We use a cosine learning rate schedule
with an initial learning rate of 0.05 for classification tasks, and 0.01 with 5 warmup epochs for face
detection tasks. All convolution layers use learnable batch normalization. We use the EdgeML [§]
implementation of FastGRNN. All ImageNet-10 and face detection experiments were trained for 300
epochs. Both Visual Wake Words and ImageNet-1K experiments were run for 150 epochs. Best top-1
validation accuracy is reported in all the classification datasets and test MAP was reported for face
detection.

We use FastGRNN as both the RNNs in RNNPool. We usually use the same hidden dimension
for both the RNNs. We fix ( as 1 and v as O for all models, for stability, and use piecewise linear
non-linearities quantTanh and quantSigmoid for the Visual Wake Word models, so we can quantize it
without loss of information.

Various image augmentations were used for training each network. For the ImageNet experiments, the
training images were cropped to a random size of 0.08 to 1.0 times the original size and reshaped to a
random aspect ratio of 3/4 to 4/3. This was then resized to 224 x 224. This image was further flipped
horizontally randomly and then normalized by the mean and standard deviation. For the validation
set, we resize the input image to 256 x 256 and then take a center crop of 224 x 224. For the Visual
Wake Word experiment, we follow a similar process except during training we crop the input image
first to a random size of 0.2 to 1.0 times the original size. For varying resolutions from 96 to 224 as
reported in Figure 3, the ratio of resizing resolution of the input image and center crop size is kept the
same during validation. All other augmentations are kept the same with output size changed from 96
to 224. For Face Detection experiments we use augmentations like in S3FD [50]. This includes color
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distortion, random cropping: specifically zooming in to smaller faces to get larger faces to train on,
and horizontal flipping after cropping to 640 x 640. Note that the same augmentation strategies were
used for the baseline models also for a fair comparison.

H RNNPool Ablation

In this section, we first discuss the changes in accuracy, peak RAM, MAdds, and the number of
parameters on varying hyperparameters of RNNPool like patch size, hidden dimensions, and stride.
We also compare the same for multiple layers of RNNPool. We use MobileNetV2 as the base
network and the dataset is ImageNet-10. Note that the first row refers to the MobileNetV2-RNNPool
architecture in Table 10, and the other rows (b)-(e) of Table 16 are variations on it. Table 16 (f) and
(g) have another 4 MBConv blocks replaced in the MobileNetV2-RNNPool architecture (Row 3
of Table 10). (f) uses a single RNNPool to do this replacement whereas (g) uses two consecutive
RNNPool Blocks. All variations have ~2M parameters (even (g) which has 2 RNNPool layers has
a very minimal model size overhead). This suggests that a finer hyperparameter and architecture
search could lead to a better trade-off between accuracy and compute requirements.

Table 16: Comparison of accuracy, peak RAM and MAdds for variations in hidden dimensions, patch size
and stride in RNNPool for MobileNetV2 and on ImageNet-10 dataset. Parameters are same as the base if not
mentioned. (f) and (g) are further replacements in MobileNetV2-RNNPool (Row 3 of Table 10).

# Hyperparameters Accuracy (%) Peak RAM MAdJdds
(a) Reported (Patch Size = 6; h; = hy = 16, Stride = 4) 94.4 0.24MB 0.23G
(b) Patch size = 8 94.0 0.24MB 0.24G
(c) Patch size =4 93.2 0.24MB 0.22G
(d) hi =hs =8 92.8 0.14MB 021G
(e) hy = hg = 32 95.0 0.43MB 0.29G
) Stride = 8; Patch Size = 12 94.0 0.14MB 0.17G
(g) Stride = 4; Patch Size = 6 and Stride = 2; Patch Size =4 93.2 0.19MB 0.17G

In Table 18, we ablate over the choice of RNN cell (LSTM, GRU and FastGRNN) in RNNPool
for the MobileNetV2-RNNPool model (Table 10) on the ImageNet-10 dataset. We show that the
choice of FastGRNN results in significantly lower MAdds than LSTM or GRU while having about
1% higher accuracy. Finally, Table 17 has the training curve for the MobileNetV2-RNNPool on
ImagetNet-10 showing that training with RNNPool is not harder than the base models.

S0 | Table 18: Ablation over RNN cell in RNNPool for
o MobileNetV2-RNNPool on ImageNet-10.

30

0 = Training RNN cell Parameters MAdds Accuracy (%)
10 H Testing LSTM 2.0M 266M 93.4

0 GRU 2.0M 246M 93.0

: o wor s 25 FastGRNN 2.0M 226M 94.4
Table 17: Training curve of MobileNetV2-

RNNPool on ImageNet-10.

I Face Detection Qualitative Results

Figures 6 and 7 show the qualitative results where RNNPool based models outperform the current
state-of-the-art real-time face detection models.
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RNNPool-Face-Quant

EagleEye

Figure 6: Comparison of performance on test images
with Eagle-Eye and RNNPool-Face-Quant. The confi-
dence threshold is set to 0.6 for both models. EagleEye
misses faces when there is makeup, occlusion, blurriness
and in grainy pictures, while our method detects them.
However, in the case of some hard faces, RNNPool-Face-
Quant misses a few of them or does not draw a bounding
box over the full face.
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EXTD_32 RNNPool-Face-C
Figure 7: Comparison of performance on test images
with EXTD_32 and RNNPool-Face-C. The confidence
threshold is set to 0.6 for both models. The EXTD model
has more false positives and misses more faces. In the
first image, EXTD makes a faulty prediction at the top
right. In the second image, EXTD mistakes regions in
leaves for faces, while our model detects just the two
correct faces. In the next image, both the models have
some wrong detections, but the EXTD model detects a
large bounding box that is a false positive. In the next
image EXTD misses a face with an unnatural pose that
our model detects. However, our model detects a face
within a face which in general can be removed easily. In
the next image (last row above), both the models detect
the two faces, which weren’t detected by the models on
the left. Our model detects a slightly better bounding
box than EXTD.



