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Abstract

We consider nonconvex-concave minimax optimization problems of the form
minx maxy∈Y f(x,y), where f is strongly-concave in y but possibly nonconvex
in x and Y is a convex and compact set. We focus on the stochastic setting,
where we can only access an unbiased stochastic gradient estimate of f at each
iteration. This formulation includes many machine learning applications as special
cases such as robust optimization and adversary training. We are interested in
finding an O(ε)-stationary point of the function Φ(·) = maxy∈Y f(·,y). The
most popular algorithm to solve this problem is stochastic gradient decent ascent,
which requires O(κ3ε−4) stochastic gradient evaluations, where κ is the condition
number. In this paper, we propose a novel method called Stochastic Recursive
gradiEnt Descent Ascent (SREDA), which estimates gradients more efficiently
using variance reduction. This method achieves the best known stochastic gradient
complexity of O(κ3ε−3), and its dependency on ε is optimal for this problem.

1 Introduction

This paper considers the following minimax optimization problem

min
x∈Rd

max
y∈Y

f(x,y) , E [F (x,y; ξ)] , (1)

where the stochastic component F (x,y; ξ), indexed by some random vector ξ, is `-gradient Lipschitz
on average. This minimax optimization formulation includes many machine learning applications
such as regularized empirical risk minimization [41, 52], AUC maximization [39, 48], robust op-
timization [14, 46], adversarial training [16, 17, 40] and reinforcement learning [13, 43]. Many
existing work [8, 9, 12, 13, 18, 28, 33, 34, 41, 45, 48, 50, 52] focused on the convex-concave case of
problem (1), where f is convex in x and concave in y. For such problems, one can establish strong
theoretical guarantees.

In this paper, we focus on a more general case of (1), where f(x,y) is µ-strongly-concave in y but
possibly nonconvex in x. This case is referred to as stochastic nonconvex-strongly-concave minimax
problems, and it is equivalent to the following problem

min
x∈Rd

{
Φ(x) , max

y∈Y
f(x,y)

}
. (2)

Formulation (2) contains several interesting examples in machine learning such as robust optimiza-
tion [14, 46] and adversarial training [17, 40].

Since Φ is possibly nonconvex, it is infeasible to find the global minimum in general. One important
task of the minimax problem is finding an approximate stationary point of Φ. A simple way to
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solve this problem is stochastic gradient descent with max-oracle (SGDmax) [19, 25]. The algorithm
includes a nested loop to solve maxy∈Y f(x,y) and use the solution to run approximate stochastic
gradient descent (SGD) on x. Lin et al. [25] showed that we can solve problem (2) by directly
extending SGD to stochastic gradient descent ascent (SGDA). The iteration of SGDA is just using
gradient descent on x and gradient descent on y. The complexity of SGDA to find O(ε)-stationary
point of Φ in expectation isO

(
κ3ε−4

)
stochastic gradient evaluations, where κ , `/µ is the condition

number. SGDA is more efficient than SGDmax whose complexity is O
(
(κ3ε−4) log(1/ε)

)
.

One insight of SGDA is that the algorithm selects an appropriate ratio of learning rates for x and y.
Concretely, the learning rate for updating y is O(κ2) times that of x. Using this idea, it can be shown
that the nested loop of SGDmax is unnecessary, and SGDA eliminates the logarithmic term in the
complexity result. In addition, Rafique et al. [36] presented some nested-loop algorithms that also
achieved O

(
κ3ε−4

)
complexity. Recently, Yan et al. [47] proposed Epoch-GDA which considered

constraints on both two variables.

Lin et al. [26] proposed a deterministic algorithm called minimax proximal point algorithm (Minimax
PPA) to solve nonconvex-strongly-concave minimax problem whose complexity has square root
dependence on κ. Barazandeh and Razaviyayn [7], Ostrovskii et al. [32], Thekumparampil et al. [42]
also studied the non-convex-concave minimax problems, however, these methods do not cover the
stochastic setting in this paper and only work for a special case of problem (2) when the stochastic
variable ξ is finitely sampled from {ξ1, . . . , ξn} (a.k.a. finite-sum case). That is,

f(x,y) ,
1

n

n∑
i=1

F (x,y; ξi). (3)

In this paper, we propose a novel algorithm called Stochastic Recursive gradiEnt Descent Ascent
(SREDA) for stochastic nonconvex-strongly-concave minimax problems. Unlike SGDmax and
SGDA, which only iterate with current stochastic gradients, our SREDA updates the estimator
recursively and reduces its variance.

The variance reduction techniques have been widely used in convex and nonconvex minimization
problems [1–4, 11, 15, 20, 22, 23, 29, 30, 35, 37, 38, 44, 51, 53] and convex-concave saddle point
problems [9, 12, 13, 28, 34]. However, the nonconvex-strongly-concave minimax problems have
two variables x and y and their roles in the objective function are quite different. To apply the
technique of variance reduction, SREDA employs a concave maximizer with multi-step iteration on
y to simultaneously balance the learning rates, gradient batch sizes and iteration numbers of the two
variables. We prove SREDA reduces the number of stochastic gradient evaluations to O(κ3ε−3),
which is the best known upper bound complexity. The result gives optimal dependency on ε since the
lower bound of stochastic first order algorithms for general nonconvex optimization is O(ε−3) [6].
For finite-sum cases, the gradient cost of SREDA isO

(
n log(κ/ε) + κ2n1/2ε−2

)
when n ≥ κ2, and

O
(
(κ2 + κn)ε−2

)
when n ≤ κ2. This result is sharper than Minimax PPA [26] in the case of n is

larger than κ2. We summarize the comparison of all algorithms in Table 1.

The paper is organized as follows. In Section 2, we present notations and preliminaries. In Section
3, we review the existing work for stochastic nonconvex-strongly-concave optimization and related
techniques. In Section 4, we present the SREDA algorithm and the main theoretical result. In
Section 5, we give a brief overview of our convergence analysis. In Section 6, we demonstrate the
effectiveness of our methods on robust optimization problem. We conclude this work in Section 7.

2 Notation and Preliminaries

We first introduce the notations and preliminaries used in this paper. For a differentiable function
f(x,y), we denote the partial gradient of f with respect to x and y at (x,y) as ∇xf(x,y) and
∇yf(x,y) respectively. We use ‖·‖2 to denote the Euclidean norm of vectors. For a finite set S,
we denote its cardinality as |S|. We assume that the minimax problem (2) satisfies the following
assumptions.
Assumption 1. The function Φ(·) is lower bounded, i.e., we have Φ∗ = infx∈Rd Φ(x) > −∞.
Assumption 2. The component function F has an average `-Lipschitz gradient, i.e., there exists a
constant ` > 0 such that E ‖∇F (x,y; ξ)−∇F (x′,y′; ξ)‖22 ≤ `2(‖x− x′‖22 + ‖y − y′‖22) for any
(x,y), (x′,y′) and random vector ξ
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Table 1: We present the comparison on stochastic gradient complexities of algorithms to solve
stochastic problem (2) and finite-sum problem (3). We use notation Õ(·) to hide logarithmic factors.
Some baseline algorithms solve problem (3) without considering the finite-sum structure and we
regard the cost of full gradient evaluation is O(n).

Algorithm Stochastic Finite-sum Reference

SGDmax (GDmax) Õ(κ3ε−4) Õ(κ2nε−2) [19, 25]

PGSMD / PGSVRG O(κ3ε−4) O(κ2nε−2) [36]

MGDA / HiBSA – O(κ4nε−2) [27, 31]

Minimax PPA – Õ(κ1/2nε−2) [26]

SGDA (GDA) O(κ3ε−4) O(κ2nε−2) [25]

SREDA O(κ3ε−3)

{
Õ
(
n+ κ2n1/2ε−2

)
, n ≥ κ2

O
(
(κ2 + κn)ε−2

)
, n ≤ κ2

this paper

Assumption 3. The component function F is concave in y. That is, for any x, y, y′ and random
vector ξ, we have F (x,y; ξ) ≤ F (x,y′; ξ) + 〈∇yF (x,y′; ξ),y − y′〉.
Assumption 4. The function f(x,y) is µ-strongly-concave in y. That is, there exists a constant µ > 0

such that for any x, y and y′, we have f(x,y) ≤ f(x,y′) + 〈∇yf(x,y′),y − y′〉 − µ
2 ‖y − y′‖22.

Assumption 5. The gradient of each component function F (x,y; ξ) has bounded variance. That is,
there exists a constant σ > 0 such that E ‖∇F (x,y; ξ)−∇f(x,y)‖22 ≤ σ2 <∞ for any x, y and
random vector ξ.

Under the assumptions of Lipschitz-gradient and strongly-concavity on f , we can show that Φ(·) also
has Lipschitz-gradient.

Lemma 1 ([25, Lemma 4.3]). Under Assumptions 2 and 4, the function Φ(·) = maxy∈Y f(·,y) has
(`+ κ`)-Lipschitz gradient. Additionally, the function y∗(·) = arg maxy f(·,y) is unique defined
and we have ∇Φ(·) = ∇xf(·,y∗(·)).

Since Φ is differentiable, we may define ε-stationary point based on its gradient. The goal of this paper
is to establish a stochastic gradient algorithm that output an O(ε)-stationary point in expectation.

Definition 1. We call x an O(ε)-stationary point of Φ if ‖∇Φ(x)‖2 ≤ O(ε).

We also need the notations of projection and gradient mapping to address the constraint on Y .

Definition 2. We define the projection of y on to convex set Y by ΠY(y) = arg minz∈Y ‖z− y‖2.

Definition 3. We define the gradient mapping of f at (x′,y′) with respect to y as follows

Gλ,y(x′,y′) =
1

λ
(y′ −ΠY (y′ + λ∇yf(x′,y′))) , where λ > 0.

3 Related Work

In this section, we review recent works for solving stochastic nonconvex-strongly-convex minimax
problem (2) and introduce variance reduction techniques in stochastic optimization.

3.1 Nonconvex-Strongly-Concave Minimax

We present SGDmax [19, 25] in Algorithm 1. We can realize the max-oracle by stochastic gradient
ascent (SGA) with O(κ2ε−2 log(1/ε)) stochastic gradient evaluations to achieve sufficient accuracy.
Using S = O(κε−2) guarantees that the variance of the stochastic gradients is less than O(κ−1ε2).
It requires O(κε−2) iterations with step size η = O(1/(κ`)) to obtain an O(ε)-stationary point of Φ.
The total stochastic gradient evaluation complexity is O(κ3ε−4 log(1/ε)). The procedure of SGDA
is shown in Algorithm 2.
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Since variables x and y are not symmetric, we need to select different step sizes for them. In our
case, we choose η = O(1/(κ2`)) and λ = O(1/`). This leads to an O(κ3ε−4) complexity to obtain
an O(ε)-stationary point with S = O(κε−2) and O(κ2ε−2) iterations [25]. Rafique et al. proposed
proximally guided stochastic mirror descent and variance reduction (PGSMD / PGSVRG) whose
complexity is alsoO(κ3ε−4). Both of the above algorithms reveal that the key of solving problem (2)
efficiently is to update y much more frequently than x. The natural intuition is that finding stationary
point of a nonconvex function is typically more difficult than finding that of a concave or convex
function. SGDmax implements it by updating y more frequently (SGA in max-oracle) while SGDA
iterates y with a larger step size such that λ/η = O(κ2).

3.2 Variance Reduction Techniques

Variance reduction techniques has been widely used in stochastic optimization [2, 4, 15, 22, 23,
29, 30, 35, 37]. One scheme of this type of methods is StochAstic Recursive grAdient algoritHm
(SARAH) [29, 30]. Nguyen et al. [29] first proposed it for convex minimization and established
a convergence result. For nonconvex optimization, a closely related method is Stochastic Path-
Integrated Differential EstimatoR (SPIDER) [15]. The algorithm estimates the gradient recursively
together with a normalization rule, which guarantees the approximation error of the gradient is O(ε2)
at each step. As a result, it can find O(ε)-stationary point of the nonconvex objective in O(ε−3)
complexity, which matches the lower bound [6]. This idea can also be extended to nonsmooth
cases [35, 44].

It is also possible to employ variance reduction to solve minimax problems. Most of the existing
works focused on the convex-concave case. For example, Chavdarova et al. [9], Palaniappan and
Bach [34], extend SVRG [20, 51] and SAGA [11] to solving strongly-convex-strongly-concave
minimax problem in the finite-sum case, and established a linear convergence. One may also use
the Catalyst framework [24, 34] and proximal point iteration [10, 28] to further accelerate when the
problem is ill-conditioned. Du and Hu [12], Du et al. [13] pointed out that for some special cases,
the strongly-convex and strongly-concave assumptions of linear convergence for minimax problem
may not be necessary. Additionally, Zhang and Xiao [49] solved multi-level composite optimization
problems by variance reduction, but the oracles in their algorithms are different from our settings.

Algorithm 1 SGDmax

1: Input initial point x0, learning rate η > 0, batch size S > 0, max-oracle accuracy ζ
2: for k = 0, . . . ,K do
3: draw S samples {ξ1, . . . , ξS}
4: find yk so that E[f(xk,yk)] ≥ maxy∈Y f(xk,y)− ζ
5: xk+1 = xk − η · 1S

∑S
i=1∇xF (xk,yk; ξi)

6: end for
7: Output x̂ chosen uniformly at random from {xi}Ki=0

Algorithm 2 SGDA

1: Input initial point (x0,y0), learning rates η > 0 and λ > 0, batch size S > 0

2: for k = 0, . . . ,K do
3: draw M samples {ξ1, . . . , ξS}
4: xk+1 = xk − η · 1S

∑S
i=1∇xF (xk,yk; ξi)

5: yk+1 = ΠY

(
yk + λ · 1S

∑S
i=1∇yF (xk,yk; ξi)

)
6: end for
7: Output x̂ chosen uniformly at random from {xi}Ki=0
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Algorithm 3 SREDA

1: Input initial point x0, learning rates ηk, λ > 0, batch sizes S1, S2 > 0; periods q,m > 0,
number of initial iterations K0

2: y0 = PiSARAH (−f(xk, ·), K0)

3: for k = 0, . . . ,K − 1 do
4: if mod (k, q) = 0

5: draw S1 samples {ξ1, . . . , ξS1
}

6: vk = 1
S1

∑S1

i=1∇xF (xk,yk; ξi)

7: uk = 1
S1

∑S1

i=1∇yF (xk,yk; ξi)

8: else
9: vk = v′k

10: uk = u′k
11: end if
12: xk+1 = xk − ηkvk
13: (yk+1,v

′
k+1,u

′
k+1) = ConcaveMaximizer (k,m, S2,xk,xk+1,yk,uk,vk)

14: end for
15: Output x̂ chosen uniformly at random from {xi}K−1i=0

4 Algorithms and Main Results

In this section, we propose a novel algorithm for solving problem (2), which we call Stochastic
Recursive gradiEnt Descent Ascent (SREDA). We show that the algorithm finds an O(ε)-stationary
point with a complexity ofO(κ3ε−3) stochastic gradient evaluations, and this result may be extended
to the finite-sum case (3).

4.1 Stochastic Recursive Gradient Descent Ascent

SREDA uses variance reduction to track the gradient estimator recursively. Because there are two
variables x and y in our problem (2), it is not efficient to combine SGDA with SPIDER [15] or
(inexact) SARAH [29, 30] directly. The algorithm should approximate the gradient of f(xk,yk)
with small error, and keep the value of f(xk,yk) sufficiently close to Φ(xk). To achieve this, in
the proposed method SREDA, we employ a concave maximizer with stochastic variance reduced
gradient ascent on y. The details of SREDA and the concave maximizer are presented in Algorithm 3
and Algorithm 4 respectively. In the rest of this section, we show SREDA can find anO(ε)-stationary
point in O(κ3ε−3) stochastic gradient evaluations.

In the initialization of SREDA, we hope to obtain y0 ≈ arg maxy∈Y f(x0,y0) for given x0 such
that E ‖Gλ,y(x0,y0)‖22 ≤ O(κ−2ε2) . We proposed a new algorithm called projected inexact
SARAH (PiSARAH) to address it. PiSARAH extends inexact SARAH (iSARAH) [30] to con-
strained case, which could achieve the desired accuracy of our initialization with a complexity of
O(κ2ε−2 log(κ/ε)). We present the details of PiSARAH in Appendix C.

SREDA estimates the gradient of f(xk,yk) by (vk,uk) ≈ (∇xf(xk,yk),∇yf(xk,yk)). As
illustrated in Algorithm 4, we evaluate the gradient of f with a large batch size S1 = O(κ2ε−2) at
the beginning of each period, and update the gradient estimate recursively in concave maximizer with
a smaller batch size S2 = O(κε−1).

For variable xk, we adopt a normalized stochastic gradient descent with a learning rate for theoretical
analysis:

ηk = min

(
ε

` ‖vk‖2
,
1

2`

)
· O(κ−1).

With this step size, the change of xk is not dramatic at each iteration, which leads to accurate gradient
estimates. To simplify implementations of the algorithm, we can also use a fixed learning rate in
practical.
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Algorithm 4 ConcaveMaximizer (k,m, S2,xk,xk+1,yk,uk,vk)

1: Initialize x̃k,−1 = xk, ỹk,−1 = yk, x̃k,0 = xk+1, ỹk,0 = yk.
2: draw S2 samples {ξ1, . . . , ξS2

}
3: ṽk,0 = vk + 1

S2

∑S2

i=1∇xF (x̃k,0, ỹk,0; ξi)− 1
S2

∑S2

i=1∇xF (x̃k,−1, ỹk,−1; ξi)

4: ũk,0 = uk + 1
S2

∑S2

i=1∇yF (x̃k,0, ỹk,0; ξi)− 1
S2

∑S2

i=1∇yF (x̃k,−1, ỹk,−1; ξi)

5: x̃k,1 = x̃k,0
6: ỹk,1 = ΠY (ỹk,0 + λũk,0)

7: for t = 1, . . . ,m+ 1 do
8: draw S2 samples {ξt,1, . . . , ξt,S2}
9: ṽk,t = ṽk,t−1 + 1

S2

∑S2

i=1∇xF (x̃k,t, ỹk,t; ξt,i)− 1
S2

∑S2

i=1∇xF (x̃k,t−1, ỹk,t−1; ξt,i)

10: ũk,t = ũk,t−1 + 1
S2

∑S2

i=1∇yF (x̃k,t, ỹk,t; ξt,i)− 1
S2

∑S2

i=1∇yF (x̃k,t−1, ỹk,t−1; ξt,i)

11: x̃k,t+1 = x̃k,t
12: ỹk,t+1 = ΠY (ỹk,t + λũk,t)

13: end for
14: Output ỹk,sk , ṽk,sk and ũk,sk where sk is chosen uniformly at random from {1, . . . ,m}

For variable yk, we additionally expect f(xk,yk) is a good approximation of Φ(xk), which implies
the gradient mapping with respect to yk should be small enough. We hope to maintain the inequality
E ‖Gλ,y(xk,yk)‖22 ≤ O(κ−2ε2) holds. Hence, we include a multi-step concave maximizer to update
y whose details given in Algorithm 4. This procedure can be regarded as one epoch of PiSARAH. We
choose the step size λ = O(1/`) for inner iterations, which simultaneously ensure that the gradient
mapping with respect to y is small enough and the change of y is not dramatic.

4.2 Complexity Analysis

As shown in Algorithm 3, SREDA updates variables with a large batch size per q iterations. We
choose q = O(ε−1) as a balance between the number of large batch evaluations with S1 = O(κ2ε−2)
samples and the concave maximizer with O(κ) iterations and S2 = O(κε−1) samples.

Based on above parameter setting, we can obtain an approximate stationary point x̂ in expectation
such that E ‖∇Φ(x̂)‖2 ≤ O(ε) with K = O(κε−2) outer iterations. The total number of stochastic
gradient evaluations of SREDA comes from the initial run of PiSARAH, large batch gradient
evaluation (S1 samples) and concave maximizer. That is,

O(κ2ε−2 log(κ/ε)) +O (K/q · S1) +O (K · S2 ·m) = O(κ3ε−3).

Let ∆f = f(x0,y0) + 134ε2

κ` − Φ∗, then we formally present the main result in Theorem 1.
Theorem 1. Under Assumptions 1-5 with the following parameter choices:

ζ = κ−2ε2, ηk = min

(
ε

5κ` ‖vk‖2
,

1

10κ`

)
, λ =

1

8`
, S1 =

⌈
2250

19
σ2κ−2ε2

⌉
,

S2 =

⌈
3687

76
κq

⌉
, q =

⌈
ε−1
⌉
, K =

⌈
100κ`ε−2∆f

9

⌉
and m = d1024κe,

Algorithm 3 outputs x̂ such that E ‖∇Φ(x̂)‖2 ≤ 1504ε with O(κ3ε−3) stochastic gradient evalua-
tions.

We should point out the complexity shown in Theorem 1 gives optimal dependency on ε. We consider
the special case of minimax problem whose objective function has the form

f(x,y) = g(x) + h(y)

where g is possibly nonconvex and h is strongly-concave, which leads to minimizing on x and
maximizing on y are independent.
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Algorithm 5 SREDA (Finite-sum Case)

1: Input initial point x0, learning rates ηk, λ > 0, batch sizes S1, S2 > 0; periods q,m > 0;
number of initial iterations K0

2: y0 = PSARAH (−f(xk, ·), K0)

3: for k = 0, . . . ,K − 1 do
4: if mod (k, q) = 0

5: vk = ∇xf(xk,yk)

6: uk = ∇yf(xk,yk)

7: else
8: vk = v′k
9: uk = u′k

10: end if
11: xk+1 = xk − ηkvk
12: (yk+1,v

′
k+1,u

′
k+1) = ConcaveMaximizer (k,m, S2,xk,xk+1,yk,uk,vk)

13: end for
14: Output x̂ chosen uniformly at random from {xi}K−1i=0

Consequently, finding O(ε)-stationary point of the corresponding Φ(x) can be reduced to finding
O(ε)-stationary point of nonconvex function g(x), which is based on the stochastic first order-oracle
∇xF (x,y; ξ) = ∇g(x; ξ) (this equality holds for any y since x and y are independent). Hence, the
analysis of stochastic nonconvex minimization problem [6] based on∇g(x; ξ) can directly lead to the
O(ε−3) lower bound for our minimax problem. We can prove it by constructing the separate function
as f(x,y) = g(x) + h(y) where g is the nonconvex function in Arjevani et al.’s [6] lower bound
analysis of stochastic nonconvex minimization, and h is an arbitrary smooth, µ-strongly concave
function. It is obvious that the lower bound complexity of finding an O(ε)-stationary point of Φ is no
smaller than that of finding an O(ε)-stationary point of g, which requires at least O(ε−3) stochastic
gradient evaluations [6].

4.3 Extension to Finite-sum Case

SREDA also works for nonconvex-strongly-concave minimax optimization in the finite-sum case
(3) with little modification of Algorithm 3. We just need to replace line 5-7 of Algorithm 3 with the
full gradients, and use projected SARAH (PSARAH)1 to initialization. We present the details in
Algorithm 5. The algorithm is more efficient than Minimax PPA [26] when n ≥ κ2. We state the
result formally in Theorem 2.
Theorem 2. Suppose Assumption 1-4 hold. In the finite-sum case with n ≥ κ2, we set the parameters

ζ = κ−2ε2, ηk = min

(
ε

5κ` ‖vk‖2
,

1

10κ`

)
, λ =

2

7`
, q = dκ−1n1/2e,

S2 =

⌈
3687

76
κq

⌉
, K =

⌈
100κ`ε−2∆f

9

⌉
, and m = d1024κe .

Algorithm 5 outputs x̂ such that E ‖∇Φ(x̂)‖2 ≤ 1504ε withO
(
n log(κ/ε) + κ2n1/2ε−2

)
stochastic

gradient evaluations.

In the case of n ≤ κ2, we set the parameters

ζ = κ−2ε2, ηk = min

(
ε

5κ` ‖vk‖2
,

1

10κ`

)
, λ =

1

8`
, q = 1,

S2 = 1, K =

⌈
100κ`ε−2∆f

9

⌉
, and m = d1024κe .

1PSARAH extends SARAH [29] to constrained case, which requires O ((n+ κ) log(κ/ε)) stochastic
gradient evaluation to achieve sufficient accuracy for our initialization. Please see Appendix E.1 for details
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Algorithm 5 outputs x̂ such that E ‖∇Φ(x̂)‖2 ≤ 1504ε with O
(
(κ2 + κn)ε−2

)
stochastic gradient

evaluations.

5 Sketch of Proofs

We present the briefly overview of the proof of Theorem 1. The details are shown in appendix.
Different from Lin et al.’s analysis of SGDA [25] which directly considered the value of Φ(xk) and
the distance ‖yk − y∗(xk)‖2, our proof mainly depends on f(xk,yk) and its gradient. We split the
change of objective functions after one iteration on (xk,yk) into Ak and Bk as follows

f(xk+1,yk+1)− f(xk,yk) = f(xk+1,yk)− f(xk,yk)︸ ︷︷ ︸
Ak

+ f(xk+1,yk+1)− f(xk+1,yk)︸ ︷︷ ︸
Bk

, (4)

where Ak provides the decrease of function value f and Bk can characterize the difference between
f(xk+1,yk+1) and Φ(xk+1). We can show that E[Ak] ≤ −O(κ−1ε) and E[Bk] ≤ O(κ−1ε2/`).
By taking the average of (4) over k = 0, . . . ,K, we obtain

1

K

K−1∑
k=0

E ‖vk‖2 ≤ O(ε).

We can also approximate E ‖∇Φ(xk)‖2 by E ‖vk‖2 with O(ε) estimate error. Then the output x̂ of
Algorithm 3 satisfies E ‖∇Φ(xk)‖2 ≤ O(ε). Based on the discussion in Section 4.2, the number of
stochastic gradient evaluation is O(κ3ε−3). We can also use similar idea to prove Theorem 2.

6 Numerical Experiments

We conduct the experiments by using distributionally robust optimization with nonconvex regularized
logistic loss [5, 14, 21, 46]. Given dataset {(ai, bi)}ni=1 where ai ∈ Rd is the feature of i-th sample
and bi ∈ {1,−1} the corresponding label, the minimax formulation is:

min
x∈Rd

max
y∈Y

f(x,y) ,
1

n

n∑
i=1

(
yili(x)− V (y) + g(x)

)
,

li(x) = log(1 + exp(−bia>i x)), g is the nonconvex regularizer [5]:

g(x) = λ2

d∑
i=1

αx2i
1 + αx2i

,

V (y) = 1
2λ1 ‖ny − 1‖22 and Y = {y ∈ Rn : 0 ≤ yi ≤ 1,

∑n
i=1 yi = 1} is a simplex. Following

Yan et al. [46], Kohler and Lucchi [21]’s settings, we let λ1 = 1/n2, λ2 = 10−3 and α = 10 for
experiments.

We evaluate compared the performance of SREDA with baseline algorithms GDAmax, GDA,
SGDA [25] and Minimax PPA [26] on six real-world data sets “a9a”, “w8a”, “gisette”, “mush-
rooms”, “sido0” and “rcv1”, whose details are listed in Table 2. The dataset “sido0” comes from
Causality Workbench2 and the others can be downloaded from LIBSVM repository3. Our experi-
ments are conducted on a workstation with Intel Xeon Gold 5120 CPU and 256GB memory. We use
MATLAB 2018a to run the code and the operating system is Ubuntu 18.04.4 LTS.

The parameters of the algorithms are chosen as follows: The stepsizes of all algorithms are tuned from
{10−3, 10−2, 10−1, 1} and we keep the stepsize ratio is {10, 102, 103}. For stochastic algorithms
SGDA and SREDA, the mini-batch size is set with {10, 100, 200}. For SREDA, we use the finite-sum
version (Algorithm 5 with the first case of Theorem 2) and let q = m = dn/S2e heuristically. The
initialization of SREDA is based on PSARAH with K0 = 5, b = 1 and m = 20. For Minimax PPA,
we tune the proximal parameter from {1, 10, 100} and momentum parameter from {0.2, 0.5, 0.7}.
Each inner loop of Minimax PPA has five times Maximin-AG2 which contains five AGD iterations.
The results are shown in Figure 1. It is clear that SREDA converges faster than the baseline algorithms.

2https://www.causality.inf.ethz.ch/challenge.php?page=datasets
3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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datasets n d

a9a 32,561 123
w8a 49,749 300

gisette 6,000 5,000
mushrooms 8,124 112

sido0 12,678 4,932
rcv1 20,242 47,236

Table 2: Summary of datasets used in our experiments
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Figure 1: We demonstrate ‖∇Φ(x)‖2 vs. the number of epochs for DRO model on real-world datasets
“a9a”, “w8a”, “gisette”, “mushrooms”, “sido0” and “rcv1” with SREDA and baseline algorithms.

7 Conclusion

In this paper, we studied stochastic nonconvex-strongly-concave minimax problems. We proposed
a novel algorithm called Stochastic Recursive gradiEnt Descent Ascent (SREDA). The algorithm
employs variance reduction to solve minimax problems. Based on the appropriate choice of the pa-
rameters, we prove SREDA finds an O(ε)-stationary point of Φ with a stochastic gradient complexity
of O(κ3ε−3). This result is better than state-of-the-art algorithms and optimal in its dependency on ε.
We can also apply SREDA to the finite-sum case, and show that it performs well when n is larger
than κ2.

There are still some open problems left. The complexity of SREDA is optimal with respect to ε, but
weather it is optimal with respect to κ is unknown. It is also possible to employ SREDA to reduce
the complexity of stochastic nonconvex-concave minimax problems without the strongly-concave
assumption.

Broader Impact

This paper studied the theory of stochastic minimax optimization. The proposed method SREDA is
the first stochastic algorithm which attains the optimal dependency on ε. This observation help us to
understand the minimax optimization without convex-concave assumption. It is interesting to apply
SREDA to more machine learning applications in future.
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