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1 Mathematical Backgrounds

1.1 Markov Diffusion Semi-group

In this section, we introduce definitions and propositions that are used for proofs hereafter.
Definition 1. The Markov semigroup (Pt)t≥0 in Rd acting on a function f ∈ C∞0 is defined as
follows:

Ptf(x) =

∫
f(x′)pt(x, dx

′), (1)

where pt(x, dx′) is called a transition kernel and is a probability measure for all x and t ≥ 0.
Definition 2. (Diffusion Operator) Given a Markov semi-group Pt at time t, the diffusion operator
(i.e., infinitesimal generator) L of Pt is defined as

Lg(y) = lim
t→0

1

t
(Ptg(y)− g(y)) =

∑
i,j

∂2

∂yi∂yj
Bij(y)g(y)−

∑
i

Ai(y)
∂

∂yi
g(y), (2)

where B and A are matrix and vector-valued measurable functions, respectively; Bij denotes the
(i, j)-th function of B; Ai denotes the i-th component function of A.
Definition 3. (Diffusion carre du champ) Let f, g ∈ C∞0 . Then, we define a bilinear form Γc in
C∞0 × C∞0 as

Γc(f, g) =
1

2
[LΓc−1(fg)− Γc−1(fLg)− Γc−1(gLf)], (3)

for c ≥ 1.

We denote Γ(f) ≡ Γ(f, f). The bilinear form Γ can be considered a generalization of the integration
by parts formula, where

∫
fLg + Γ(f)dξ = 0 for the invariant measure ξ of L.

Definition 4. (Relative Fisher Information) For Γ defined earlier, the relative Fisher information of
νt with respect to NΣ is defined as I(νt|NΣ) =

∫
Pt[q]

−1Γ(Pt[q])dNΣ.
Definition 5. (Curvature-Dimension condition) We say that infinitesimal generator L induces the
CD(ρ,∞) curvature-dimension condition if it satisfies Γ1(f) ≤ ρΓ2(f) for all f ∈ C∞0 .

Example. (Multivariate Gaussian distribution)

Because our diffusion operator generates an Ornstein-Uhlenbeck semi-group, the curvature-dimension
condition can be explicitly calculated. Through simple calculations, the first order (c = 1) diffusion
carré du champ is induced follows:

Γ1(f) =
(
[∇f ]TΣ∇f

)2
. (4)

Similarly, the second order (c = 2) diffusion carré du champ is calculated as follows:

Γ2(f) =
1

2

[
L
(
Γ1(f2)

)
− 2Γ1 (f,L(f))

]
= Tr

([
Σ∇2f

]2)
+
(
[∇f ]TΣ∇f

)2
= Tr

([
Σ∇2f

]2)
+ Γ1(f),

(5)
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for arbitrary f ∈ C∞0 . While Tr
([

Σ∇2f
]2)

is non-negative, Γ1 ≤ Γ2, and our diffusion operator
L induces the CD(1,∞) curvature-dimension condition. Therefore, we always set ρ = 1 in this
paper. In [4], other types of diffusion operators are considered including Gamma distributions.

Proposition 1. (Decay of Fisher information along a Markov semigroup [1]) If we assume the
curvature-dimension condition CD(ρ,∞), then I(νk,t|NΣ) ≤ e−2ρtI(νk|NΣ).

Proposition 1 demonstrates the exponential decay of Fisher information if the curvature-dimension
condition CD(1,∞) is satisfied. This property will play a central role in proving Proposition 2.

1.2 Riemannian Diffusion Lg

In the previous section, we discussed the connection between the diffusion operator and Wasserstein
distance in Proposition 2 and examined the basic and well-known properties of Markov semi-groups.
In this section, we investigate the geometric implications of L. Let (Rd, G) denote a Riemannian
manifold equipped with a flat (constant) metric tensor G, which is defined as the inverse of the
covariance matrix Σ ∈ Symd

+. We consider the Riemannian diffusion Lg for this manifold as
follows:

Lg = ∆g −∇g log(pΣ), (6)

where ∆g and ∇g denote the Laplace-Beltrami operator and Riemannian gradient with a flat metric
tensor G = Σ, respectively. We define the probability measure ν as absolutely continuous with
respect to the Riemannian Lebesgue measure ν � mg with a density pΣ(x) = e−U(x) such that
dν = pΣdmg, where U is twice differentiable. Because our metric tensor is flat, we can easily
calculate the Riemannian diffusion operator as follows:

Lgf = ∆gf +∇g log(pΣ)f

= (det(G))−
1
2

∑
i,j

∂i

(
(det(G))

1
2 gij∂jf

)
+ gij∂i log(pΣ)∂jf

=
∑
i,j

gij∂i∂jf + gij
∇pΣ

pΣ
∂jf =

∑
i,j

Σij∂i∂jf +
∑
j

yj∂jf

= Tr(Σ∇2f) +XT∇f = Lf, f ∈ C∞0 (Rd),

(7)

where we denote {gijgik}i,k = G−1G = Σ−1Σ = I. The final form is equivalent to (1) in the main
paper, which implies that the distance in the feature space can be recognized as flat Riemannian
distance (i.e., Mahalanobis distance).

2 Notations and Assumptions

The l-th component of function g is denoted as gl : Rd → R. Cb(Rd) denotes the set of continuous
and bounded functions in Rd, and C∞0 (Rd) denotes the set of ∞-class functions with compact
support in Rd. The Lα-norm of function f ∈ Lα(ν) is denoted as ‖f‖α,ν = (

∫
|f |αdν)

1
α . The

Euclidean Lα-norm of vector v ∈ Rd is denoted as ‖v‖α. Let dy be a Lebesgue measure and NΣ be

a non-degenerate centered Gaussian measure with density pΣ(x) =
(

2π−
d
2det(Σ)−1

)
e−

1
2x
TΣ−1x,

where dNΣ = pΣdx and Σ is a (d×d) covariance matrix. The n-th label measure at the k-th iteration
is denoted as νk,n = fθk# [µn].

Definition 6. (2-Wasserstein space). Let P(Rd) be a space of probability measures. Then, its
subspace, ν ∈ P2(Rd), which satisfies m2(ν) =

∫
Ω
d(y0, y)2dν <∞ for every y0 ∈ Rd, is called

the 2-Wasserstein space.

According to the definition, we can get the following inclusion: P (Rd) ⊂ P2(Rd) ⊂ P2,g(Rd). In
the 2-Wasserstein space, a metric ball is denoted as BW2

(NΣ, r) =
{
ν; dW2 (ν,NΣ) ≤ r

}
with radius

r centered at NΣ.

We make the following assumptions:
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• H1. Each parameterized push-forward measure νn = fθ#[µn] is absolutely continuous
with respect to the Gaussian measure NΣn , (i.e., νn � NΣn). Therefore, each measure
νn has a density qn such that dνn = qndNΣn , the existence of which is assured by the
Radon-Nikodym theorem.

• H2. There is a monotone-decreasing sequence {δk,n}∞k=1 (i.e., δk,n ≥ δk+1,n, ∀k ∈ N+)
such that δk,n = supg∈C∞0

∫
|Lg(y)| qk,ndNΣn(y) < ∞, and a large constant K0 ∈ N+

satisfying δk,n = 0, if k ≥ K0, ∀n = 0, · · · , N , where qk,n denotes the density of the n-th
label measure νk,n at the k-th sequence.

• H3. Each inference (push-forward) measure νk,n = qk,ndNΣn at the k-th sequence is
centered (i.e.,Ey∼νk,n [y] = 0).

• H4. The second central moment of push-forward measures are bounded as m2(νk,n) =∫
Rd d(y0, y)2dνk,n <∞ for every y0 ∈ Rd. In other words, νk,n is assume to be an element

of P2(Rd) according to the definition of the 2-Wasserstein space.

The second assumption H2 implies that we can always find an optimal solution for the proposed
objective function, when there is an index K0 such that δK0 converges to zero. For our inference
network f , we normalize every convolutional features such that E[fθk(xn)] = 0 to satisfy H3. The
other mild assumptions are required for proofs.

Remark. It should be noted if µn and ν̂n (i.e., target measures) are Dirac-delta measures
(i.e., µn = δxn , ν̂n = δŷn), then the corresponding Wasserstein distanceW2(f#[µn], ν̂n) is equiva-
lent to dE(f(xn), ŷn). Therefore, our method can be considered a generalized version of conventional
distance-based classification models.

2.1 Neural Network As a Member of C∞0

In this paper, the proposed neural network g is assumed to be a member of C∞0 , which seems
unnatural because of the non-differentiability of the neural network for a finite number of points
where the non-differentiability is induced by activation units such as ReLU. However, it can be
easily shown that there is always some smooth function gs ∈ C∞0 such that ‖gs − g‖ ≈ 0. Let a
perturbed dataset lie in a compact subset Ω ⊂ Rd̂, and let the inference network as f : Ω ⊂ Rd̂ → Rd
map perturbed data points into a d-dimensional feature space and supp(f) = Ω. To guarantee the
smoothness of neural network g in a global sense, we convolve it with a mollifier function ψ. First,
we introduce the function:

ψε(y) =
1

Cεε
ψ(y/ε), (8)

where ψ is a standard mollifier function ψ(y) = e
− 1

1−‖y‖22 with ε > 0 and the constant Cε = 1∫
ψεdν

.

For the next step, we define a compactly supported neural network ĝ as follows:

ĝ(y) =

{
‖y‖22,ν ‖y‖22,ν ≤M = supZ |Z|22,ν
0 ‖y‖22,ν > M,

(9)

where Z ∈ f(Ω) is a perturbed random vector related to the probability measure f#[µ]. Then, ĝ is
compactly supported by an L2-ball with radius M , because perturbed points lie in some compact set
Ω ⊂ Rd̂ and Z ∈ f(Ω) is also compact in Rd. Finally, we take convolution ψε in (8) with ĝ in (9) to
induce smoothness of the neural network g as follows:

gs(y) = [ĝ ∗ ψε](y) =

∫
ĝ(y)ψε(y − y′)dν(y′). (10)

The smoothness of g, (i.e., g ∈ C∞0 ) can be easily verified, because ∂ig = ĝ ∗ ∂iψε,∀i. By the
Young’s inequality, the following inequality holds:

‖gs‖1,ν = ‖ĝ ∗ ψε‖1,ν ≤ ‖ĝ‖1,ν ‖ψε‖1,ν = ‖ĝ‖1,ν , (11)
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where ‖ĝ − ĝ ∗ ψε‖1,ν converges to zero, as ε approaches zero. Let B(M) be an L2-ball with radius
M . Then, g|B(M) = ĝ|B(M) ≈ ĝ ∗ ψε|B(M) = gs|B(M) for a sufficiently small ε, regardless of f .

Remark. In the analysis presented in [2], mathematical assumptions required for neural networks are
discussed. Similarly, this section is designed to discuss and deliver the proper mathematical setting
for the assumption used in the main paper (i.e., a neural network is a member of C∞0 ).

3 Proofs

In this section, we prove the propositions introduced in the main paper.

3.1 Proof of Proposition 2

Proposition 2. (Descending of the Wasserstein Ambiguity Set) Let {νk} be a sequence of prob-

ability measures satisfying assumptions. Then, νk ∈ BW2(NΣ, δ
1
2

k ), which is equivalent to

W2(νk,NΣ) ≤ δ
1
2

k andW2(νk,NΣ)→ 0 as k →∞.

Proof. We define the Markov semi-group Pt for the auxiliary variable t, where limt→0+ Eνk [Ptf ] =
Eνk [f ]. We assume that νk,t is absolutely continuous with respect to the centered Gaussian measure
NΣ (i.e., νt � NΣ). Based on this assumption, we let qk,t be the corresponding density (i.e., dνk,t =
qk,tdNΣ). Then, the subscript t is interpreted as the path index of the probability measure from
νk,t=0 to νk,t, where the path is defined as the solution of the continuity equation in a distributional
sense as follows:

∂tρt = ∇ · (ρtvt) , vt = ∇ log qk,t. (12)

Because the density of the Gaussian measure NΣ has the form of 1
Z e
−η(x), where η(x) =

1
2x

TΣ−1x,∇2η(x) ≥ 0 and Z is a normalization constant, we can simply use the results pre-
sented in [5]. By integrating both sides of the inequality in (Lemma 2, [5]) with respect to the
auxiliary variable t ∈ (0,∞), we can derive the following inequality:

W2(νk,NΣ) =

∫ ∞
0

d

dt+
W2(νk, νk,t)dt ≤

∫ ∞
0

√
I(νk,t|NΣ)dt. (13)

In the inequality above, we replace the Fisher information with the diffusion generator L as follows:

W2(νk,NΣ) ≤
∫ ∞

0

√
I(νk,t|NΣ)dt

=

∫ ∞
0

√∫
P−1
t qkΓ(Ptqk)dNΣdt =

∫ ∞
0

√∫
L(− logPtqk)dνk,tdt.

(14)

The second equality above is derived using the property of the bilinear operator Γ with respect to
diffusion operator L which is defined as follows:∫

P−1
t qkΓ(Ptqk)dNΣ = −

∫
L(logPtqk)qkdNΣ =

∫
L(− logPtqk)dνk,t ≥ 0. (15)

We denote |g| = g+ for simplicity. According to Proposition 1, we can relate νk,t to its initial term
νk,t=0 as follows:∫ ∞

0

√∫
L(− logPtqk)dνk,tdt ≤

∫ ∞
0

√
e−2ρt

∫
L (− logP0qk) dνk,t=0dt

≤
∫ ∞

0

√
e−2ρt sup

g∈C∞0

∫
L+gqkdNΣdt

=

∫ ∞
0

√
e−2ρtdt

√
sup
g∈C∞0

∫
L+gdνk︸ ︷︷ ︸

Diffusion invariance term

= ρ−1δ
1
2

k .

(16)
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The second inequality is naturally induced, because the proposed objective function is defined to
select the maximal elements over the set of functions g ∈ C∞0 , and Lg ≤ L+g.

Remark. In this paper, we only focused the invariance property of diffusion-type Fokker-Planck
equation and their diffusion semi-group (Ornstein-Uhlenbeck) which induces curvature-dimension
constant to be ρ = 1. Thus, the geometric-characteristics of diffusion semi-group is not highlighted in
the main paper. But the original results developed in the paper [5] can be generalized to our method.
Specifically, the target measure ν̂ in our method can be generalized to much general form such as a
Gibbs measure having density dν̂ = 1

Z e
−Ψ(x)dx for arbitrary smooth Ψ. In this case, the diffusion

semi-group can be designed to induce larger curvature-dimension constant ρ � 1 by considering
other types of Ψ to give finer radius of Wasserstein ambiguity set for classification.

3.2 Proof of Proposition 3

Proposition 3. (Exponential Decay of Wasserstein Distance) Let us define the sub-sequence τ(k) ⊂
N+ such that τ(k) =

{
k′
∣∣ 1
k′

(∫
ζd[νk′ − ν0] + ε(k′)

)
≤ δ0, k ≤ k′

}
, where ζ ∈ Cb, and let |ε(k)|

be a dual error satisfying |ε(k)| → 0 as k → ∞. In this case, the following inequality holds:
dW2 (ντk ,NΣ) ≤

√
δ0e−2τk + ε(τk), where τk denotes the element of τ(k).

Proof. It should be note that τ(k) ⊆ τ(k′) for any k ≤ k′ because we define δk as monotonically
decreasing. This statement is trivial if we show the inequality.

The proof consists of three steps. First, we derive the inequality Eνkζ ≤ Eξkζ + ε(k) from the
assumptions for ν0 defined under sub-sequence conditions.

First step: Let ξk be another auxiliary probability measure such that ξk � NΣ and dξk = Pkq0dNΣ,
and let L+ζ = |Lζ|. Then, the inequality Eνkζ ≤ Eξkζ + ε(k) is written as follows:∫

ζqkdNΣ ≤
∫
ζPkq0dNΣ + ε(k) =

∫
Pkζq0dNΣ + ε(k)

≤
∫
ζq0dNΣ +

∫ ∫ k

0

PsL+ζ(y)q0(y)dsdNΣ(y) + ε(k)

=

∫
ζdν0 +

∫ k

0

[∫
PsL+ζ(y)dνk(y)

]
ds+ ε(k).

(17)

The first equality is induced by the properties of diffusion-type Markov semi-groups
(i.e.,

∫
[ζ(y)Pkq0 − q0Pkζ(y)]dNΣ(y) = 0). Because L+ζ is non-negative and measurable, we

can apply Tonelli’s theorem to the second line, which creates an inequality. According to assumption
H2, we can derive the following inequality:∫

PsL+ζ(y) =

∫ ∫
L+ζ

(
e−sy +

√
1− e−2sΣ

1
2 z
)
dν0(y)︸ ︷︷ ︸

≤supg
∫
L+gdν0=δ0

dNΣ(z) ≤ δ0. (18)

Therefore, we obtain the following inequality:

Eνk [ζ]− Eν0 [ζ]− ε(k) ≤ kδ0. (19)

By rearranging both sides of this expression and rescaling the error term ε(k)→ − ε(k)
k

1, we obtain
the following inequality:

1

k

∫
ζd[νk − ν0] =

1

k

∫
ζ(qk − q0)dNΣ + ε(k) ≤ δ0. (20)

Therefore, Eνkζ ≤ Eξkζ + ε(k) is equivalent to the assumptions for ντk , τk ∈ τ(k).

Second step: We use the Kantorovich duality of the Hopf-Lax semi-group to induce the inequality of
the Wasserstein distances. Prior to presenting the second step of the proof, we introduce the following
proposition.

1Here, we make an assumption for ε,
∣∣∣ ε(k)k ∣∣∣ → 0.
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Proposition A. (Kantorovich duality and Hopf-Lax semi-group, [6]) For the bounded continuous
function f ∈ Cb and probability measure νn1 , νn2 satisfying assumption H4, the following equality
holds:

1

2
W2

2 (νn1 , νn2) = sup
ζ∈Cb

[∫
H1ζdνn1 −

∫
ζdνn2

]
, (21)

where Ht(x) = infy{ζ(y) + 1
2td

2(x, y)} is called a Hopf-Lax semi-group.

Now we continue with the second step. By replacing ζ → H1ζ and subtracting
∫
ζNΣ from both

sides, we get ∫
H1ζqkdNΣ −

∫
ζdNΣ ≤

∫
H1ζPkq0dNΣ −

∫
ζdNΣ + ε(k). (22)

Calculating supζ for both sides yields the following inequality according to Proposition A and
assumption H4 (finite second moments),

W2
2 (νk,NΣ) ≤ W2

2 (µk,NΣ) + ε(k). (23)

Third step: For the final step, we demonstrate the exponential decay of the Wasserstein distance.∫
H1ζPkq0dNΣ −

∫
ζdNΣ ≤

∫
PkH1ζq0dNΣ −

∫
ζdNΣ

≤
∫
He2ρkPkζq0dNΣ −

∫
ζdNΣ

≤ e−2ρk

[∫
H1e

2ρkPkζq0dNΣ −
∫
e2ρkPkζdNΣ

]
,

(24)

where the first inequality is induced by the commutation properties of Pk and Ht, and the second
inequality is induced by the homogeneity of the Hopf-lax semi-group, denoted as He2ρkPkζ =
e−2ρkH1e

2ρkPkζ. The third inequality is induced as
∫
PkζdNΣ =

∫
ζdNΣ because the target

measure NΣ is a steady-state measure of limk→∞ Pkζ (invariant measure w.r.t. Pk). According to
the arbitrariness of Pkζ ∈ C∞0 , we can obtain the following inequality by calculating suph for both
sides of the inequality above:

LHS −→ sup
ζ

[∫
H1ζdµk −

∫
ζdNΣ

]
=

1

2
W2

2 (νk,NΣ), (25)

and

RHS −→ e−2ρk sup
ζ∗

[∫
H1ζ

∗dν0 −
∫
ζ∗dNΣ

]
=
e−2ρk

2
W2

2 (ν0,NΣ), (26)

where ζ∗ = e2ρkPkζ. Therefore, based on the results of the previous proposition, we have

W2
2 (νk,NΣ) ≤ e−2ρkW2

2 (ν0,NΣ) ≤ ρ−2e−2ρkδ0. (27)

By combining the above inequality with (23) and setting k = τk ∈ τ(k), we obtain the following
inequality:

W2(ντk ,NΣ) ≤
√
ρ−2δ0e−2ρτk + ε(τk) (28)

The proof is completed by setting ρ = 1.

3.3 Proofs of Perturbation Analysis

Proposition 4. (Wasserstein Perturbation) Let νεk = (Id + εh)#νk be a perturbed measure by
εh. Then, there are some numerical constants 0 ≤ κ1

1, κ
∞
2 < ∞ such that the mean radius of the

perturbed Wasserstein ambiguity set νεk ∈ BW2(NΣ, r
′) is bonded as follows:

EεW2(νεk,NΣ) ≤ ρ−1

(√
dκ1

1κ
∞
2 E[ε] + δk

)
. (29)
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Proof. By the definition of the push-forward measure νε, we obtain the equality
∫
g(y)dνε =∫

g(y + εh(y))dν(y) =
∫
ghdν(y) with g ∈ C∞0 . By the definition of the diffusion generator L, we

obtain followings:

sup

∫
L+g(y)dνε(y) = sup

∫
L+g(y + εh(y))dν(y)

= sup

∫ ∣∣Tr(Σ∇2gh − [y + εh(y)]T∇gh
∣∣ dν(y)

≤ sup

[∫
L+gh(y)dν(y) + ε

∫ ∣∣hT (y)∇gh(y)
∣∣ dν(y)

]
≤ sup

∫
L+g(y)dν(y) + ε sup

∫ d∑
i

∣∣hi∂igi,h∣∣dν,
(30)

where gh(y) = g(y + εh(y)). For an arbitrary a, b > 0, the inequality |b| − |a| ≤ |a − b| ≤ C is
satisfied and sup |a| − sup |b| ≤ sup(|a− b|) ≤ supC. By calculating the supremum of both sides
of the inequality using a non-negative perturbation function h ≥ 0 (i.e., ν and the test function lying
in C∞0 ), the following expressions are induced:

ε sup

∫ d∑
i

∣∣hi∂igi,h∣∣dν ≤ ε sup

d∑
i

∫ ∣∣hi∂igh,i∣∣ dν ≤ ε sup

d∑
i

‖hi‖b1,ν
∥∥∂igh,i∥∥b2,ν

≤ ε ‖h?‖b1,ν sup

d∑
i

∥∥∂igh,i∥∥b2,ν ≤ dε ‖h?‖b1,ν sup
g

max
i

∥∥∂igi∥∥b2,νε
≤ dεκb11 max

i

∥∥∂igi∥∥b2,νε ,
(31)

where ‖hi‖b1,ν ≤ ‖hj‖b1,ν = maxi ‖hi‖b1,ν = κb11 . The second inequality is induced by Hölder’s
inequality with the conjugates b−1

1 + b−1
2 = 1. Because we parameterize the test function g using the

smoothed function introduced in Section 2.1, we consider smoothed neural networks as members of
the set of functions Ag = {gψ : gϑψ(y) = gϑ(y) ∗ ψε(y),Eνk [|Lgψ|] < δk, ϑ ∈ RF , ε > 0} ⊂ C∞0 .
It should be noted that for any member gψ ∈ Ag, ∂igψ,i = gi ∗ ∂iψε ∈ C∞0 . The network
capacity of g is sufficiently large (i.e., F ) to ensure that Ag completely contains the set of functions
B = {φ : Eνk

[
L[− log φ]

]
≤ δk

]
} ⊂ C∞0 , where

∫
φdνk = 1, φ ≥ 0 a.e. [νk]. In this case,

B ⊂ Ag ⊂ C∞0 , and the last inequality in Proposition 2 is valid. Additionally, supB χ ≤ supAg χ
for any χ ∈ C∞0 . Therefore,

0 ≤ dεκb11 sup
g∈B

(∫
|∂jgψ,j |b2dνε

) 1
b2

≤ dεκb11 sup
g∈Ag

(∫
|∂jgψ,j |b2dνε

) 1
b2

= dεκb11 sup
ϑ

(∫
|∂jgϑψ,j |b2dνε

) 1
b2

≤ dεκ1
1κ
∞
2 ,

(32)

where sup
∥∥∂igi∥∥b2,νε ≤ sup

∥∥∂jgj∥∥b2,νε = sup maxi
∥∥∂igi∥∥b2,νε = κb22 . The last inequality is

induced by setting b1 = 1, b2 =∞. Now, we rearrange the inequalities in (32) and (30) and consider
the last inequality developed in Proposition 2.

EεW2(νε,NΣ) ≤ Eε
∫ ∞

0

√
e−2ρtdt

√
sup

∫
L+φdνε ≤ 1

ρ
Eε

(√
sup
φ∈Ag

∫
L+φdν + dεκ1

1κ
∞
2

)

≤ ρ−1Eε∼pε
(√

dεκ1
1κ
∞
2 + δk

)
≤ ρ−1

(√
dκ1

1κ
∞
2 E[ε] + δk

)
.

(33)

It should be noted that in the second inequality, the supremum is calculated for set Ag, which still
produces the same result as C∞0 according to the assumption that B ⊂ Ag ⊂ C∞0 . The last inequality
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holds according to Jensen’s inequality for concave square root functions. The proof is completed by
rewriting κ1

1, κ
∞
2 as κ1, κ2 and setting ρ = 1.

The next corollary shows the extension of Proposition 3 to perturbed measures.

Corollary A. Let τk ∈ τ(k) be the sub-sequence defined in Proposition 3 and let νετk be a perturbed
measure with respect to τk. Then,

EεW2(νετk ,NΣ) ≤ 1

ρ
e−ρk

√
dκ1

1κ
∞
2 E[ε] + δk=0 + ε(k). (34)

Proof. This inequality is trivial to obtain by combining the results obtained in Propositions 3 and 4.

EεW2(νετk ,NΣ) ≤ 1

ρ
e−ρkW2(νε0 ,NΣ) ≤ 1

ρ
e−ρk

√
dκ1

1κ
∞
2 E[ε] + δk=0 + ε(k). (35)

Corollary 1. (Perturbed Binary Classification.) Let Σ+ and Σ− be a r-rank SPD matrices, and
ε ∼ pε = exp(b) be an exponential distribution with parameter b. Then, the probability of νε
classified as positive labels is bounded as follows:

P[cls(νε) = 1] ≤ 1− e−
br(λ+max+λ−max)−4bδk

4dκ1κ2 , (36)

where λ+
max and λ−max denote maximum eigenvalues of matrices Σ+ and Σ−, respectively.

Proof. For binary classification, we first define the decision boundary in the 2-Wasserstein distance.

Dε = {νε ∈ P2;W2(νε,NΣ+) =W2(νε,NΣ−)}. (37)

Suppose the probability measures ξ ∈ Dε,ND satisfyND = arg minξW2(NΣ+
, ξ). If the following

inequality holds for any perturbed measure νε, then νε is classified as positive label.

W2(NΣ+
, νε) ≤ min

ξ
W2(NΣ+

, ξ) =W2(NΣ+
,ND) (38)

As our target measure NΣ+
is an element of the Wasserstein Gaussian subspace W2,g and the

subspace is totally geodesic, the 2-Wasserstein distanceW2(NΣ+
, ξ) is minimized only when ND is

member ofW2,g such that ND = γ0.5, γt is geodesic connecting NΣ+
, and NΣ+

. Thus, covariance
matrix D have unique form D = 0.25 (Id + T ) Σ+ (Id + T ), where matrix T is a solution of the
Riccati equation TΣ+T = Σ−. In this case, the boundary of Wasserstein ambiguity set for νε exactly
touches single point of the subset Dε

g = Dε ∩ P2,g = {NΣD
} to make νε classified as positive label.

In this light of consideration, the following condition is required:

W2(νε,NΣ+
) ≤

√
dκ1κ2ε+ δk ≤ W2(γ0, γ0.5) =

1

2
W2,g(NΣ+

,NΣ−), (39)

where the label measure νε satisfies νε ∈ BW2(
√
dκ1κ2ε+ δk) by the assumption (H2), and

Proposition 4. By rearranging the inequality above, we obtain followings:

ε ≤
W2

2,g(NΣ+ ,NΣ−)− 4δk

4dκ1κ2
≤ r(λ+

max + λ−max)− 4δk
4dκ1κ2

. (40)

The inequality is induced by r-rank condition of covariance matrices as follows:

W2,g(NΣ+
,NΣ−) = Tr(Σ+ + Σ− − 2

√
Σ+Σ−) ≤ r(λ+

max + λ−max). (41)

For the exponential distribution ε ∼ pε = exp(b), we can obtain the probability inequality.

P[cls(νε) = 1] = P
[
ε ≤ r(λ+

max + λ−max)− 4δk
4dκ1κ2

]
≤ 1− e−

br(λ+max+λ−max)−4bδk
4dκ1κ2 . (42)
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Proposition 5. (Markov Inequality for Perturbation Functions) Let Yk ∼ νk denote the Markov-
process related to the Markov semi-group and its corresponding law νk. For the l-th component of
the perturbation function hl ∈ L1(νk), we denote T (y) = ‖h(y)‖22 <∞. Then, there are numerical
constants 0 ≤ κ3, κ4 <∞ such that

νk
(
Ey[T (Yk)] ≥ a

)
≤ C(k)κ3

a2
(dκ4 + kδk) , (43)

where C(k) = e
1

2(e2k−1)
+2ε2

, dM (y) =
√
hT (y)Σh(y), and y ∈ Rd denotes the Mahalanobis norm

of h(y). Furthermore, limk→∞ νk(E[T (Yk)] ≥ a)→ a−2e2ε2dκ3κ4.

Proof. We write the Markov inequality for the Markov semi-group PtT as follows:

νk(PtT ≥ a) ≤ 1

aα

∫
{y;PtT (y)≥a}

(PtT (y))
α
dνk(y)

=
1

aα

∫
{y;PtT (y)≥a}×Rd

(PtT (y))
α
1(z)d[νk(y)⊗ νεk(z)]

≤ 1

aα

∫
Rd×Rd

(PtT (y))
α
1(z)d[νk(y)⊗ νεk(z)],

(44)

where the equality holds according to the definition of the product measure. For the rest of this proof,
we omit the integral area Rd×Rd. It should be noted that PtT (y) ≥ 0 for all t, y. Now, we introduce
another useful inequality:

Proposition B. (Harnack’s inequality [7]) If the curvature condition CD(ρ,∞) holds, then the
following inequality holds:

(Ptf)
α

(x) ≤ Pt(fα)(y)e
αρd2G(x,y)

2(α−1)(e2ρt−1) , (45)

where dG is the Riemannian distance, f is a positive measurable function in Rd, and every x, y ∈
Rd, α > 1, t > 0.

The first inequality is induced by Proposition B, as T, PtT ≥ 0 a.e. [νk].∫
(PtT )α(y)1(z)d[νk(y)⊗ νεk(z)] ≤

∫
Pt(T

α)(y)e
αρd2G(y,z)

2(α−1)(e2ρt−1)1(z)d[νk(y)⊗ νεk(z)]

=

∫
Pt(T

α)(y)1(y′)e
αρd2G(y,y′+εh(y′))

2(α−1)(e2ρt−1) d[νk(y)⊗ νk(y′)]

≤ e
αρ

2(α−1)(e2ρt−1) ‖PtT‖bm,νk
∥∥∥ed2G(y,y′+εh(y′))

∥∥∥
bn,νk⊗νk

,

(46)

where the second inequality is induced because Ey,z[PtT (y)1(z)] = Ey[PtT (y)]Ey′ [1(y′ +
εh(y′))] = Ey[PtT (y)] and the Hölder’s inequality with constants bm, bn satisfies b−1

m + b−1
n = 1.

As we discuss in Section 1.2, our diffusion operator L can be considered as the Riemannian
diffusion on a flat manifold (Rd, dG) with the Mahalanobis distance dG, which has the form of
dG(y, y′) =

√
(y − y′)TΣ−1(y − y′) for y, y′ ∈ Rd. Due to the flatness of the manifold, we can

easily induce the following equality:∥∥∥ed2G(y,y′+εh(y′))
∥∥∥
bn,ν2

k

= e2

∣∣∣∣∥∥∥ed2G(0,y)
∥∥∥
bn,νk

−
∥∥∥eyTΣy′

∥∥∥
bn,ν2

k

∣∣∣∣+ eε
2
∥∥∥ed2G(h(y),h(y′))

∥∥∥
bn,ν2

k

≤ e2

∣∣∣∣∥∥∥ed2G(0,y)
∥∥∥
bn,νk

−
∥∥∥eyTΣy′

∥∥∥
bn,ν2

k

∣∣∣∣+ e2ε2
∥∥∥ed2G(0,h(y))

∥∥∥
bn,νk

≤ e2

∣∣∣∣∥∥∥ed2G(0,y)
∥∥∥
bn,νk

−
∥∥∥eyTΣy′

∥∥∥
bn,ν2

k

∣∣∣∣+ e2ε2κbn3 ≈ e2ε2κbn3 ,

(47)

where the equality holds according to simple calculations and the inequality is induced by the
properties of the distance d2

G(0, h(y′)) + d2
G(h(y), 0) ≥ d2

G(h(y), h(y′)). For a large perturbation
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ε �
√

2, the first term on the right side of (47) is negligible, compared to second term. Based on
the assumption of a constant κbn3 , we can conclude that supk

∥∥∥ed2G(y,y′+εh(y′))
∥∥∥
bn,ν2

k

≤ e2ε2κbn3 for

a large perturbation. Next, we decompose
∫
PtT

αdνk, which is related to the diffusion sequence δk
defined earlier. According to the definition of the Markov semi-group for this type of diffusion, the
first equality holds:∫

PtT
αdνk =

∫
Tαdνk(y) +

∫ ∫ t

0

PsLTα(y)dsdνk(y)

≤
∫
Tαdνk(y) +

∫ ∫ t

0

Ps |LTα(y)| dsdνk(y)

=

∫
Tαdνk(y) +

∫ t

0

[∫
PsL+Tα(y)dνk(y)

]
ds,

(48)

where L+Tα(y) = |LTα(y)| is non-negative and measurable. The second equality is induced
by Tonelli’s theorem. By applying Tonelli’s theorem again to the last term in (48), we obtain the
following equality:∫ t

0

∫
PsL+Tα(y)ds =

∫ t

0

∫ ∫
L+Tα

(
e−sy +

√
1− e−2sΣ

1
2 z
)
dνk(y)︸ ︷︷ ︸

≤supg
∫
L+gdνk=δk

dNΣ(z)ds ≤ tδk.

(49)
Then, we combine the inequalities of (49) and (48). Finally, we obtain the following inequality:

‖PtTα‖1,νk ≤ ‖T
α‖1,νk + tδk. (50)

Next, we set the constants bm = 1, bn =∞, ρ = 1, and α = 2 in (46). By combining the inequalities
in (46) and (50), we obtain the followings:

νk(PkT ≥ a) ≤ 1

a2
e

αρ

2(α−1)(e2ρk−1) e2ε2κ∞3 (EνkT + kδk)

≤ 1

a2
e

1

(e2k−1)
+2ε2

κ∞3 (dκ4 + kδk),

(51)

where the last inequality is induced by the following inequality:

Ey∼νk [T (y)] =

∫
‖h(y)‖22 dνk(y) =

∫ d∑
l

h2
l (y)dνk(y) ≤ dmax

j

∥∥h2
j

∥∥
1,νk
≤ dκ4, (52)

where maxj
∥∥h2

j

∥∥
1,νk
≤ κ4. Because we assume that the density of νk follows the path related to the

diffusion semi-group generated by L, we can replace the auxiliary variable t with k ∈ N+. It should
be noted that νk(PtT (y) > a) = νk(Ey[T (Yk)|Y0 = y] > a). The last statement holds because
limk→∞ C(k) = e2ε2 , and δk vanishes for large values of k as δk>K0 = 0 according to assumption
H2.

4 Implementation Details

4.1 Perturbation Setup for 2D Images

To measure the robustness of the proposed and baseline methods on a 2D image classification task,
we considered three possible perturbations.

• Local Shuffle {e}. For this perturbation, we set a local grid and shuffle each pixel in the grid.
This perturbation was designed to verify learnability when the connectivity of pixels is locally
collapsed, but the distribution of pixels is preserved. For example, Eµ[I] − Eµε [Iε] ≈ 0
when the average pixel-wise Lp norm is large.

• Downscaling, Rotation, and Sheering {θ, sc, sh, ε}. This perturbation combines three
possible sub-perturbations, namely, down scaling, rotation, and sheering. In the transformed
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region, we added Gaussian noises with zero mean and a covariance εId, where ε = 0.5.
Although the global information from each original image is still valid in each perturbed
image, we observed a significant performance drop for the conventional CNN-based base-
lines (75.9% accuracy), whereas the proposed method yielded accurate classification results
(93.0% accuracy).

• Rotation and Cropping {θ, cc}. This perturbation combines cropping and rotation. The
original images were first randomly rotated by angles θ = 2π and θ2 = π, and then cropped
to sizes of cc = (24, 24), cc2 = (16, 16). Finally, the cropped images were rescaled to their
original size (32, 32). In contrast to the second perturbation, global information can be lost
as a result of this perturbation because the images are cropped.

We used the official codes provided in [Torchvision.transforms] for scaling, cropping, rotation,
down-scaling, and sheering. Perturbed samples are presented in Table 1.

The benchmark dataset CIFAR10-C [3] consists of artificially corrupted images with 19 different
distortion operations such as ’jpeg compression’, ’motion blur’, ’contrast’, and ’pixelate’. We ran-
domly selected each data from 10K numbers of most severe perturbed samples (severity = 5) for
both training and test data. Unfortunately, each image can only possess a finite number of pre-fixed
deterministic variations, which induces low randomness of perturbed objects. Due to the determin-
istic property of dataset, theoretical advantages of our method were limited and the experimental
results taken by the proposed distributional realization produced a small margin. Nevertheless, the
experimental results demonstrate that our method outperforms conventional deterministic models
even though the perturbation is deterministic. The results of both models were reported at 50-epochs
due to the fast convergence.

4.2 Perturbation Setup for 3D Point Clouds

To measure the robustness of the proposed and baseline methods for a 3D point cloud classification
task, we considered three possible perturbations.

• Random Sampling {T}. We randomly sampled 1024T -number points, where T = 0.5.

• Jitter {ε}. We added Gaussian noises to every points with zero mean and a covariance εId,
where ε1 = 0.35, ε2 = 0.7 and ε3 = 1.0.

• Random Rotation {θ}. Unlike for the 2D images, we considered geometric random
rotations centered at the origin with an angle θ = 0.5π.

• Random Scaling {s}. We randomly scaled the geometric coordinates (sX, sY, sZ), s ∼
Unif [0, 1000] of each points.

Perturbed samples are presented in Table 2.

4.3 Network Architectures

Our method does not use any prior information during training to identify primitive objects in datasets.
Therefore, in the presence of severe perturbations, convolutional blocks act on each pixel or point of
an object separately to prevent undesirable interference between pixels or points. This procedure can
be implemented using the Conv1d with a kernel size of 1. Each block has the following series of
layers:

[Conv1d→ InstanceNorm1d→ ReLU] (53)

The last dimension is set to 128. For image classification, we used two Conv2d layers and seven
convolutional blocks in (53). For point-cloud classification, we used 14 convolutional blocks. The
adversarial network g was composed of a Conv1D layer and FC layer in the following arrangement:
[Conv1d(128) → ReLU → FC(1024, 1)]. For the baseline models, we used ResNet18 and
DenseNet121.
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5 Ablation Study: Perturbation Norm

Table 1: Perturbation Norm of a 2D Image The norm is set to p = 1, 2,∞. The first row lists the
accuracies for different perturbation settings. The worst classification result is highlighted in red.
The second row lists the average pixel-wise Lp distances between original and perturbed images.
The result with p =∞ is scaled by 10−3. third row lists the mean differences between images. The
strongest perturbation is presented in bold font.

Perturbations {e} {θ2, sc, sh, ε} {θ2, cc} {θ2, cc2}

Samples

DenseNet 86.6 75.9 78.9 74.8 ↓
DeepWDC 95.9 93.0 92.7 87.7 ↓

EµLp(I − Iε) .123/.003/1.0 .371/.009/2.20 ↑ .202/.005/.076 .219/.005/.074
|EµI − EµεIε| ≈ 0 .214 ↑ .009 .013

Table 2: Perturbation Norm of a3D Point Cloud The norm is set to p = 1, 2,∞. The first row lists
the accuracies for different perturbation settings. The worst classification result is highlighted in red.
The second row lists the average point-wise Lp distances between original and perturbed images.
The third row lists the mean differences between images. The strongest perturbation is presented in
bold font.

Perturbations Original {T, s, ε} {T, s, ε2} {T, s, ε3}

Samples

DGCNN − 83.6 68.0 54.8 ↓
DeepWDC − 94.8 85.3 71.9 ↓

EµLp(I − Iε) − .67K/14.57/2.43 ↑ .76K/16.80/3.06 .87K/19.57/3.72 ↑
|EµI − EµεIε| − .022 .041 .251 ↑

Because our perturbation setup is different from those used in other methods for generating adversarial
samples, it is desirable to calculate the Lp distance for each perturbed image. To calculate the average
Lp distance between original and perturbed data in a data space, we calculate the perturbation norm
as follows:

EI∼µLp(I − Iε) =
1

NHW

N∑
n=1

(
HW∑
l=1

∣∣In,l − Iεn,l∣∣p
) 1
p

, p <∞. (54)

If p =∞, then |Il−Iεl | is replaced with maxl |Il−Iεl |. The results of these calculations are presented
in Tables 1 and 2. In a 2D classification task, Table 1 indicates that a large Lp distance in the pixel
space does not necessarily yield inaccurate results for different types of perturbations. For example,
the perturbation {θ, cc2} yields the lowest accuracy for both the baseline methods and our method
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even though its perturbation norm is not the largest due to the dummy Gaussian noises. To clarify the
effect of various severe stochastic perturbations, we transformed primitive data using basic image
(point-cloud) random transformations including rotation, scaling, sheering, and cropping, which are
common in real-world environments.
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