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We thank all the reviewers for their thoughtful feedback. Our response can be found below, 
organized by review.

R1
“It is not yet clear how results on such simple "toy" tasks will, if ever, generalize to practically 
important task distributions. But this current limitation does and should not stop progress towards 
such seminal contributions.”

Thank you for the positive comments. We agree that scalability to more complex settings is 
challenging (more on this in response to Reviewer 3), but this is a challenge for all of meta-RL. 

We introduce a method that identifies a clear gap in the literature, and that provides a first solution 
to the problem, which performs reliably well in a number of current meta-RL benchmarks. We don’t
expect it to be the last word on the subject, quite the opposite, we hope it will spur new research in 
its theoretical understanding, and that new meta-RL algorithms will incorporate a task selection 
component inspired by these results.

In this spirit, we agree with your view that “It may turn out that some of the assumptions may need 
approximations and the literal implementation of the heuristic algorithm may be inefficient for 
larger numbers of more complex task distributions with substantially more complex state spaces. 
However, ITTS may provide a means of designing better meta-training distributions”. 

R2
“there is no theoretical justification for why the two criteria for task distinctiveness and
relevance should work”

We state that the method is a heuristic, and acknowledge in the paper that further work is required 
on the theoretical side. However, many recent successes in machine learning have been driven by 
empirical results (most notably, deep learning), and we hope that the introduction of task selection 
into meta-RL can be one of those. 

“ there are critical aspects of the experimental methodology that do not appear in the
main text, supplement, or code. In particular, for each domain, what are the meta-training (un-
pruned and pruned), meta-validation, and meta-test tasks? This information is crucial in helping to 
elucidate what tasks the algorithm prunes and why, as well as ascertaining the validity of the 
baseline comparisons.”

All the tasks, for training, validation, and test, have been generated according to the distribution 
provided by the environment. Every run had different tasks, amounting to hundreds of them across 
all domains. Looking at each one would be impossible, and we do not believe it to be crucial to the 
validity of the results. It is important that, as long as the tasks are extracted from the domain 
distribution, task selection improves meta-RL regardless of the particular tasks involved.

“It is hard to assess the correctness of the empirical methodology, as each experiment comprise 
three main stages (i. learning optimal policies via RL for each of the meta-training and meta-
validation tasks; ii. ITTS; iii. meta-RL on the pruned meta-training tasks) yet code is only provided 
for the second stage.”



The code for stage 1 and 3 is not ours, and in the readme file we provide links to the code 
repositories we used for the domains. For RL (stage 1) and meta-RL (stage 3) algorithms (TRPO, 
PPO, RL^2, and MAML) we used publicly available code by the respective authors, which can be 
freely downloaded.

R3

“The authors show their method improving meta-RL test-time performance on a small panel of 
meta-RL challenges from the literature, however these are all very small "toy" problems which are 
well-known to be prone to overfitting.”

We did not mean to be limited to “toy” problems, but to use a range of tasks from the literature, 
whose results we could reproduce. It is a current limitation of state-of-the-art meta-RL algorithms 
that they have only be applied to such toy problems. Results with one domain could be an overfit, 
but we think that consistently good results over 6 domains can convince the reader that the benefits 
of ITTS are not the effect of the algorithm overfitting to any particular domain.
 
“The simulated robotics tasks in particular just do not exhibit enough structural diversity to 
evaluate the applicability of this method to real robotics problems, or even more complex simulated 
robotics problems”

This criticism is understandable, but should be directed at the original publications that proposed 
those domains. Again, we intended to reproduce and improve upon published results, to make clear 
that we did not design or use a particular domain because it exhibits the task-selection benefit, but 
rather that it is widespread in meta-RL, and already present in published domains.

“Existing benchmarks exist ([1][2]) which offer much more diversity than the environments used by
the authors. The authors even cite [2]. Using better benchmarks would provide the reader with 
more confidence in the extent to which these limited-scope empirical experiments might extend to 
her desired application domain.”

We did our best to use as many domains as possible with the required characteristics (access to 
code, programmatic change of parameters to create the task distribution) and representing a range of
challenges in meta-RL, particularly focusing on  sparse rewards (Krazy World and MiniGrid) and 
continuous control (the two locomotion tasks). We also introduced an application-inspired domain, 
to demonstrate a practical use of ITTS and meta-RL. 

[1] was introduced in the multi-task learning context, and we could not find results with meta-RL 
algorithms on it that we could reproduce and improve upon. If we missed results on such a domain 
with RL^2, MAML, or other meta-RL algorithms that the reviewer is aware of, we would be 
grateful if they could point us to them. 

[2] was a good candidate, and we did consider it. It did not make the final selection because it is at 
the edge of what meta-RL can achieve, and current algorithms struggle with this domain. Indeed the
authors say “Our experiments show that current meta-RL methods in fact cannot yet generalize 
effectively to entirely new tasks and do not even learn the meta-training tasks effectively when 
meta-trained across multiple distinct tasks.” We would have to use the subset of the domain in 
which current meta-RL algorithms perform well enough, attracting the same criticism the reviewer 
is making.

As reviewer 1 mentioned, “This paper shares the weaknesses of other meta-RL papers and 
benchmarks. It is not yet clear how results on such simple "toy" tasks will, if ever, generalize to 



practically important task distributions.” We agree with this view, in that we do share current 
limitations of meta-RL. We do not introduce ITTS to demonstrate that, only thanks to task selection,
current meta-RL algorithms can generalize to much harder domains. We believe that more 
development will be required on of meta-RL algorithms. However, such future developments 
should take task selection into account, and ITTS provides a solution applicable to current domains,
and a baseline for future work pushing the boundary of meta-RL applicability. 

“By my reading of Algorithms (1,2) suggest that the time/sample complexity of the proposed 
algorithm is somewhere in the neighborhood of O(T^2 * train()) or O(T^3 * train()), where T is the 
number of meta-test environments and train() is the amount of time (or number of environment 
samples) necessary to train an agent on a single instance
of t \in T”

The agent is trained once on every training task, with a cost of O(T * train()). This happens before 
Algorithm 1 is executed, so that it has access to \pi^*_t for every t \in T. The computation of \
delta_c is O(T^2) since the difference is computed T*C times, and C is a subset of T.  This 
computation, however, is the KL divergence of the policies on the samples of the validation tasks, 
and does not depend on the training time of the tasks. It is proportional to the number of states used 
for the estimate of the KL divergence, which is up to the user, with a more accurate estimate 
requiring more samples. The last step is the computation of relevance which requires O(T*F*l) 
steps, where |F| << |T| is the set of validation tasks. The parameter l is the number of episodes for 
which the transfer policy is learned, to give an estimate of the speed-up that transferring from that 
training task gives. This value is, again, much lower than the number of episodes required to 
converge to the optimal policy (the value of all parameters used in the experiments is in the 
supplementary material). 

The complexity is dominated by the initial O(T*train()) computation, that is, by learning the 
optimal policy for all training tasks. Even in complex tasks, where the estimate of the KL 
divergence may require a large number of samples, learning the optimal policy for those tasks will 
still be significantly more expensive. For complex training tasks this is a significant limitation, but 
we believe that it can be accelerated, for instance not learning each training task from scratch as we 
did in this paper, but using transfer learning, or curriculum learning. However, we wanted these 
results to be independent of specific optimizations which may be required on complex domains.

To show the immediate applicability of the method, we also introduce the MGEnv domain, which is
simple enough to allow the application of ITTS as presented (without further optimizations, for 
instance on learning the optimal policies) but is a realistic application scenario, with real data of 
energy generation and consumption. Admittedly, learning policies for micro grid control is less 
complex than many robotics tasks, but still economically significant. The simulation of the learned 
policies uses data of real buildings, and is as close as possible to actually running the simulated 
device in that building, at that time (data are from January 2016 to December 2018; the PecanStreet 
database is publicly available). 

We would also like to thank the reviewer for the suggestions on clarifying figure naming, adding an 
“oracle” line, adding option papers to the related work section, and for catching the missing citation 
of the garage library. The last point, in particular, was indeed an oversight on our part, for which we
apologize. We’ll incorporate the suggestions in the next version of the paper.

R4
“Though the proposed method seems effective and reasonable in general, more details regarding 
the problem setup can help better understand the performance of the algorithm and improve 
reproducibility of the work.”



We would be grateful if the reviewer could elaborate on what details they feel are missing, so that 
we can improve the paper. We answer the questions in Section 8 of the review below, hoping that 
this provides all the required clarification.

“In addition, comparing the difference between each pair of the training tasks seems expensive. 
Some discussions about the scalability of the method could be helpful.”

Please see our response to Reviewer 3. The main computation bottleneck is learning the optimal 
policies for all training tasks. This limitation is discussed in the paper, and is the main barrier to the 
applicability of the method. Whether or not all training tasks can be learned in a reasonable amount 
of time, from the user’s perspective, is indeed domain-dependent.

“1) What is the intuition behind using entropy for measuring relevant, in contrast to using kl 
divergence between the two policies?”

We did try the KL divergence for that comparison as well, but it does not lead to results as good as 
entropy. The problem is that the learned policy may differ substantially from the transfer policy, 
while not being the result of any useful learning. For instance, if the transfer policy is not useful in 
the target task, this may lead to catastrophic forgetting, and the learned policy degenerating to close 
to random exploration. This effectively corresponds to erasing all transferred knowledge and 
starting from scratch, which is not desirable, but gives a high KL divergence. However, if learning 
leads to a decrease in entropy, the learned policy is “sharper” than the transfer one in making 
decisions, which indicates progress towards an (at least locally) optimal policy. A reduction in 
entropy is a good indication of transfer being beneficial, corresponding to an information gain.

“2) How are validation and testing tasks selected in the experiments? It is mentioned that the 
training tasks are sampled uniformly in certain range, but it’s not clear how the validation and 
testing tasks are selected. Are they from the same distribution that is far away from the training 
tasks? It would be nice to study how the performance varies when the distribution of training, 
validation, and testing tasks have different distances.”

We assume the standard meta-RL framework, with only one task distribution. All tasks are 
generated by sampling from this distribution. For each domain we specify which parameters vary 
among the tasks, giving raise to the task distribution for that domain. 

“3) What is the baseline ‘all’? Does it contain the validation set? If not, why does having relevance
or difference alone hurt the performance (Figure 2)? How would it perform if the meta-training is 
performed for the union of training and validation tasks?”

The baseline “all” is all the training tasks T. This name confused another reviewer, so it is clear that 
we need a better label for it. It does not contain the validation tasks. Training and validation tasks 
are extracted from the same distribution, so the union of both is just a larger training set from that 
distribution. We already show that larger training sets are not necessarily better. The use of the 
validation set for training demonstrates that those tasks are not “special” or more informative.

“4) In most tasks it seems that the learned policy before adaptation is already better than the 
baseline methods, which is a bit surprising. Are there any intuitions for that?”

RL^2 does not perform online learning, but the first few episodes are used to fill in the memory of 
the recurrent neural network with the new context. The network has been entirely learned during 
meta-learning, so it is perhaps less surprising. For what concerns MAML there is indeed learning in 



the test tasks, and the policy learned with ITTS does have a better starting value. We do not have 
any particular intuition about why this is the case. We can only note in the results that the learned 
policy does indeed generalize better to new tasks from the first episode.
 


