
A Datasets

A.1 Controlled experiments

We conduct the experiments on biased datasets with the same number of categories for the target and
bias attributes, i.e., |At| = |Ab|. Furthermore, the empirical distribution ptrain of the training dataset
is biased to satisfy the following equation:

ptrain(ab|at) =


palign if g(at) = ab,
pconflict
|Ab| − 1

otherwise,

palign > pconflict,
∑
ab∈Ab

ptrain(ab|at) = 1.

Here, at and ab are the target and bias attribute, respectively. The function g : At → Ab is a bijection
between the target and bias attribute that assigns the bias attribute to each value of the target attribute.
palign, pconflict are the ratio of bias-aligned and bias-conflicting samples, respectively. In what
follows, we describe instance-specific details on the datasets considered in the experiments.

Colored MNIST. The MNIST dataset [16] consists of grayscale digit images. We modify the original
MNIST dataset to have two attributes: Digit and Color. Note that similar modification has been
proposed by Kim et al. [14], Li and Vasconcelos [18], Bahng et al. [2]. To define the Color attribute,
we first choose ten distinct RGB values by drawing them uniformly at random. We use these ten
RGB values throughout all the experiments for the Colored MNIST dataset. Then we generate
ten Color distributions by assigning chosen RGB values to each Color distribution as its mean.
Each Color distribution is a 3-dimensional Gaussian distribution having the assigned RGB value
as its mean with predefined covariance σ2I . We pair Digit at and Color distribution ab to make a
correlation between two attributes, Digit and Color. Each bias-aligned sample has a Digit colored
by RGB value sampled from paired Color distribution, and each bias-conflicting sample has a Digit
colored by RGB value sampled from the other (nine) Color distributions. We control the ratio of
bias-aligned samples among {99.5%, 99.0%, 98.0%, 95.0%}. The level of difficulty for the bias
attribute is defined by the variance (σ2) of the Color distribution. We vary the standard deviation
(σ) of the Color distributions among {0.05, 0.02, 0.01, 0.005}. We use 60,000 training samples and
10,000 test samples.

Corrupted CIFAR-10. This dataset is generated by corrupting the CIFAR-10 dataset [15] de-
signed for object classification, following the protocols proposed by Hendrycks and Dietterich
[12]. The resulting dataset consists of two attributes, i.e., category of the Object and type
of Corruption used. We use two sets of protocols for Corruption to build two datasets,
namely the Corrupted CIFAR-101 and the Corrupted CIFAR-102 datasets. In particular, the
Corrupted CIFAR-101,2 datasets use the following types of Corruption, respectively: {Snow,
Frost, Fog, Brightness, Contrast, Spatter, Elastic, JPEG, Pixelate, Saturate} and
{GaussianNoise, ShotNoise, ImpulseNoise, SpeckleNoise, GaussianBlur, DefocusBlur,
GlassBlur, MotionBlur, ZoomBlur, Original}, respectively. In order to introduce the varying
levels of difficulty, we control the “severity” of Corruption, which was predefined by Hendrycks
and Dietterich [12]. As the Corruption gets more severe, the images are likely to lose their charac-
teristics and become less distinguishable. We use 50,000 training samples and 10,000 test samples
for this dataset.

A.2 Real-world experiments

CelebA. The CelebA dataset [19] is a multi-attribute dataset for face recognition, equipped with 40
types of attributes for each image. Among 40 attributes, we use the BlondHair attribute (denoted by
HairColor in the main text) following Sagawa et al. [24], and additionally consider HeavyMakeup
attribute as the target attributes. For both of the cases, we use Male attribute (denoted by Gender
in the main text) as the bias attribute. The dataset consists of 202,599 face images, and we use the
official train-val split for training and test (162,770 for training, 19,867 for test). To evaluate the
unbiased accuracy with an imbalanced evaluation set, we evaluate accuracy for each value of (at, ab),
and compute average accuracy over all (at, ab) pairs.
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B Biased action recognition dataset

6-class action recognition dataset. Biased Action Recognition (BAR) dataset is a real-world image
dataset categorized as six action classes which are biased to distinct places. We carefully settle these
six action classes by inspecting imSitu [27], which provides still action images from Google Image
Search with action and place labels. In detail, we choose action classes where images for each of
these candidate actions share common place characteristics. At the same time, the place character-
istics of action class candidates should be distinct in order to classify the action only from place
attributes. In the end, we settle the six typical action-place pairs as (Climbing, RockWall), (Diving,
Underwater), (Fishing, WaterSurface), (Racing, APavedTrack), (Throwing, PlayingField),
and (Vaulting, Sky).

The source of dataset. We construct BAR with images from various sources: imSitu [27], Stanford
40 Actions [26], and Google Image Search. In the case of imSitu [27], we merge several action
classes where the images have a similar gesture for constructing a single action class of BAR dataset,
e.g., {hurling, pitching, flinging} for constructing throwing, and {carting, skidding} for
constructing racing.

Construction process. BAR consists of training and evaluation sets; images describing the typical
six action-place pairs belong to the training set and otherwise, the evaluation set. Before splitting
images into these two sets, we exclude inappropriate images: illustrations, clip-arts, images with solid
color background, and different gestures with the target gesture of the settled six action-place pairs.
Since our sanitized images do not have explicit place labels, we split images into two sets by workers
on Amazon Mechanical Turk. We designed the reasoning process to help workers answer the given
questions. To be more specific, workers were asked to answer three binary questions. We split images
into ‘invalid’, ‘training’, and ‘evaluation’ set based on workers’ responses through binary questions.
Workers were also asked to draw a bounding box where they considered it a clue to determine the
place in order to help workers filter out images without an explicit clue. Here is the list of binary
questions for each action class:

Figure 6: Illustration
of BAR reasoning pro-
cess.

• Climbing: Does the picture clearly describe Climbing and include
person?, Then, is the person rock climbing?, Draw a box around the
natural rock wall (including a person) on the image. If it is not natural
rock wall, click ‘Cannot find clue‘.

• Diving: Does the picture clearly describe Scuba Diving /
Diving jump / Diving and include person?, Then, does the pic-
ture include a body of water or the surface of a body of water?, Draw
a box around a body of water or the surface of a body of water
(including a person) on the image.

• Fishing: Does the picture clearly describe Fishing and include
person?, Then, does the picture contain the surface of a body of a
water?, Draw a box around the surface of a body of a water (including
a person) on the image. If the water region does not more than 90%
of the image’s background, click ‘Cannot find clue‘.

• Racing: Does the picture clearly describe Auto racing /
Motorcycle racing / Cart racing ?, Then, is the racing held
on a paved track?, Draw a box around a paved track (including a
vehicle) on the image.

• Throwing: Does the picture clearly capture the Throwing /
Pelting moment and include person?, Then, can you see a type
of playing field (baseball mound, football pitch, etc.) where the per-
son is throwing something on?, Draw a box around the playing field
(baseball mound, football pitch, etc.) on the image.

• Vaulting: Does the picture clearly capture the Pole Vaulting
and include person?, Then, does the picture contain the sky as back-
ground? Draw a box around the sky region (including a person) on
the image. If the sky region does not more than 90% of the image’s
background, click ‘Cannot find clue‘.

14



Finally, we use 2,595 images to construct BAR dataset. All image sizes are over 400px width and
300px height. The BAR training and evaluation sets are publicly available on https://anonymous.
4open.science/r/c9025a07-2784-47fb-8ba1-77b06c3509fe/.

Table 7: Per-class count of BAR dataset.
Action Climbing Diving Fishing Racing Throwing Vaulting Total

Training 326 520 163 336 317 279 1941
Evaluation 105 159 42 132 85 131 654

(a) Describe action? (b) Match typical pairs?

(c) Draw a bounding box. (d) Finish

Figure 7: Overview of web pages for workers to validate and split images of BAR. Workers are asked
to answer three binary questions and drawing a bounding box task.
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C Experimental details

Architecture details. For the Colored MNIST dataset, we use the multi-layered perceptron consisting
of three hidden layers where each hidden layer consists of 100 hidden units. For the Corrupted
CIFAR-10 dataset, we use the ResNet-20 proposed by He et al. [11]. For CelebA and BAR, we
employ the Pytorch torchvision implementation of the ResNet-18 model, starting from pretrained
weights.

Training details. We use Adam optimizer throughout all the experiments in the paper. We use a
learning rate of 0.001 and a batch size of 256 for the Colored MNIST and Corrupted CIFAR-10
datasets. We use a learning rate of 0.0001 and a batch size of 256 for the CelebA and BAR dataset.
Samples were augmented with random crop and horizontal flip transformations for the Corrupted
CIFAR-10 and BAR dataset, and horizontal flip transformation for CelebA. For the Corrupted CIFAR-
10 dataset, we take 32× 32 random crops from image padded by 4 pixels on each side. For the BAR
dataset, we take 224× 224 random crops using torchvision.transforms.RandomResizedCrop
in Pytorch. We do not use data augmentation schemes for training the neural network on the Colored
MNIST dataset. We train the networks for 100, 200, 50, and 90 epochs for Colored MNIST, Corrupted
CIFAR-10, CelebA and BAR, respectively. The GCE hyperparamter q = 0.7 is simply taken from
the original paper [28]. For stable training of LfF, we use an exponential moving average of loss for
computing relative difficulty score instead of loss at each training epoch, with a fixed exponential
decay hyperparameter 0.7.
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D Baselines

(1) HEX [25] attempts to mitigate texture bias when the texture related domain identifier is not
available. By utilizing gray-level co-occurrence matrix (GLCM), neural gray-level co-occurrence
Matrix (NGLCM) can capture superficial statistics on the images, and HEX projects the model’s
representation orthogonal to the captured texture bias. Since our interest in debiasing is similar to
that of HEX in terms of a method without explicit supervision on the bias, we use HEX as a baseline
to compare debiasing performance in the case of controlled experiments.

(2) REPAIR [18] “re-weights” training samples to have minimal mutual information between the
bias-relevant labels and the intermediate representations of the target classifier. We test all four
variants of REPAIR: REPAIR-T, REPAIR-R, REPAIR-C, and REPAIR-S, corresponding to the
re-weighting schemes based on thresholding, ranking, per-class ranking, and sampling, respectively.
We report the best result among four variants of REPAIR. We use RGB values for coloring digits
and classes of corruption as representations inducing bias for the Colored MNIST and Corrupted
CIFAR-10 datasets, respectively.

(3) Group DRO [24] aims to minimize “worst-case” training loss over a set of pre-defined groups.
Note that one requires additional labels of the bias attribute to define groups to apply group DRO for
our problem of interest. With the label of bias attribute, we define |At| × |Ab| groups, one for each
value of (at, ab). Sagawa et al. [24] expect that models that learn the spurious correlation between at
and ab in the training data would do poorly on groups for which the correlation does not hold, and
hence do worse on the worst-group.
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E Additional experiments

Table 8: Accuracy evaluated on the unbiased samples for the Colored MNIST and Corrupted CIFAR-
101,2 datasets with varying difficulty of the bias attributes. We denote bias supervision type by (no
supervision), (bias-tailored supervision), and (explicit bias supervision). Best performing results
are marked in bold.

Dataset Difficulty
Vanilla Ours HEX REPAIR Group DRO

Colored
MNIST

1 50.97±0.59 75.91±1.25 51.38±0.59 69.60±0.97 70.34±1.98

2 50.92±1.16 74.05±2.21 51.38±0.59 64.14±0.38 70.80±1.82

3 49.66±0.42 72.50±1.79 52.88±1.24 69.20±2.03 71.03±2.24

4 50.34±0.16 74.01±2.21 51.99±1.09 67.28±1.69 71.33±1.76

Corrupted
CIFAR-101

1 35.37±0.58 52.12±1.99 23.92±0.80 37.73±0.73 49.62±1.49

2 29.30±3.11 47.19±2.26 21.23±0.38 36.22±0.88 44.54±1.70

3 26.44±0.98 44.12±1.53 18.66±1.16 34.59±1.88 38.43±1.44

4 22.72±0.87 41.37±2.34 16.62±0.80 32.42±0.35 32.11±0.83

Corrupted
CIFAR-102

1 32.00±0.87 46.89±3.02 20.12±0.44 41.00±0.39 44.85±0.04

2 27.62±1.31 43.56±2.10 16.82±0.38 39.57±0.61 43.21±1.54

3 22.14±0.03 41.46±0.30 15.22±0.47 38.16±0.52 42.12±0.52

4 20.71±0.29 41.29±2.08 14.42±0.51 38.40±0.26 39.57±1.04

Table 9: Accuracy evaluated on the bias-conflicting samples for the Colored MNIST and Corrupted
CIFAR-101,2 datasets with varying difficulty of the bias attributes. We denote bias supervision type by

(no supervision), (bias-tailored supervision), and (explicit bias supervision). Best performing
results are marked in bold.

Dataset Difficulty
Vanilla Ours HEX REPAIR Group DRO

Colored
MNIST

1 51.32±0.45 68.03±1.11 50.54±0.88 67.70±1.02 68.77±1.26

2 45.54±0.65 75.56±1.22 46.84±0.44 63.71±0.29 69.28±1.13

3 45.48±1.29 74.29±1.78 47.88±1.37 70.05±2.10 68.68±1.26

4 44.83±0.18 74.19±1.94 46.96±1.20 68.26±1.52 69.58±1.66

Corrupted
CIFAR-101

1 44.23±2.61 43.76±1.16 35.50±2.82 38.11±0.68 57.34±1.33

2 28.47±0.63 49.04±2.08 16.82±1.01 36.81±0.93 45.03±1.66

3 21.71±3.37 44.22±2.69 13.46±0.41 35.15±1.88 39.64±1.91

4 14.24±1.03 39.55±2.56 8.37±0.56 33.05±0.36 28.04±1.18

Corrupted
CIFAR-102

1 30.56±0.39 46.27±2.66 22.51±0.45 41.19±0.32 43.64±1.45

2 24.70±1.03 44.74±3.01 19.37±0.41 39.99±0.57 40.94±0.34

3 19.77±1.44 41.72±1.90 16.14±0.28 38.41±0.48 40.61±2.01

4 12.11±0.29 40.84±2.06 5.11±0.59 38.81±0.20 37.07±1.02

Difficulty of the bias attribute. In addition to varying ratio of bias-conflicting samples, we vary the
level of “difficulty” for the biased attributes by controlling how much the target attribute is easy to
distinguish from the given image. Based on our observations in Section 2, the difficulty of bias is
lower, the more likely the classifier is to suffer from bias. We introduce four levels of difficulty for the
Colored MNIST and Corrupted CIFAR-101,2 datasets with the target and the biased attribute chosen
as (Digit, Color) and (Object, Corruption), respectively. For the Colored MNIST dataset, we
vary the standard deviation of the Gaussian noise for perturbing the RGB values of injected color. In
cases of Corrupted CIFAR-10, we control the “severity” of Corruption, which was predefined by
Hendrycks and Dietterich [12]. We provide a detailed description of difficulty of the bias attribute in
Appendix A.

In Table 8, 9, we again observe our algorithm to consistently outperform the baseline algorithm by a
large margin, regardless of the difficulty for the biased attribute. Furthermore, we observe that both
baseline and LfF trained classifiers get more biased as the difficulty of the bias attribute increase
in general, which also validates our claims made in Section 2. Notably, LfF even outperforms the
baseline methods that utilizes explicit label on the bias attribute in most cases.
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Table 10: Accuray evaluated on the unbiased samples and bias-conflicting samples for the Colored
MNIST datasets with varying ratio of bias-aligned samples.

Dataset Ratio (%)
Unbiased Bias-conflicting

Vanilla Ours RUBi Vanilla Ours RUBi

Colored
MNIST

95.0 77.63±0.44 85.39±0.94 78.22±0.34 75.17±0.51 85.77±0.66 75.84±0.36

98.0 62.29±1.47 80.48±0.45 64.92±0.78 58.13±1.63 80.67±0.56 61.04±0.83

99.0 50.34±0.16 74.01±2.21 52.41±0.42 44.83±0.18 74.19±1.94 46.85±0.46

99.5 35.34±0.13 63.39±1.97 36.42±0.37 28.15±1.44 63.49±1.94 29.36±0.43

Comparison to other combination rule. There have been several works that utilize intentionally
biased models to debias another model. RUBi proposed by Cadene et al. [3] masks original prediction
with the mask obtained from the prediction of the biased model. LearnedMixin proposed by Clark
et al. [5] uses an ensemble of logits of two models. DRiFt proposed by He et al. [10] learns residual
of the pretrained biased model to obtain the debiased model. As an effort to keep the usage of human
knowledge minimal, we designed our combination rule without any hyperparameter. In Table 10,
we constructed an ablation study on LfF with a combination rule replaced by that of RUBi. While
our method equipped with the RUBi combination rule slightly improves accuracy over the vanilla
model, it is far behind other resampling/reweighting based methods like REPAIR and Group DRO. In
conclusion, resampling/reweighting based methods are generally effective method than manipulating
the predictions or logits directly.
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