
Dear reviewers and area chairs,1

Thank you for the careful reading of our manuscript and for the helpful comments and suggestions. We will address all2

of the smaller suggestions for improving the next revision of the manuscript. Below, we respond to some of the more3

significant points the reviewers raised.4

Reviewer 1. . . . some details of the proofs are deferred to a full version . . .5

We apologize for not correctly uploading the full version of the paper as supplementary material as we had intended.6

The full version will be included with the final submission. At the bottom of this response, please find a proof of the7

unsubstantiated Proposition 18 (excerpted from the public full version).8

One question I had is whether the work of Feldman and Xiao 2015 isn’t also relevant around lines 52-58 . . .9

Feldman and Xiao’s result is indeed highly relevant to our discussion about private sample complexity vs. mistake10

bound. We will explain this in the next revision.11

Reviewer 2. The result, which the author describes as “barrier to barrier” is very theoretical and I’m not sure if12

NeurIPS is the best venue?13

The “barrier to a barrier” interpretation of our result places it in the context of an explicit question raised by prior work.14

Beyond this context, however, our result addresses one of the most basic questions about learning in two fundamental15

and well-studied models. We believe that this puts it in scope for a broad and inclusive NeurIPS community.16

There is an existing huge separation in terms of sample complexity, albeit for non-efficient algorithms. I’m wondering17

whether that example can be padded to make the algorithms “polynomial” time?18

The challenge is that known sample complexity separations hold for classes that do have efficient algorithms. One-19

dimensional thresholds over a domain of size d can be efficiently, privately PAC learned using ≈ log∗ d samples and20

efficiently online learned using log d samples (via binary search). Blum’s class does as the reviewer suggests, using21

cryptography to amplify the hardness of online learning thresholds while keeping PAC learning easy. Since private22

learning implies non-private learning, any way to obtain our result would imply Blum’s result that efficient non-private23

learning 6=⇒ efficient online learning; to our knowledge, Blum’s class is the simplest one that achieves this.24

Reviewer 3. There is a slight drawback, which is that the authors have omitted to submit the supplementary material.25

Please see our response to Reviewer 1 and the material at the bottom of this page.26

Perhaps breaking it into three parts (Gonen et al and what is uniform pure private learning, impossibility of efficient27

uniform pure-private learning, and relaxations that allow the reduction to be useful) would help.28

This is a great suggestion for improving the readability of this section and will be incorporated in the next revision.29

Proof of Proposition 18. Let t > 0. We will show that E[|h|] ≥ t. Let n be the number of samples used by L. LetHt30

be the set of all functions h : {0, 1}∗ → {0, 1} with description length |h| ≤ 2ent. Lemma 1 below shows that there31

exists a concept c ∈ C and a pair x, y such that c(x) = 1 and c(y) = 0 but h(x) = 0 or h(y) = 1 for every h ∈ Ht.32

Consider the distributionD that is uniform over (x, 1) and (y, 0). Accuracy of the learner requires that PrS′∼Dn [L(S′) /∈33

Ht] ≥ 1/2. Since any sample S′ can be obtained from S by changing at most n elements of S, pure differential privacy34

implies that Pr[L(S) /∈ Ht] ≥ e−n/2. Hence Eh←L(S)[|h|] ≥ 2ent · e−n/2 ≥ t as we wanted to show.35

Let S = {S1, . . . , Sn} be a collection of subsets of {0, 1}∗. We say that S generates another set T ⊆ {0, 1}∗ if for36

every pair x, y ∈ {0, 1}∗ with x ∈ T and y /∈ T , there exists i ∈ [n] such that x ∈ Si and y /∈ Si.37

Lemma 1. A collection S = {S1, . . . , Sn} generates at most 22
n

distinct sets T ⊆ {0, 1}∗.38

Proof. By doubling the size of S we may assume it is closed under complement, i.e., S ∈ S iff S ∈ S . Let us say that a39

set R ⊆ {0, 1}∗ is pairwise separated by S if for every pair x, y ∈ R, there exists i ∈ [n] such that x ∈ Si and y /∈ Si.40

Let r denote the maximum size of a set that is pairwise separated by S; by induction, r ≤ 2n−1. We will show that if41

T is generated by S, then determining the membership of each element of R in T completely determines the set T .42

Therefore, there are at most 2r ≤ 22
n−1

possible choices for T .43

To see this, suppose for the sake of contradiction that there are two sets T1, T2 that are generated by S for which44

T1 ∩ R = T2 ∩ R := I . Let z be an element on which T1, T2 disagree; say z ∈ T1 but z /∈ T2. We derive our45

contradiction by showing that R ∪ {z} is pairwise separated by S , contradicting the maximality of R. To do so, all we46

need to show is that for every y ∈ R, there exists Si such that z ∈ Si and y /∈ Si, and that there exists Sj such that47

z /∈ Sj and y ∈ Sj . If y ∈ I , we can take Si to be the set such that z /∈ Si and y ∈ Si as guaranteed by the fact that48

S generates T2. If y /∈ I , we can take Si to be the set such that z ∈ Si and y /∈ Si as guaranteed by the fact that S49

generates T1. A similar argument can be used to construct Sj .50


