
Appendix

A. Layer decoding tables

Figure 5: Layer notation of whitebox models and sequence in which layers get added to multi-
intermediate-layer attacks.

Here we discuss the DNN layer notation used throughout the work. We use two whitebox models:
ResNet50 (RN50) [9] and DenseNet121 (DN121) [10], which have been shown to be good sources
for generating transferable adversarial examples.

The RN50 notation follows the implementation in https://github.com/pytorch/vision/
blob/master/torchvision/models/resnet.py. RN50 has 4 layer groups, with {3, 4, 6, 3}
Bottleneck blocks in each, respectively. Of the 16 possible layers we notate 14 of them in Figure
5 where “deeper” layers closer to the output of the model have higher layer numbers. This is the
notation used in Figures 4 and 7.

The DN121 notation follows the implementation in https://github.com/pytorch/vision/
blob/master/torchvision/models/densenet.py. DN121 also has 4 main layer groups, with
{6, 12, 24, 16} layers in each, respectively. From the 58 possible layers, we sample 16 layers from
across the depth as shown in Figure 5.

As an example of how the layers are used in the attacks, when generating an attack from a RN50
whitebox that uses layers 5 and 10, this means that we are “probing” the model to extract the feature
map at the output of the {3,4} and {3,4,5} layers. The “Sequence” column is the order in which the 5
attacking layers get added to the multi-layer attack, as found by greedy optimization. See Appendix
B for more information about this process.

12

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py


B. Additional experimental setup details

Auxiliary models. Using pseudo-PyTorch notation, we use the following architecture for the
auxiliary models: [Conv(#kernels=128, kernel_size=3, stride=1, pad=1), ReLU,
MaxPool(2,2), Conv(#kernels=128, kernel_size=3, stride=1, pad=1), ReLU,
MaxPool(2,2), Dropout(p=0.3), linear(inputs=?, outputs=1)]. Note that the number
of nodes in the linear layer depends on the spatial size of the input feature map. We use this exact
architecture regardless of layer and feature map size, for simplicity reasons. Customizing the
auxiliary architecture to each layer in the whitebox model may result in better modeling of the feature
distributions at each layer, but we find this architecture to perform well enough.

Each auxiliary model is trained for 8,000 iterations with batch_size=64, momentum=0.9,
weight_decay=5e-4, initial_learning_rate=0.001, and a single learning rate decay step
at the 6,000th iteration to 0.0001. For each batch, we use a weighted sampling scheme to equalize
the counts of positive and negative training samples. Note, the training of each auxiliary model can
be done in a massively parallel fashion.

Greedy layer optimization. Selection of the whitebox model layers to target with FDA(N) is a
combinatorial problem. Rather than try out every possible combination, we use a greedy optimization
strategy to find the best layers in Section 4, which we elaborate on here. While this greedy approach
may not find the absolute optimum set of layers, we find that it still performs quite well, with each
added layer delivering significant gains in attack performance.

Note, in [14] the “optimal” attacking layer is found via sweeping across possible layers and using the
layer that empirically has the best tSuc rate. We adopt a similar scheme here. We only optimize to
find the attack layers once. When finding the attack layers for the RN50 whitebox model we use the
DN121 as a blackbox, and when finding the attack layers for DN121 we use the RN50 as a blackbox.
Using a random held-out set of 200 source images from the ImageNet validation set, we generate
attacks from each layer to find the best single layer to attack from. To find the best two layers to attack
from, we start with the best single layer and sweep the second layer to find the best complement to
the first layer. This process of using the best previous layers and finding the most complementary
new layer continues until we find the best 5 layers, where we notice a performance saturation. The
sequence of how the attacking layers get added is shown in the “Sequence” columns of Figure 5. For
example, for the FDA(3) attack on a RN50 whitebox, the layers used in the attack are {3,4,5}, {3,4},
and {3,4,2}. The hyper-parameters in the objective functions are found via line search. For the RN50
whitebox, η = 1e− 5 and γ = 1e− 4. For the DN121 whitebox, η = 1e− 6 and γ = 1e− 4. For
simplicity, in a multi-intermediate-layer attack all N layers are equally weighted, so λ` = 1/N .

Baseline attacks. The setup and configurations of the baseline attacks largely mirror the original
papers. Since the results in the TMIM+SGM [36] paper are all tuned for un-targeted attacks, we
do a similar line search on a held out dataset to find decay = 0.5 for RN50 and decay = 0.4 for
DN121. For the ensemble attack [17], all models are weighted equally, and we include momentum in
the optimization (although momentum is not discussed in the original paper) because it empirically
improves the results.

All of the attacks, including new ones and the baselines use L∞ ε = 16/255, step_size = 2/255 and
perturb_iters = 10.

13



C. Full ensemble comparison results

Figure 6: Comparison of FDA methods to ensemble attacks.

Figure 6 shows an extension of the results in Figure 2 to include all of the transfer scenarios considered
in Section 4.1.1. The primary result is that our FDA methods, and particularly FDA(N)+xent,
outperforms the ensemble methods in all of these transfer scenarios in both error and tSuc. The
critical detail is that in these plots, our method is still crafting noise using the feature space of a single
source model, where the ensemble method is using output layer information from multiple source
models of varying architectures and depths. Since FDA and ensemble are seemingly orthogonal
methods, we leave it to future work to explore their combination.

14



D. Extended analysis of disruption

Figure 7: Disruption of features caused by transfer attacks.

Here we extend the disruption results from Section 4.1.4 to include both RN50→DN121 and
DN121→RN50. The disruption caused by each attack is measured over 5,000 adversarial ex-
amples from each method. Adhering to the setup in Section 4, all source (clean) samples are correctly
classified by both the whitebox and blackbox. The results shown here echo the conclusions drawn in
Section 4.1.4. The main conclusions are as follows:

• The TMIM attack [5], which specifically leverages the output layer of the whitebox model, is only
capable of causing high disruption towards the output of the whitebox model. In both the early
layers of the whitebox and all throughout the blackbox model, TMIM causes very little disruption
w.r.t. the target class.

• The baseline FDA(1) method [14] causes significantly more disruption in the intermediate feature
spaces of both the whitebox and blackbox but has two undesirable behaviors. First, the intermediate
disruption is significantly higher in the whitebox than in the blackbox, even for the layers that
were not considered in the attack. Ideally, the intermediate space of the blackbox model would
show higher disruption. Second, the disruption in the final few layers of both the whitebox and
blackbox has a sharp decrease (as best seen in the RN50 whitebox and blackbox). This indicates
that although the intermediate feature maps look to be the target class with nearly 100% probability,
that does not automatically induce classification as the target class.

• The primary effect of the +xent component is to create higher disruption in the final few layers,
which directly addresses the weakness discussed in the previous bullet. This behavior is perhaps
best illustrated by comparing the FDA(1) and FDA(1)+xent results in the rightmost plot (RN50 as
a blackbox). From early through middle layers, the disruption is about the same, and in the final 3
layers the +xent version has higher disruption. As well as being quite intuitive behavior, this is
evidence for why the attack performs better.

• The notable effect of using multi-intermediate-layers is significantly more disruption in the inter-
mediate space of both whitebox and blackbox models. Looking at the whitebox models, as we
go from FDA(1) to FDA(2), the disruption is noticeably increased in the earlier layers. This is not
surprising, as from Figure 5, the second attack layer to be added in both cases is a layer closer to
the input layer. This trend of increased disruption in earlier layers is also observed in the blackbox
models. As we move from FDA(2) to FDA(4), from Figure 5 we have added 2 layers that are both
deeper in the model than the second layer added, so we do not see increased disruption in the
earlier layers. However, we do see increased disruption in the later layers, as expected because the
fourth layer added is the closest to the output of the whitebox model. This pattern of how including
early layers in the attack set causes early layer disruption and including late layers in the attack set
causes late layer disruption matches intuition and provides insight into how the attack works.

15



E. Cross-distribution experiment

Figure 8: Class splits of Restricted-ImageNet subsets.

To evaluate the effect of differences in the training data distributions of the source and target model
we propose three splits of the ImageNet-1k dataset [4], which we call RestrictedImageNet-A/B/C
(RINet-A/B/C). To split the classes, we leverage the WordNet [20] hierarchical structure of the
dataset such that each class in a RINet set is a superclass category composed of multiple ImageNet-
1K classes, noted in Figure 8 as “components.” For example, the “fish” class of RINet-A (both
the train and val parts) is the aggregation of ImageNet-1k classes: [1:’tench’, 2:’goldfish’,
389:’barracouta’, 392:’rock-beauty’, 394:’sturgeon’]. See https://gist.github.
com/yrevar/942d3a0ac09ec9e5eb3a for the number to category translations.

RINet-A&B. One of the key experiments in this work is to measure the transfer performance when
the source and target models are trained on similar categories, but have no training data overlap.
This represents a more realistic attacking scenario when the adversary is aware of what classes the
target model is trained on (or at least most of them) but must collect their own data as they do not
have access to the target model’s training dataset. To simulate this scenario, we create RINet-A and
RINet-B, which each have 15 classes, of which 10 are shared between the two and 5 are unique, and
have zero training data overlap.

Figure 9: Standard accuracy of RINet models.

To perform our experiments, we trained a RN50 and
DN121 model on each of the splits using code from
https://github.com/pytorch/examples/
blob/master/imagenet/main.py. The accuracy
of each model is shown in Figure 9. Since it is not
meaningful to test an RINet-A model on the unique
classes of RINet-B, we show the test accuracy on the
“full” and “shared” classes only when appropriate. For the models trained and tested on the same
splits, the accuracy is about 95%. When the models are tested on the shared class data of the other
split, the test accuracy drops to about 81% − 87%, which is not surprising given the difference of
ImageNet classes used.

RINet-C. The other dataset considered is RINet-C. It has very similar construction to A & B in
that each class is an aggregation of five ImageNet-1K classes. However, RINet-C has 20 classes
which makes it a bigger subset than RINet-A/B. The purpose of including RINet-C is to measure
how important the size of the subset is when attacking in the RN50-A/B/C→DN121-FullINet and
RN50-FullINet→DN121-A/B/C scenarios. We train RN50 and DN121 RINet-C models in the same
way as we do the RINet-A/B models. The test accuracy of RN50-C is 95.2% and DN121-C is 96.3%.

Cross-distribution attack settings. Lastly, we discuss how we setup and carry out the attacks
in the cross-distribution experiments. Here, we assume the auxiliary models have been trained for
RN50-A/B/C/FullINet (training details in Appendix B).

16

https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a
https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a
https://github.com/pytorch/examples/blob/master/imagenet/main.py
https://github.com/pytorch/examples/blob/master/imagenet/main.py


• Constants across all tests: The attacking parameters are still L∞ ε = 16/255, step_size = 2/255,
and perturb_iters = 10.

• RN50-A/B→DN121-A/B (Scenario 1): Since the source task is significantly different than Full-
ImageNet, we re-search for the best 5 attacking layers for the RN50-A/B models. We use the same
greedy search technique described in Appendix B only on the RN50-A→DN121-A transfer sce-
nario. In the notation of Figure 5, the sequence of adding attacks layers in the FDA(N)+xent frame-
work is: 1:[3,4,6,1], 2:[3,4,6], 3:[3,4,6,2], 4:[3,4,5], 5:[3,4,4]. We also find
that increasing the weight of the cross-entropy term to γ = 1e−3 helps. Other attacking parameters
stay the same: η = 1e− 5, λ` = 1/N . When attacking, we only consider source samples from the
shared-classes that are correctly classified by both the source and target models. We then target
each of the other 9 shared classes individually and do this for all source samples in the whitebox
model’s validation dataset. Given the classes are shared, the computation of error and tSuc is
straightforward.

• RN50-A/B/C→DN121-FullINet (Scenario 3): In these tests, we use the exact layer-set and hyper-
parameters used in Case 1. The only tricky part is how to define attack success because the class
structures are significantly different. Here, since the whitebox model is RN50-A/B/C, we work in
the label space of RINet-A/B/C. In the attack loop, for each source sample in the whitebox model’s
validation set that is correctly classified by both the whitebox and blackbox, we target each of
the other 14 (or 19 in the case of RINet-C) classes individually. An attack is successful if the
blackbox model’s top-1 prediction is one of the components that makes up the RINet target class.
For example, if we use RN50-A as the whitebox model, for the target label “spider” we count a
tSuc iff the DN121-FullINet model’s prediction is in [72, 75, 76]. This is also how we check that
the blackbox model is initially correct for each source sample. Note, this is a somewhat restrictive
definition of tSuc. If we attack with the target label “dog,” we only count a tSuc if the blackbox
model’s prediction is a component that made up the RINet’s dog class. However, ImageNet-1K
has over 150 “dog” sub-classes but tSuc only accounts for 5 of these.

• RN50-FullINet→DN121-A/B/C (Scenario 2): In these evaluations, we use the attack configu-
rations, layer set, and hyper-parameters from the main ImageNet transfer tests (i.e., we do not
tune for this particular test). As in Case 2, since the label spaces of the whitebox and blackbox
models are different, we must handle the conversion as to measure attack success. For each source
image in the ImageNet-1K validation set, we first check that it is a component of the target model’s
dataset, then we check that it is correctly classified by both the whitebox and blackbox using
their respective label spaces. Using images that passed both these checks, we then target each
of the other 14 (or 19) classes in the RINet label space by randomly choosing a Full-ImageNet
target label from the component set of the target RINet class. For example, if we want to target
“bird” on the RN50-B blackbox model, we would randomly select a label from the component set
[12, 14, 15, 19, 20] and use that as the target label in the Full-ImageNet space. With this, computing
error and tSuc is straightforward.

Lastly, we would like to emphasize that we did not re-tune all of the hyper-parameters and layer
sets for each individual transfer. We mention this to illustrate that the method and results are not
ultra-sensitive to these parameters (within reason). However, it would not be surprising if the transfer
results improve if we tuned the hyper-parameters for each situation.

17



F. Perturbed Samples

Figure 10: Samples of adversarial examples generated with the TMIM, FDA(1), and FDA(5)+xent
attacks using ε = 16/255.

18


