Supplementary

A Language Modeling

We train our Transformer-XL models with a very similar setup to Dai et al. [6]. The dense model hyper-
parameters are listed in Table[4d] We train with a learning rate warmup for 4000 steps from le-7 up to a value of
2e-4 and then apply a cosine decay. For WikiText-103 and enwik8 our dense model uses the same specification
as the large Transformer-XL in Dai et al. [6], which has 285M parameter:

Enwik8 WikiText-103

num layers 24 18
Amodel 1024 1024
dsys 3072 4096
dembed 512 adaptive: [2]
tie input/output embeddings true tie head only: [2]
num heads 8 16
dropout 0.05-0.2 0.05-0.2
learning rate 2e-4 2e-4
grad clip by global norm 0.25 0.25
window size 768 512
train mem size 2304 768
eval mem size 5000 2000
num params 69M 285M

Table 4: Transformer-XL baseline hyper-parameters.

We further compare to a magnitude pruning baseline on enwik8. We found we were unable to implement
this with the large model due to the additional memory requirements. Instead we compare Top-KAST and
pruning on a smaller version of the Transformer-XL model of 69M parameters. This has identical training
and hyper-parameters to below with the exception of dmoqet = 512, dfy = 1536 and numpeads = 8. We
summarise the results below. We find that pruning slightly outperforms Top-KAST when Top-KAST is allowed
a dense backward (albeit the forward pass is also sparse). However, Top-KAST is competitive even in the regime
of sparse backward passes.

Fwd Bwd Params Pruning BPC Top-KAST BPC

0% 0% 69M 1.00 1.00
80% 0% 14M 1.02 1.03
80% 60% 14M - 1.05
90% 0% ™ 1.06 1.08
90% 80% ™ - 1.10
95% 0% 1.4M 1.13 1.14
95% 90% 1.4M - 1.17

Table 5: enwik8: test perplexity for the smaller transformer model.

B ImageNet

For all ImageNet experiments we use a ResNet-50 set up as in prior work [[10]. We use a batch size of 4096
and train for 32000 steps. We use use a learning rate of 1.6 (with a linear ramp up for 5 epochs) followed by
learning rate drops by factors of 0.1 at 30, 70 and 90 epochs. For Top-KAST we use a weight decay of le — 4,
and train for a range of backward and forward sparsity rates.

For our experiments we keep the first and last layers dense as in previous works [10l[7]. We also relax the
assumption and show below the performance if all layers are sparsified.

“The original publication erroneously listed 255M parameters, however it has been clarified as 285M with
the authors.

12

76 All Layers Sparsified (1x Training)

75 oe====-

>74 N
3 AN
573 =
3
O N
272 \
< . \
Forward Sparsities \
77 N
I — 0.8(S) >
270 0.9 (S)
-=:0.8 (D)
69 0.9 (D)
68
0.0 0.2 0.4 0.6 0.8 1.0

Backward Sparsities

C Implementation of RigL. and Top-KAST

In the sections above we compared briefly the implementations of Rigl. and Top-KAST and argued the
relative ease of implementing Top-KAST because of some of the practical constraints a theoretically sparse
implementation of RigL faces.

We first detail how Rigl might actually be implemented and the difficulties that would be encountered. RigL
occasionally requires calculating the Top-K values and locations of the full dense gradient with respect the
parameters for every layer. The usual framework encapsulation is that all the gradients are computed and then
sent to the optimiser. Doing the Top-K in the optimiser has the advantage of not needing modify the gradient
calculations, but the large downside of meaning that the dense gradient would need to be materialised. This
means the Top-K must happen inside the gradient calculation.

The type returned by the gradient calculation must be consistent, so it must always return both gradient values
and locations and it must accept as arguments locations and a step count. If the step count indicates a Top-K over
a dense gradient is to be performed, then input locations are ignored and the output locations contain updated
locations. Otherwise, the input locations are used and simply copied to the output.

Inside the actual gradient calculation, it must ‘chunk’ the calculation of the dense gradient so as maintain a
bound on the memory required. Assuming a data parallel regime, after each chunk is calculated locally, it must
then be all-reduced. Then on each replica the running Top-K values are concatenated with the gradient chunk
and a new running Top-K is calculated from this list. This process must proceed completely serially to maintain
the memory bounds.

The serialisation introduces some perhaps non-trivial overheads, but most problematic is that no gradient
calculations currently work like this. Every gradient calculation would need to re-written to do the appropriate
chunking, this is both a high burden as this code involve rewriting a great deal of code. And it also introduces
its own performance ramifications. Common libraries and/or data formats, especially for convolutions, might
not support strides that would be necessary to compute arbitrary output shapes. If they do, it might come with
negative performance implications.

Lastly, we show results for an implementation of Top-KAST that only requires calculating the Top-K every N
steps, where N = 100 (as opposed to N = 1, which corresponds to performing this every iteration). Such an
implementation only requires occasional communication of the indices and weights and the Top-K operation
can be calculated in parallel on CPU as it does not require any data or forward passes. The accelerator need only
know the actual sparse weights and can be implemented entirely sparsely. We run Top-KAST for a variety of
sparsity fractions and report the results below:

Fwd Bwd N=1 N =100

80% 50% 75.03 75.14
90% 80% 73.03 73.18
95% 90% 70.42 70.38

Table 6: Top-KAST at different frequencies of Top-K

D Pseudocode

In general Top-KAST can be implemented by modifying the parameters used in the forward pass and applying a
gradient with respect to only some of the weighs in the backward pass. Below we demonstrate how this could be
implemented with existing dense kernels and explicit masking of the weights. For a truly sparse implementation,
custom sparse kernels would be required.

13

Algorithm 1 TopKAST

/I First perform a Top-K

dense_params = initialise()

fwd_params = TopK(dense_params, X%)
bwd_params = TopK(dense_params, Y %)
just_bwd_set = set(bwd_params) - set(fwd_params)

/I Output with just the TopK params
output = model(fwd_params, input)
loss = loss_fn(output)

/l Exploration L2 Loss
loss +=12(fwd_params) + 12(just_bwd_set) / (X/100)

/I Update only the bwd params
bwd_params = bwd_params - grad(loss, bwd_params)

14

