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1 Mathematical Backgrounds

1.1 Markov Diffusion Semi-group

In this section, we introduce definitions and propositions that are used for proofs hereafter.

Definition 1. The Markov semigroup (P,)>o in R acting on a function f € CS° is defined as
follows:

r) = / F(@)pe(z, da), 0

where p(x,dz") is called a transition kernel and is a probability measure for all x and t > 0.

Definition 2. (Diffusion Operator) Given a Markov semi-group P; at time t, the diffusion operator
(i.e., infinitesimal generator) L of P, is defined as

Loly) = limy  (Pgly Z ay 5.5 ZAZ @
Ydj

where B and A are matrix and vector—valued measurable functions, respectively; B denotes the
(i, j)-th function of B; A* denotes the i-th component function of A.

Definition 3. (Diffusion carre du champ) Let f,g € C§°. Then, we define a bilinear form I, in
Cg° x C§° as

Fc<f>g) = %[[’Fcfl(fg) - Fcfl(f‘c.g) - Fcfl(g'cf)]’ (3)
forc> 1.

We denote I'(f) = T'(f, f). The bilinear form I" can be considered a generalization of the integration
by parts formula, where [ fLg + I'(f)d¢ = 0 for the invariant measure & of L.

Definition 4. (Relative Fisher Information) For ' defined earlier, the relative Fisher information of
vy with respect to N, is defined as I(1|Ns) = [ Pilq]'T'(P:[q])dNs.

Definition 5. (Curvature-Dimension condition) We say that infinitesimal generator L induces the
CD(p, o0) curvature-dimension condition if it satisfies T1(f) < pU'a(f) for all f € C§°.

Example. (Multivariate Gaussian distribution)

Because our diffusion operator generates an Ornstein-Uhlenbeck semi-group, the curvature-dimension
condition can be explicitly calculated. Through simple calculations, the first order (¢ = 1) diffusion
carré du champ is induced follows:

2
Ii(f) = (IVA"5v5)° @
Similarly, the second order (¢ = 2) diffusion carré du champ is calculated as follows:

Do) = 5 [£(T1(f) = 28 (£, £(7)]

=T ([2V2£]") + (IVA729)” = Tr ([292f]°) + 10 (1), ”
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for arbitrary f € C§°. While Tr ([ZV2 f] 2) is non-negative, I'y < I'y, and our diffusion operator

L induces the C'D(1, 00) curvature-dimension condition. Therefore, we always set p = 1 in this
paper. In [4]], other types of diffusion operators are considered including Gamma distributions.

Proposition 1. (Decay of Fisher information along a Markov semigroup [1]) If we assume the
curvature-dimension condition CD(p, o0), then I(vg 1| Ns) < e 2P T (v |Ny).

Proposition [T]demonstrates the exponential decay of Fisher information if the curvature-dimension
condition C'D(1, c0) is satisfied. This property will play a central role in proving Proposition

1.2 Riemannian Diffusion £,

In the previous section, we discussed the connection between the diffusion operator and Wasserstein
distance in Proposition [2]and examined the basic and well-known properties of Markov semi-groups.
In this section, we investigate the geometric implications of £. Let (R, ) denote a Riemannian
manifold equipped with a flat (constant) metric tensor G, which is defined as the inverse of the

covariance matrix ¥ € Sym‘j_. We consider the Riemannian diffusion £, for this manifold as
follows:

Ly = Ay —Vglog(ps), (6)
where A, and V, denote the Laplace-Beltrami operator and Riemannian gradient with a flat metric
tensor G = 3, respectively. We define the probability measure v as absolutely continuous with
respect to the Riemannian Lebesgue measure v < mg with a density ps;(z) = e~ Y(®) such that

dv = psdmg, where U is twice differentiable. Because our metric tensor is flat, we can easily
calculate the Riemannian diffusion operator as follows:

ng = Agf+vg log(ps) f
= (det(G))7* Y0, ((det(G))% g0, f) + g"0;10g(ps)d; f
4,J

(7
- 59,0, iijZa, =N "%..6.0; 9.
97 0;0;f +g i f ij0i0; f + y;0; f
5] J

i b=
=Tr(EV23f)+ XTVf=Lf, [eCFRY),

where we denote {g* gix, }ix = GG = £7'% = I The final form is equivalent to (1) in the main
paper, which implies that the distance in the feature space can be recognized as flat Riemannian
distance (i.e., Mahalanobis distance).

2 Notations and Assumptions

The I-th component of function g is denoted as g; : R — R. C,(R%) denotes the set of continuous
and bounded functions in R?, and C§°(R?) denotes the set of co-class functions with compact
support in R?. The L,-norm of function f € L,(v) is denoted as 1flla, = (f |f|*dv)=. The
Euclidean L, -norm of vector v € R? is denoted as ||v|,. Let dy be a Lebesgue measure and N, be

a non-degenerate centered Gaussian measure with density py(z) = (2w‘%det(2)‘1> e~ T e,

where dNs; = pndr and X is a (d X d) covariance matrix. The n-th label measure at the k-th iteration
is denoted as vy, ,, = fzg“ [tn]-

Definition 6. (2-Wasserstein space). Let P(R?) be a space of probability measures. Then, its
subspace, v € Py(R?), which satisfies ma(v) = [, d(yo,y)*dv < oo for every yo € RY, is called
the 2-Wasserstein space.

According to the definition, we can get the following inclusion: P(R?) C P»(R?) C P, ,(R%). In

the 2-Wasserstein space, a metric ball is denoted as Byy, (Ns, r) = {v;dY (v, Nx) < r} with radius
r centered at Ns..

We make the following assumptions:



* H1. Each parameterized push-forward measure v,, = fzé [4r] is absolutely continuous
with respect to the Gaussian measure Ny, , (i.e.,v,, < N ). Therefore, each measure
vy, has a density ¢, such that dv,, = ¢,dNs _, the existence of which is assured by the
Radon-Nikodym theorem.

* H2. There is a monotone-decreasing sequence {0y }7° 1 (i-€.,0%.n > Okt1,0, Yk € NT)
such that dy, = supgecee [ [£9(y)| ar,ndN, (y) < oo, and a large constant Ko € N*
satisfying 05, = 0, if k > Ko, Vn =0,--- , N, where ¢ ,, denotes the density of the n-th
label measure vy, 5, at the k-th sequence.

* H3. Each inference (push-forward) measure vy ,, = qk,ndj\fgn at the k-th sequence is
centered (i.e.,[Ey,, , [y] = 0).

» H4. The second central moment of push-forward measures are bounded as my (v ,,) =
I]Rd d(yo, y)zdukyn < oo for every yg € R¢. In other words, V,n 1s assume to be an element
of Py (IR?) according to the definition of the 2-Wasserstein space.

The second assumption H2 implies that we can always find an optimal solution for the proposed
objective function, when there is an index K such that d, converges to zero. For our inference
network f, we normalize every convolutional features such that E[f*(z,,)] = 0 to satisfy H3. The
other mild assumptions are required for proofs.

Remark. It should be noted if w, and 7, (i.e., target measures) are Dirac-delta measures
(i.e., fn, = 0z, , Un = dy, ), then the corresponding Wasserstein distance W ( f4 [itn], Pn) is equiva-
lentto dg(f(xy), §n). Therefore, our method can be considered a generalized version of conventional
distance-based classification models.

2.1 Neural Network As a Member of C§°

In this paper, the proposed neural network g is assumed to be a member of C§°, which seems
unnatural because of the non-differentiability of the neural network for a finite number of points
where the non-differentiability is induced by activation units such as ReLU. However, it can be
easily shown that there is always some smooth function g, € C§° such that ||gs — g|| = 0. Let a

perturbed dataset lie in a compact subset 2 C R?, and let the inference network as f : Q C R? — R?
map perturbed data points into a d-dimensional feature space and supp(f) = 2. To guarantee the
smoothness of neural network ¢ in a global sense, we convolve it with a mollifier function . First,
we introduce the function:

Yelv) = - vlv/e), ®

_ 1
where 1 is a standard mollifier function ¢)(y) = e *~1¥I2 with ¢ > 0 and the constant C, = m.

For the next step, we define a compactly supported neural network ¢ as follows:

2 2
o) = {ynw lylly, <M =sup, |23,

2 9
0 ||yH2,D > M’

where Z € f(Q) is a perturbed random vector related to the probability measure fx [u]. Then, § is
compactly supported by an Lo-ball with radius M, because perturbed points lie in some compact set

Q Cc R?and Z € f(Q) is also compact in R?. Finally, we take convolution ). in (§) with g in @) to
induce smoothness of the neural network g as follows:

gs(y) = 9% () = / ety — o)dv(y). (10)

The smoothness of g, (i.e.,g € C§°) can be easily verified, because 0,9 = § * 0;1., Vi. By the
Young’s inequality, the following inequality holds:

1o Sl 19elly, = 119l (1D

195111, = 11g % e



where [|§ — § ||, converges to zero, as € approaches zero. Let B(M ) be an Ly-ball with radius
M. Then, g|p(ar) = §lB(ary = G % Vel B(ar) = 9s|B(ar) for a sufficiently small e, regardless of f.

Remark. In the analysis presented in [2], mathematical assumptions required for neural networks are
discussed. Similarly, this section is designed to discuss and deliver the proper mathematical setting
for the assumption used in the main paper (i.e., a neural network is a member of C§°).

3 Proofs
In this section, we prove the propositions introduced in the main paper.

3.1 Proof of Proposition 2

Proposition 2. (Descending of the Wasserstein Ambiguity Set) Let {vi} be a sequence of prob-

ability measures satisfying assumptions. Then, v, € Byw,(Nx,02), which is equivalent to
1

Wa (v, Nxy) < 07 and Wa(vi,, Nx) — 0 as k — oo.

Proof. We define the Markov semi-group P; for the auxiliary variable ¢, where lim; .o+ E,, [P f] =
E,, [f]. We assume that v}, ; is absolutely continuous with respect to the centered Gaussian measure
Ny, (i.e., vy < Ny;). Based on this assumption, we let gy, ; be the corresponding density (i.e., dvy ; =
qx.+tdNs). Then, the subscript ¢ is interpreted as the path index of the probability measure from
Vk,t=0 t0 vy ¢, where the path is defined as the solution of the continuity equation in a distributional
sense as follows:

dpt =V - (pve), v =Vlogqe,s. (12)
Because the density of the Gaussian measure Ny has the form of %e’"(“"), where n(z) =

12T% 712, V2n(xz) > 0 and Z is a normalization constant, we can simply use the results pre-
sented in [5]. By integrating both sides of the inequality in (Lemma 2, [5]]) with respect to the
auxiliary variable ¢ € (0, 00), we can derive the following inequality:

> d
Wa (v, N z/ — Wsy(vg, v dt</ Vgt Ns) (13)
2 (Vk, Nx) Ve Ve \/ (V| Ns)

In the inequality above, we replace the Fisher information with the diffusion generator £ as follows:

Wa (v, Ny g/m I(vg 4 |Nx)dt
2 (Vs N) ; V(e V)
:/ \//Pt_lqu(Ptqk)szdt—/ \//[:(— IOgPtqk)dl/kﬂgdt.
0 0

The second equality above is derived using the property of the bilinear operator I with respect to
diffusion operator £ which is defined as follows:

/Pt_1QkF(PtQk)dNE = —/E(IOgPtQk)deNz = /E(_IOgPtQk)de,t >0. (15

(14)

We denote |g| = g™ for simplicity. According to Proposition we can relate vy, ; to its initial term
Vi, 1=0 as follows:

/ \//5(—10gpt%)dl/k,tdt S/ \/6_2”t/5(—10gPOQk)de,t—odt
0

e~2rt sup E*gq dNxdt
/ \/ gecoo S (16)

:/ Ve 2rtdt | sup /ﬁ*gdv;€ = p_ldé.
0 geCge

Diffusion invariance term




The second inequality is naturally induced, because the proposed objective function is defined to
select the maximal elements over the set of functions g € C§°, and Lg < Ltg. O

Remark. In this paper, we only focused the invariance property of diffusion-type Fokker-Planck
equation and their diffusion semi-group (Ornstein-Uhlenbeck) which induces curvature-dimension
constant to be p = 1. Thus, the geometric-characteristics of diffusion semi-group is not highlighted in
the main paper. But the original results developed in the paper [3]] can be generalized to our method.
Specifically, the target measure © in our method can be generalized to much general form such as a
Gibbs measure having density di = %e“l’(“”)da; for arbitrary smooth V. In this case, the diffusion
semi-group can be designed to induce larger curvature-dimension constant p > 1 by considering
other types of WU to give finer radius of Wasserstein ambiguity set for classification.

3.2 Proof of Proposition 3

Proposition 3. (Exponential Decay of Wasserstein Distance) Let us define the sub-sequence (k) C
N such that (k) = {k'| & ([ ¢dlvir — vo] + €(K')) < 80,k <K'}, where ¢ € Cy, and let |e(k)|
be a dual error satisfying |e(k)| — 0 as k — oo. In this case, the following inequality holds:
dYY (s, , N5) < \/Soe2™ + €(7y), where Ty, denotes the element of T(k).

Proof. Tt should be note that 7(k) C 7(k’) for any k < k' because we define ), as monotonically
decreasing. This statement is trivial if we show the inequality.

The proof consists of three steps. First, we derive the inequality E,, { < E¢, ¢ + €(k) from the
assumptions for v defined under sub-sequence conditions.

First step: Let &, be another auxiliary probability measure such that £, < Ny and d¢;, = PrqodNs,
and let £ ¢ = |£(|. Then, the inequality E,, ¢ < E¢, ¢ + €(k) is written as follows:

/CdeNz < /Cpqusz+€(k) :/PquOdNE+€(k)
k
< dNs P.LT dsdNs k
< [ caninis + | / C(y)ao(y)dsdNs(y) + e(k) (17)

= [can+ | ' [ P ctn) ds+ .

The first equality is induced by the properties of diffusion-type Markov semi-groups
(i.e., [1¢(y)Prgo — qoPrC(y)]dNx(y) = 0). Because L1 is non-negative and measurable, we
can apply Tonelli’s theorem to the second line, which creates an inequality. According to assumption
H2, we can derive the following inequality:

/ P.LYC(y) = / / crc (e + V- e BSE:) du(y) dNe(z) <6 ()

<sup, [ L+ gdvo=do

Therefore, we obtain the following inequality:
]EVR-, [C] - EVU [d - G(k) < k50 (19)

By rearranging both sides of this expression and rescaling the error term (k) — —% we obtain
the following inequality:

%/Cd[l/k — 1| = %/C(Qk — qo)dNx + €(k) < . (20)

Therefore, E,, ¢ < E¢, ¢ + €(k) is equivalent to the assumptions for v, , 7 € T(k).

Second step: We use the Kantorovich duality of the Hopf-Lax semi-group to induce the inequality of
the Wasserstein distances. Prior to presenting the second step of the proof, we introduce the following
proposition.

'Here, we make an assumption for ¢,

e(k)
B 0.



Proposition A. (Kantorovich duality and Hopf-Lax semi-group, [6)]) For the bounded continuous
function f € Cy and probability measure vy, , vy, satisfying assumption H4, the following equality
holds:

%WQ(VTH?VW«Q = Sup |:/H1<dl/n1 _/Cdynz]a (21)

CeCh
where Hy(z) = inf, {((y) + 5d*(z,y)} is called a Hopf-Lax semi-group.

Now we continue with the second step. By replacing ¢ — H;¢ and subtracting [ (N from both
sides, we get

/ HyCardNs — / CN, < / HyCPogodNs — / CN + e(k). 22)

Calculating sup, for both sides yields the following inequality according to Proposition [A] . and
assumption H4 (finite second moments),

Wi vk, Nt) < W3 (i, Nis) + e(k). (23)

Third step: For the final step, we demonstrate the exponential decay of the Wasserstein distance.

/ngpkqod/\/z —/Csz < /PkHquOsz —/CdNE
S/HﬁpkpkqudNE*/CdNE (24)

< e 72k [/ HlezkakCQOdNE - /€2kadeNZ} )

where the first inequality is induced by the commutation properties of P, and H, and the second
inequality is induced by the homogeneity of the Hopf-lax semi-group, denoted as H 2,x P,( =
e~2PK H1e?Pk Py¢. The third inequality is induced as [ P.(dNs = [ (dNs because the target
measure N is a steady-state measure of limy_.o, Pi( (invariant measure w.r.t. P;). According to
the arbitrariness of P, € C§°, we can obtain the following inequality by calculating sup,, for both
sides of the inequality above:

LHS —> sup [ / HyCdpu — / Csz} = IR, ), (25)
¢

and
—2pk

W22(1/07N2)7 (26)

RHS — ¢ 2/F Sup U HiC*dyy — /g dNE] =
where (* = e2°* P,.C. Therefore, based on the results of the previous proposition, we have

W2(ve, Nx) < e 2PPW2(1, Nx) < p~2e7 275, (27)

By combining the above inequality with 23) and setting k = 74, € 7(k), we obtain the following
inequality:

Wil Nis) < v/p~Z00e27m T e() 8)

The proof is completed by setting p = 1.

3.3 Proofs of Perturbation Analysis

Proposition 4. (Wasserstein Perturbation) Let v;, = (Id + ch) vy, be a perturbed measure by
ch. Then, there are some numerical constants 0 < KJ%, KkS® < 0o such that the mean radius of the
perturbed Wasserstein ambiguity set v € By, (N, r') is bonded as follows:

EWs(vi,Ng) < p* ( drikSPE[e] + (5k> . (29)



Proof. By the deﬁnition of the push-forward measure v°, we obtain the equality [ g(y)dv® =

[ 9(y+eh(y))dv(y) = [ gndv(y) with g € C§°. By the definition of the diffusion generator £, we
obtain followmgs

sup / LT g(y)dv (y) = sup / L g(y + eh(y))dv(y)

= sup/ I Tr(2V2g, — [y + eh(y)]" Vgn| dv(y)

<sw | [ Lanwavis) + = [ 107000 dvto)

d
< sup/£+9(y)d1/(y) +€Sup/z |hi0' g p|dv,

where g, (y) = g(y + €h(y)). For an arbitrary a, b > 0, the inequality |b| — |a| < |a —b] < C'is
satisfied and sup |a| — sup |b| < sup(|a — b]) < sup C. By calculating the supremum of both sides
of the inequality using a non-negative perturbation function & > 0 (i.e., v and the test function lying
in C§°), the following expressions are induced:

d d d
asup/z |hi0' gip|dv < SSuPZ/ |hi® gni| dv < esupz hilly, . ||8i9h,i||b2’,,

d
< elh* Ny, psup Y 109l < de By, Sup max 10°9ill,,, .-

%

(30)

< dsnll” max Haigi
K2

||b2,1/5’

€1V

where [|2;l,, , < [[R;ll,, , = max; [|hi]l,, , = #3'. The second inequality is induced by Holder’s

inequality with the conjugates bl_1 + b5 ! — 1. Because we parameterize the test function g using the
smoothed function introduced in Section 2.1} we consider smoothed neural networks as members of
the set of functions A, = {gy : g}Z(y) = g% (y) * ¥e(y), Ey, [|[Lgy|] < 0k, 9 € R e > 0} C Cg°.

It should be noted that for any member g, € Ay, 9'gy; = gi * 0" € C§°. The network
capacity of g is sufficiently large (i.e., F') to ensure that A; completely contains the set of functions
B = {¢ : E, [L[-logd]] < 6|} C C5°, where [¢dv, = 1,6 > 0 a.e. [vg]. In this case,
B C A, C C§°, and the last inequality in Propositionis valid. Additionally, supg x < sup A, X
for any x € C§°. Therefore,

o5 73
0 < der?? sup (/|(“)ng |2 dv® ) ’ < der?* sup </|8]gw |2 dve ) ’
geA g

‘ B (32)
= derb! sup (/ |0]gz’j|b2d1/5> ’

< dekikSS,

where sup ||8"g¢Hb2 e < sup ||8Jgj ||b2 e = supmax; ||5' 91”1) = 112 . The last inequality is

induced by setting b; = 1, by = oco. Now, we rearrange the 1nequa11t1es in (32) and (30) and consider
the last inequality developed in Proposition [2]

E-Ws (v, Nx) < EE/ Ve 2rtdty /sup/ﬁﬂbduf < E]EE <\/sup /£+¢du+ d&n%ﬁ%")
0 P pEA,

< p By, (\/ds/@%ﬁ? + 6k) <pt ( drikSPE[e] + 6k> .
(33)

It should be noted that in the second inequality, the supremum is calculated for set A,, which still
produces the same result as C§° according to the assumption that B C A, C C§°. The last inequality




holds according to Jensen’s inequality for concave square root functions. The proof is completed by
rewriting k1, K5° as k1, ko and setting p = 1. O

The next corollary shows the extension of Proposition [3|to perturbed measures.

Corollary A. Let 7, € 7(k) be the sub-sequence defined in Pr0p0siti0nand let v7, be a perturbed
measure with respect to Ty,. Then,

Tk’

1
E W (V5 N5 < ;efﬂk\/dﬁ%ngome] + Go + e(k). (34)

Proof. This inequality is trivial to obtain by combining the results obtained in Propositions [3]and ]

1 1
EWb (05, No) < e P Wh(0f, M) < ;e*ﬂ’“\/d@ngoms] Yoo +e(k).  (35)

T

O

Corollary 1. (Perturbed Binary Classification.) Let ¥ and ¥ _ be a r-rank SPD matrices, and
e ~ p. = exp(b) be an exponential distribution with parameter b. Then, the probability of V*
classified as positive labels is bounded as follows:

Plels(v)=1]<1—e¢" TR 1R , (36)

where NI and \

ax max denote maximum eigenvalues of matrices X and ¥ _, respectively.

Proof. For binary classification, we first define the decision boundary in the 2-Wasserstein distance.
D = {v° € Po;Wa(v°, Nx, ) = Wa (v, Nx_)}. 37

Suppose the probability measures § € D, Np satisfy Np = arg ming Wa(Nx, , §). If the following
inequality holds for any perturbed measure v°, then v° is classified as positive label.

War(Ng, 1) < H}Einwz(/\/2+7f) =Wh(Ns,,Np) (33)

As our target measure Ny, is an element of the Wasserstein Gaussian subspace W, 4 and the
subspace is totally geodesic, the 2-Wasserstein distance W, (Nx_ , £) is minimized only when Np is
member of W, 4 such that NbD = 0.5, V¢ is geodesic connecting Ny +»and N .- Thus, covariance
matrix D have unique form D = 0.25 (I, 4+ T) X, (I + T'), where matrix T is a solution of the
Riccati equation 73 T" = 3 _. In this case, the boundary of Wasserstein ambiguity set for »* exactly
touches single point of the subset D = D NPy ; = {Nx, } to make v classified as positive label.
In this light of consideration, the following condition is required:

1
Wa(V5,Nx, ) < VVdkikoe + 6 < Wa(v0,7.5) = §W2,g(NE+7NE,)a (39

where the label measure v satisfies v° € Byy, (v/dk1k2¢ + 0)) by the assumption (H2), and
Proposition[d] By rearranging the inequality above, we obtain followings:

W22,g(N2+>N27) — 40y, < r()\;;ax + )‘;za:v) — 405,

40
- 4dl€1 Ko - 4dl€1 Ko ( )
The inequality is induced by r-rank condition of covariance matrices as follows:

Wag(No i Nl ) = Tr(S4 + 32 = 2¢/3480) <r(Mlap + Mnax)- (41)

For the exponential distribution € ~ p. = exp(b), we can obtain the probability inequality.

b Amaz) — 40 _brOhiae A man) =408k
Plels(v®) = 1] =P |e < Fmas + Amaz) =40k | TR L (42)
4dl€1 Ko

O



Proposition 5. (Markov Inequality for Perturbation Functions) Let Y}, ~ vy denote the Markov-
process related to the Markov semi-group and its corresponding law vy. For the l-th component of

the perturbation function h; € L*(vy,), we denote T (y) = ||h(y)\|§ < 00. Then, there are numerical
constants 0 < kg, kg < 00 such that

a?

v (By[T(Y3)] 2 a) < (dria + ko), (43)
1 2

where C(k) = e2(<** -1 2 dar(y) = VAT (y)2h(y), and y € R denotes the Mahalanobis norm
of h(y). Furthermore, limy,_, o, vi(E[T(Yy)] > a) — a726252dn3n4.

Proof. We write the Markov inequality for the Markov semi-group P,T" as follows:

1 a
ve(PT > a) < - (PT(y))" dvi(y)
@~ J{y;PT(y)>a}

- L (BT ()" 1(2)d[vi () ® vi(2)] (44)
% J{y;P,T(y)>a}xRe
<L (PT(y)" 1(2)d[e(y) © v (2)],

a® JrdyRrd

where the equality holds according to the definition of the product measure. For the rest of this proof,
we omit the integral area R4 x R, Tt should be noted that P, T(y) > 0forall t,y. Now, we introduce
another useful inequality:

Proposition B. (Harnack’s inequality [7]) If the curvature condition C'D(p, c0) holds, then the
following inequality holds:

apd2 (.9)

(Pef)" () < Pu(f*)(y)e-D0m=n, (45)

where dg is the Riemannian distance, f is a positive measurable function in R?, and every x,1y €
R% o> 1,t > 0.

The first inequality is induced by Proposition asT, P,T > 0ae. [
apdZ (y,2)
[ 1@ @ i) < [ PE@e™ T 1 dn ) @ ()
apdZ, (y,y'+eh(y'))
N /Pt(Ta)(y)l(y’)e 200 d[vy (y) @ vi(y')]

< T | BT, L,

‘ed%(y,y/-i-sh(y’))

by Vi QU

(46)

where the second inequality is induced because E, .[P.T(y)1(z)] = E,[PT(y)|Ey[1(y" +
eh(y'))] = E, [P, T (y)] and the H6lder’s inequality with constants b,,,, b,, satisfies b,,' + b, = 1.
As we discuss in Section [I.2] our diffusion operator £ can be considered as the Riemannian
diffusion on a flat manifold (Rd, dg) with the Mahalanobis distance dg, which has the form of
da(y,y') = /(y—v)TE"L(y — ') for y,y’ € RZ Due to the flatness of the manifold, we can
easily induce the following equality:

Hedzc(yw’%h(y’)) — o2 |||edE(0.w) _lev"sY 4= || e (nw).hy")
bn7V;§ b Vi bn;”ﬁ bnvl’i
< 2 |||ede(0.w) ey =y + 2 |46 (0.n(y)
o bn, Vi b, V7 bn, Vi
2 T ’ 2 2
< 62 edG(O,y) — Y Sy + 625 Iig" s 625 Iﬁ:g”,
by, vk bn,llz
47)

where the equality holds according to simple calculations and the inequality is induced by the
properties of the distance dZ,(0, h(y')) + d%(h(y),0) > d%(h(y), h(y’)). For a large perturbation



£ > /2, the first term on the right side of @7) is negligible, compared to second term. Based on

. 2 ’ 2
the assumption of a constant x5, we can conclude that sup,, Hedg(y,y +eh(y") < €2 kY for

bnv’/k

a large perturbation. Next, we decompose f P, T*dvy, which is related to the diffusion sequence §j,
defined earlier. According to the definition of the Markov semi-group for this type of diffusion, the
first equality holds:

/PtT“duk :/T“dyk // P, LT (y)dsdvy(y)
/ Ty / / P, LT (3)| dsdve(y) 48)
:/T“duk( )+ /0 {/PSE+TO‘( )dvg(y )} ds,

where LTT*(y) = |LT“(y)| is non-negative and measurable. The second equality is induced
by Tonelli’s theorem. By applying Tonelli’s theorem again to the last term in {8), we obtain the
following equality:

t t
/ /PS£+Ta(y)ds:/ //£+Ta e y+v1—e~ 252?2) dvy(y) dNx(z)ds < tdy.
0 0

<sup, J Lt gdvp=3y

(49)
Then, we combine the inequalities of (@9)) and (@8)). Finally, we obtain the following inequality:

BTy, < NT My, + t0k- (50)

Next, we set the constants b,, = 1, b, = 0o, p = 1, and @ = 2 in (@6). By combining the inequalities
in @6) and (50), we obtain the followings:

1 __ ap
Ve(PeT > a) < —5 e 5021 2" 1291, T + kdy,)
¢ (51)

1 L 492
< 726(6%_1) H?(dl@l + kék),

a
where the last inequality is induced by the following inequality:

E, o, [T / Ih()|I2 di(y / Zhl Jdny) < dwax 1], < dss, (52

where max; ||h§ || i < k4. Because we assume that the density of vy, follows the path related to the
Wk

diffusion semi-group generated by £, we can replace the auxiliary variable ¢ with k € N . It should
be noted that v, (P,T(y) > a) = vi(E,[T(Yx)|Yo = y] > a). The last statement holds because

limg 00 C(k) = 6252, and dy vanishes for large values of k as d;~ x, = 0 according to assumption
H2. O]

4 Implementation Details

4.1 Perturbation Setup for 2D Images

To measure the robustness of the proposed and baseline methods on a 2D image classification task,
we considered three possible perturbations.

* Local Shuffle {e}. For this perturbation, we set a local grid and shuffle each pixel in the grid.
This perturbation was designed to verify learnability when the connectivity of pixels is locally
collapsed, but the distribution of pixels is preserved. For example, E,[I] — E,-[I°] ~ 0
when the average pixel-wise L, norm is large.

* Downscaling, Rotation, and Sheering {6, sc, sh, e}. This perturbation combines three
possible sub-perturbations, namely, down scaling, rotation, and sheering. In the transformed
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region, we added Gaussian noises with zero mean and a covariance el;, where e = 0.5.
Although the global information from each original image is still valid in each perturbed
image, we observed a significant performance drop for the conventional CNN-based base-
lines (75.9% accuracy), whereas the proposed method yielded accurate classification results
(93.0% accuracy).

* Rotation and Cropping {6, cc}. This perturbation combines cropping and rotation. The
original images were first randomly rotated by angles 8 = 27 and 6> = 7, and then cropped
to sizes of cc = (24, 24), cco = (16, 16). Finally, the cropped images were rescaled to their
original size (32, 32). In contrast to the second perturbation, global information can be lost
as a result of this perturbation because the images are cropped.

We used the official codes provided in [Torchvision.transforms] for scaling, cropping, rotation,
down-scaling, and sheering. Perturbed samples are presented in Table [T}

The benchmark dataset CIFAR10-C [3]] consists of artificially corrupted images with 19 different
distortion operations such as ’jpeg compression’, ‘'motion blur’, ’contrast’, and 'pixelate’. We ran-
domly selected each data from 10K numbers of most severe perturbed samples (severity = 5) for
both training and test data. Unfortunately, each image can only possess a finite number of pre-fixed
deterministic variations, which induces low randomness of perturbed objects. Due to the determin-
istic property of dataset, theoretical advantages of our method were limited and the experimental
results taken by the proposed distributional realization produced a small margin. Nevertheless, the
experimental results demonstrate that our method outperforms conventional deterministic models
even though the perturbation is deterministic. The results of both models were reported at 50-epochs
due to the fast convergence.

4.2 Perturbation Setup for 3D Point Clouds

To measure the robustness of the proposed and baseline methods for a 3D point cloud classification
task, we considered three possible perturbations.

* Random Sampling {7T"}. We randomly sampled 10247 -number points, where 7' = 0.5.

« Jitter {e}. We added Gaussian noises to every points with zero mean and a covariance €I,
where €1 = 0.35,¢5 = 0.7 and €3 = 1.0.

* Random Rotation {#}. Unlike for the 2D images, we considered geometric random
rotations centered at the origin with an angle 6 = 0.57.

* Random Scaling {s}. We randomly scaled the geometric coordinates (sX, sY, sZ), s ~
Unif[0, 1000] of each points.

Perturbed samples are presented in Table

4.3 Network Architectures

Our method does not use any prior information during training to identify primitive objects in datasets.
Therefore, in the presence of severe perturbations, convolutional blocks act on each pixel or point of
an object separately to prevent undesirable interference between pixels or points. This procedure can
be implemented using the Convld with a kernel size of 1. Each block has the following series of
layers:

[Convld — InstanceNormld — ReLU] (53)

The last dimension is set to 128. For image classification, we used two Conv2d layers and seven
convolutional blocks in @I) For point-cloud classification, we used 14 convolutional blocks. The
adversarial network g was composed of a Conv1D layer and FC layer in the following arrangement:
[Conv1d(128) — ReLU — FC(1024,1)]. For the baseline models, we used ResNet18 and
DenseNet121.
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Torchvision.transforms

S Ablation Study: Perturbation Norm

Table 1: Perturbation Norm of a 2D Image The norm is set to p = 1, 2, co. The first row lists the
accuracies for different perturbation settings. The worst classification result is highlighted in red.
The second row lists the average pixel-wise L,, distances between original and perturbed images.
The result with p = oo is scaled by 1073, third row lists the mean differences between images. The
strongest perturbation is presented in bold font.

Perturbations {e} {6, sc, sh, e} {6, cc} {62, cca}

Samples
DenseNet 86.6 75.9 78.9 74.8 |
DeepWDC 95.9 93.0 92.7 87.7]
E,L,(I —I¢) .123/.003/1.0 .371/.009/2.201 .202/.005/.076 .219/.005/.074
[Eul —E,-I°| ~ 0 214 1 .009 .013

Table 2: Perturbation Norm of a3D Point Cloud The norm is set to p = 1, 2, co. The first row lists
the accuracies for different perturbation settings. The worst classification result is highlighted in red.
The second row lists the average point-wise L, distances between original and perturbed images.
The third row lists the mean differences between images. The strongest perturbation is presented in
bold font.

Perturbations Original {T, s, €} {T,s,e2} {T,s,e3}

Samples
DGCNN — 83.6 68.0 54.8 ]
DeepWDC — 94.8 85.3 719 |
E,L,(I —1I°) — 67K /14.57/2.43 1 .76K/16.80/3.06 .87TK/19.57/3.721
[Eul —E,-I°| — .022 .041 2511

Because our perturbation setup is different from those used in other methods for generating adversarial
samples, it is desirable to calculate the L,, distance for each perturbed image. To calculate the average
L, distance between original and perturbed data in a data space, we calculate the perturbation norm
as follows:

1
P

1 N HW
NHW Z (Z | Tns — Iﬁ,z|p> , p<oo. (54)
n=1 \I=1

If p = oo, then |I; — I} | is replaced with max; |I; — I |. The results of these calculations are presented
in Tables |I| andEl In a 2D classification task, TableElindicates that a large L, distance in the pixel
space does not necessarily yield inaccurate results for different types of perturbations. For example,
the perturbation {6, cco} yields the lowest accuracy for both the baseline methods and our method

By, Ly(I — I7) =
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even though its perturbation norm is not the largest due to the dummy Gaussian noises. To clarify the
effect of various severe stochastic perturbations, we transformed primitive data using basic image
(point-cloud) random transformations including rotation, scaling, sheering, and cropping, which are
common in real-world environments.
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