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1 Embedding Methods in Motivating Case Study

In the main text, we present a case study to illustrate and analyze pattern distortion in graph embed-
ding. The oracle, and proximity-preserving embedding are obtained by Isomap [1] and its variant,
respectively. Isomap is a nonlinear dimensionality reduction method and finds low-dimensional
embedding of high-dimensional data by preserving the pairwise geodesic distances between data
points in manifold.

To get the oracle embedding by Isomap, we first compute the length of shortest path between nodes
in graph. Then, the node embedding is obtained by applying Multidimensional scaling (MDS) [2].
Particularly, the objective of Isomap is given by,

min
xi,...,xn

=
∑
i>j

(||xi − xj || − dG(xi,xj))
2, (1)

where n is the number of nodes, vector xi and xj are the representations of node vi and vj in the
embedding space, and dG(xi,xj) denotes the length of shortest path between the two nodes. Isomap
is an isometric embedding method since it preserves the distances between all nodes in graph.

We modify slightly Isomap to get the proximity-preserving embedding in motivating case. Here, we
only preserve proximity in graph (the distances between two connected nodes) into embedding space.
Thus, the objective becomes

min
xi,...,xn

=
∑
ei,j∈E

(||xi − xj || − dG(xi,xj))
2, (2)

where ei,j denotes the edge between node vi and vj , E is the set of edge. As node vi and vj are
connected, their distance dG(xi,xj) in graph is set as one.

2 Proofs of Results

Lemma 1. In a 2-dimensional embedding manifoldM, the distortion ρ is an increasing function
of |Kq(Pi,j)|, the absolute value of ABS curvature at any xq along Pi,j , if the absolute value of
summation of curvatures along any part of Pi,j is less than π

2 , |
∑
pKp(P

s
i,j)| < π

2 . P si,j is a part of
Pi,j and xp is a point along P si,j .
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Proof. In the distortion ρ = 1
n(n−1)

∑
i 6=j

dM(xi,xj)
dE(xi,xj) , the geodesic distances between nodes

dM(xi,xj) in embedding manifold are determined and fixed by proximity-preserving embedding.
Obviously, ρ is a decreasing function of Euclidean distance dE(xi,xj). We will proof the lemma by
proofing Euclidean distance dE(xi,xj) is a decreasing function of |Kq(Pi,j)|.
In 2-dimensional embedding manifoldM, the geodesic polygonal curve Pi,j can be projected on
the straight line connected it two endpoints. Every line segment of Pi,j has a corresponding line
segment in the the straight line. An illustration is shown in Figure 1. There is a relationship between
the length of the two kinds of line segment. dE(xi,x

′

k) = dE(xi,xk) cos(α0), dE(x
′

k,x
′

l) =

dE(xk,xl) cos(α0 + θk), and for any line segment dE(x
′

q′
,x

′

q′′
) = dE(xq′ ,xq′′ ) cos(α0 +∑

(q̂,·)∈Γi,j ,(q̂,·)≤(q′ ,q′′ ) θq̂) where (q̂, ·) denotes an edge index before (q
′
, q

′′
) in the order set Γi,j

(See definition of Γi,j in Definition 1 in main text), and dE(xq′ ,xq′′ ) is the local Euclidean distance
between the two consecutive points along Pi,j .

Then we have the connection between Euclidean distance dE(xi,xj) and the ABS curvature along
the geodesic polygonal curve Pi,j ,

dE(xi,xj) =
∑

(q′ ,q′′ )∈ Γi,j

dE(xq′ ,xq′′ ) cos(α0 +
∑

(q̂,·)∈Γi,j ,(q̂,·)≤(q′ ,q′′ )

θq̂). (3)

In the summation, the term dE(xq′ ,xq′′ ) is determined and fixed by proximity-preserving embedding.
As the absolute value of summation of curvatures along any part of Pi,j is less than π

2 , the cosine
function is positive and the Euclidean distance is a decreasing function of the absolute value of any
turning angle θq̂ , i.e., |Kq(Pi,j)| the absolute value of ABS curvature at any xq along Pi,j .

Figure 1: An illustration of projection of geodesic polygonal curve. Green line denotes the straight
line connected the two endpoints of geodesic polygonal curve Pi,j . After projecting the curve on the
straight line, every line segment of the curve has a corresponding line segment in the straight line.

Theorem 1. In a n-dimensional embedding manifoldM, the distortion ρ is an increasing function
of |Kq(Pi,j)|, the absolute value of ABS curvature at any xq along Pi,j , if the absolute value of
summation of curvatures along any part of P

′

i,j is less than π
2 , |

∑
pKp(P

′s
i,j)| < π

2 . P
′

i,j is the
projection of Pi,j in the 2-dimensional subspace of embedding manifoldM, P

′s
i,j is a part of P

′

i,j and
xp is a point along P

′s
i,j .

Proof. The Euclidean distance dE(xi,xj) in n-dimensional space is a affine function of the Euclidean
distance dE(x

′

i,x
′

j) between the projection points (x
′

i and x
′

j are the projection points of xi and
xj) in the 2-dimensional subspace; thus dE(x

′

i,x
′

j) is proportional to dE(xi,xj). In the distortion

ρ = 1
n(n−1)

∑
i 6=j

dM(xi,xj)
dE(xi,xj) , the geodesic distances between nodes dM(xi,xj) in embedding

manifold are determined and fixed by proximity-preserving embedding. Thus, ρ in n-dimensional
space is a decreasing function of Euclidean distance dE(xi,xj) as well as dE(x

′

i,x
′

j). In lemma
1, we have proved the Euclidean distance is a decreasing function of the absolute value of ABS
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curvature in 2-dimensional space. Thus, ρ in n-dimensional space is a increasing function of the
absolute value of ABS curvature in 2-dimensional subspace.

The angle formed by two lines in n-dimensional space is also a affine function of the angle formed by
the projections the lines in the 2-dimensional subspace. As the proposed ABS curvature is defined by
angle, the absolute value of ABS curvature along a geodesic polygonal curve in n-dimensional space,
|Kq(Pi,j)| , is proportional to the absolute value of ABS curvature along the projection of Pi,j in
2-dimensional subspace, |Kq′ (P

′

i,j)|. P
′

i,j is the projection of Pi,j in the 2-dimensional subspace,
and xq′ is a point on P

′

i,j Thus, we have the conclusion that ρ in n-dimensional space is a increasing
function of the absolute value of ABS curvature in n-dimensional subspace.

3 Experimental Details

3.1 Dataset statistics

We detail the dataset statistics in Table 1.

Table 1: Statistics of Datasets.

DATASET CORA CITE. PUBM. CORN. TEXA. WASH. WISC. POLB.

NODES 2708 3327 19717 183 183 230 251 1224
EDGES 5429 4732 44338 295 309 446 499 16715
CLASSES 7 6 3 5 5 5 5 2

4 Training details

For all node embedding models, we perform a random sampling hyper-parameter search on validation
set of each dataset to get competitor models. The hyper-parameters searched over include the
dimension of node representation as well as hyper-parameters specific to each model. We then
integrate the curvature regularization term into those competitors, and only adjust the number of
iteration t and the weight λ in algorithm 1. We detail the hyper-parameter setting in Table 2,3,4,5,6
where weight denotes the weight of curvature regularization. In all experiments, we perform t = 5
iterations in first phase of algorithm 1. In random walk-based methods, we employ negative sampling
strategy and negative sample number is set as 3 or 5.

Table 2: Parameter Setting for DeepWalk

DATASET DIMENSION WALKS LENGTH WINDOW SIZE WALKS NUM WEIGHT

CORA 128 64 3 32 10
CITESEER 32 64 5 32 1
PUBMED 64 64 5 32 0.001
WEBKB 32 32 5 8 1
POLBLOGS 32 64 5 32 0.001

Table 3: Parameter Setting for Node2vec

DATASET DIMENSION WALKS LENGTH WINDOW SIZE WALKS NUM P Q WEIGHT

CORA 128 64 5 32 0.5 0.1 10.0
CITESEER 32 32 1 32 0.1 0.5 1.0
PUBMED 64 64 1 128 0.9 0.1 1E-5
WEBKB 32 128 3 32 0.9 0.5 1.0
POLBLOGS 64 128 1 64 0.1 0.9 0.001

3



Table 4: Parameter Setting for Matrix Factorization

DATASET DIMENSION `2 NORM WEIGHT LEARNING RATE WEIGHT

CORA 32 1E-5 0.0025 1E-5
CITESEER 64 1.0 0.01 10.0
PUBMED 128 0.001 0.0075 0.001
WEBKB 32 1.0 0.01 1.0
POLBLOGS 128 0.001 0.005 10

Table 5: Parameter Setting for Laplacian Eigenmaps

DATASET DIMENSION LEARNING RATE WEIGHT

CORA 128 0.5 10.0
CITESEER 64 0.5 10.0
PUBMED 128 0.5 10.0
WEBKB 64 0.5 10.0
POLBLOGS 128 0.0075 1E-6

5 Analysis of convergence and distortion reduction

We conduct comparison experiments to analyze the convergence of curvature loss and the deduction
of distortion (Eq. 1 in the main text of this paper) during optimizing. We run the comparisons ten
times, and Figure 2-4 reported the trends (both mean and variance) of curvature loss and the distortion
by using LE, MF, and SDNE on Cora dataset, respectively. Figure 2 shows that LE with curvature
regularization (blue) get lower curvature loss (solid line) and distortion (dashed line) than the original
LE (orange) after iterations. Similar patterns are held in Figure 3 (MF) and Figure 4 (SDNE).

Figure 2: The trends of curvature loss and the distortion for Laplacian Eigenmaps (LE) on the
Cora dataset. The x axis denotes the iteration number, the left y axis and right y axis denote the
distortion (Eq. 1 in the main text of this paper) and the curvature loss, respectively. LE with curvature
regularization (blue) get lower curvature loss (solid line) and distortion (dashed line) than the original
LE (orange) after iterations.
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Table 6: Parameter Setting for Structural Deep Network Embedding

DATASET DIMENSION HIDDEN UNITS (TWO LAYER) α β LEARNING RATE WEIGHT

CORA 32 (500,100) 1 10 0.0025 1
CITESEER 32 (100,100) 1 1E-5 0.01 1
PUBMED 128 (200,100) 1 1E-6 0.01 0.001
WEBKB 32 (100,100) 1 0.1 0.01 0.1
POLBLOGS 32 (100,100) 1 1E-5 0.01 1

Figure 3: The trends of curvature loss and the distortion for Matrix Factorization (MF) on the
Cora dataset. The x axis denotes the iteration number, the left y axis and right y axis denote the
distortion (Eq. 1 in the main text of this paper) and the curvature loss, respectively. MF with curvature
regularization (blue) get lower curvature loss (solid line) and distortion (dashed line) than the original
MF (orange) after iterations.

Figure 4: The trends of curvature loss and the distortion for SDNE on the Cora dataset. The x axis
denotes the iteration number, the left y axis and right y axis denote the distortion (Eq. 1 in the main
text of this paper) and the curvature loss, respectively. SDNE with curvature regularization (blue) get
lower curvature loss (solid line) and distortion (dashed line) than the original SDNE (orange) after
iterations.
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