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Novelty of the analysis: Besides keeping the estimator of∇f(xk,yk) sufficiently accurate like SARAH/SPIDER for2

convex/nonconvex minimization, the minimax problem also requires yk to be close to y∗(xk), which leads to a more3

challenging analysis. Our analysis is based on a recursive relationship between ∆k = E[‖vk −∇xf(xk,yk)‖22 +4

‖uk −∇yf(xk,yk)‖22] and δk = E ‖Gλ,y(xk,yk)‖22 (defined in line 364 of Appendix B) as in Lemma 13 (Corollary 2,5

line 418, Appendix B), which guarantees both ∆k and δk to be smaller thanO(κ−2ε2) (line 434-435, Appendix B). This6

is a nontrivial ingredient of the analysis. To achieve the desired convergence rate, all of the stepsizes, mini-batch sizes,7

number of the inner iterations, and the orders of ∆k and δk must be balanced carefully. In comparison, SARAH/SPIDER8

for convex/nonconvex minimization only needs to consider the estimator of gradient, which does not involve the extra9

complexity in minimax problems.10
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Algorithm is complicated: As mentioned in the setting of experiments (line 589, Appendix F), we can select q = m =12

dn/S2e heuristically and the empirical result show it performs well in practice. We agree that it is worth to see weather13

there exists a simpler variant of SREDA which also holds the theoretical guarantee.14

Reply to Reviewer 3 and 515

Optimal dependency on ε: The lower bound means any stochastic first-order algorithm requires at least O(ε−3) calls of16

stochastic first-order oracle (∇xF (x,y; ξ),∇yF (x,y; ξ)) to find ε-stationary point of Φ(x) = arg maxy∈Y f(x,y)17

(line 93, Definition 1). As we mentioned in line 180-185, we can consider the special case of minimax problem whose18

objective function has the form f(x,y) = g(x) + h(y) where g is possibly nonconvex and h is strongly-concave,19

which leads to minimizing on x and maximizing on y are independently. Consequently, finding O(ε)-stationary point20

of the corresponding Φ(x) can be reduced to finding O(ε)-stationary point of nonconvex function g(x), which is21

based on the stochastic first order-oracle ∇xF (x,y; ξ) = ∇g(x; ξ) (this equality holds for any y and we also have22

∇xF (x,y∗(x); ξ) = ∇g(x; ξ)). Hence, the analysis of stochastic nonconvex miminization problem [5] based on23

∇g(x; ξ) can directly lead to the O(ε−3) lower bound for our minimax problem.24
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Relations to compositional optimization: We thank the reviewer for pointing out this valuable reference26

(arXiv:1908.11468). We are happy to cite this paper and compare it with SREDA. Both this work and SREDA27

use variance reduction to address nonconvex multi-level (two-level) optimization problem, however, their settings are28

quite different. We can reformulate our minimax problem (2) as compositional problem:29

min
x,y

f2(f1(x,y)) + Ψ(y), (a)

where f1(x,y) = (x, arg maxy∈Y f(x,y)), f2(x,y) = f(x,y) and Ψ(y) is the indicator function of Y . The two-level30

nested-SPIDER (arXiv:1908.11468) requires to access the stochastic gradient of f1 and f2 to solve the compositional31

problem. For the two-level formulation (a) of our minimax problem, it is not natural to access the (stochastic) gradient32

of f1 as an oracle since we can not provide the closed form of arg maxy∈R f(x,y) and its (stochastic) gradient in33

general. A more reasonable way is to solve it by accessing the (stochastic) gradient of f like SREDA.34
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1. Problem formulation in experiments: Due to the space limitation, we gave the problem formulation in Appendix F.36

We are happy to follow the reviewer’s suggestion and include it in the main text if the paper is accepted.37

2. Minor remarks: Thanks for the suggestion. We will simplify the presentation of Theorem 2 and cite the papers about38

non-stochastic algorithms for minimax problems.39
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1 & 2. Please see “Reply to Reviewer 2, 3 and 4” and “Reply to Reviewer 2 and 4” above.41

3. We thank the reviewer for pointing out this valuable reference, which is complementary to our work. We will cite it42

and compare to SREDA. First, the convergence result of epoch-GDA is based on the measure of nearly ε-stationary43

point because it also considers an additional constraint on x, while SREDA is based on ε-stationary point. Second, the44

stochastic first-order oracle complexity of SREDA depends on O(κ3ε−3), while epoch-GDA depends on Õ(κ2ε−4).45
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Presentation of Algorithm 4: We thank the reviewer for this suggestion, and will add the arguments in the expression of47

the function ConcaveMaximizer.48


