
We thank all the reviewers for your thoughtful feedback! We will incorporate our responses into the paper.1

–To Reviewer #1 & #3– Q1 & Q7: To curve the embedding space is required for obtaining good graph embeddings, like2

kernel tricks in SVM. The proposed regularizations to reduce curvature may adversely affect on the graph embedding.3

Figure 1: Useful and useless curvatures.

Response: We partially agree with your opinion. Curving an embedding space is4

indeed required, where a useful curvature is of benefit to preserving graph topology.5

For instance, the green dashed circles in Fig. 1 (from Fig. 1 in paper) indicate6

useful curvatures that form good distributions, where the connected nodes are close7

and disconnected nodes are far apart. Hyperbolic space is also an example, whose8

useful negative curvature is suitable for embedding tree-structured graphs.9

However, useless or harmful curvatures are also inevitable in proximity-10

preserving embedding because the existing strategies have no restriction on the11

"non-local" curves of an embedding space, such as the global "swirling" curve12

in Fig. 1B1. Such harmful curvatures bring undesired distortions because unsupervised graph embedding aims to13

faithfully preserve graph topology patterns into an embedding space. In other words, any changes/distortions in patterns14

is not desired, which is fundamentally different from kernel tricks in SVM, which optimize distribution pattern (by15

maximizing separation) controlled by data labels in a supervised manner.16

We stress that the proposed method differentiates useful from harmful curvatures because the former will contribute17

to the reconstruction term in the objective function while the latter will not and thus be eliminated. In Fig. 1B2, to18

illustrate a desired "oracle", the global swirling curvature is reduced while the green-circle curvature still exists.19

Figure 2: Normal curvature.

Q3: A more thorough introduction to sectional curvature, especially using figures.20

Response: Thanks for the suggestion. As sectional curvature is defined in the space of more21

than 3 dimensions, it’s hard to visualize in a figure. To provide similar intuition, in a new figure22

(Fig. 2), we will instead illustrate normal curvature, which can be considered as a degenerate23

case of sectional curvature in a 3-dimension space. We will add a more thorough introduction24

of sectional curvature in our revised version.25

Q4: Connection between the curvature regularization and betweenness centrality.26

Response: Your finding is absolutely right. The proposed regularization constrains more27

on nodes with high betweenness than others– which we think makes sense to prevent distortion: A node with high28

betweenness in a graph is corresponding to a “bottleneck” region in an embedding manifold, i.e., a small region where29

lots of geodesic curves pass through. Taking Fig. 1B2 as an example again, the nodes in the green dashed circle30

have high betweenness. If we curve or fold the embedding space around these nodes, the Euclidean distances of most31

node pairs will be changed, which will bring large distortions in terms of Eq. 1 (the divergence between the geodesic32

and Euclidean metric) in paper. To contrast, if we curve the embedding space around the pink dashed circle (low33

betweenness), it brings limited distortion. Thus, indeed, high-betweenness nodes should be constrained more.34

Q5: Betweenness and PageRank can be used to inform sampling for the two efficient variants of curvature regularization.35

Response: Thanks for your constructive suggestion. Indeed, our sampled regularization variant Ωs is equivalent to the36

betweenness-informed strategy you suggested. It samples shortest paths between nodes, by which nodes with high37

betweenness naturally have a high probability to be sampled. We believe a PageRank-based method is also meaningful,38

which we will discuss and experiment in our final version.39

Figure 3: Curvature loss and distortion.

Q6: To see how much worse was the curvature loss in the different setups.40

Response: Great suggestion. We now conducted a comparison experiment to illustrate41

the curvature loss by using Laplacian Eigenmaps (LE) on the Cora dataset. We ran the42

comparison 10 times, and Fig. 3 reported the mean and variance. One can see that LE with43

curvature regularization got lower curvature loss (solid line) and distortion (dashed line)44

than the original LE after iterations. We will add more extensive/systematic comparisons45

to our final version.46

–To Reviewer #2 & #3– Major concern 1: Different statements of Theorem 1.47

Response: Sorry for the mistake. We gave the wrong conditions in the main paper and48

corrected it in the supplementary material. We will correct the conditions of Theorem 1 in our revised version.49

Major concern 2: Does the condition in Theorem 1 apply to any 2-dimensional subspace of the embedding space? If50

so, it may introduce a large computational burden during the optimization, which does not mention in the Algorithm 1.51

Response: While the condition in Theorem 1 applies to any 2-dimensional subspace, we stress that it is only for theo-52

retical proof and does not introduce computational overhead. The 2-dimensional subspaces are only used theoretically53

in Theorem 1 to prove the proportional relation. In contrast, Algorithm 1 optimizes directly node embeddings in the54

overall high-dimensional space, rather than every 2-dimensional subspace.55

–To Reviewer #4– Formatting issue: We appreciate your recognition of our work. We will correct our paper to meet the56

format requirement of NeurIPS.57


