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Abstract

Despite achieving remarkable performance, deep graph learning models, such
as node classification and network embedding, suffer from harassment caused
by small adversarial perturbations. However, the vulnerability analysis of graph
matching under adversarial attacks has not been fully investigated yet. This paper
proposes an adversarial attack model with two novel attack techniques to perturb
the graph structure and degrade the quality of deep graph matching: (1) a kernel
density estimation approach is utilized to estimate and maximize node densities to
derive imperceptible perturbations, by pushing attacked nodes to dense regions in
two graphs, such that they are indistinguishable from many neighbors; and (2) a
meta learning-based projected gradient descent method is developed to well choose
attack starting points and to improve the search performance for producing effective
perturbations. We evaluate the effectiveness of the attack model on real datasets
and validate that the attacks can be transferable to other graph learning models.

1 Introduction

Graph matching is one of the most important research topics in the graph domain, which aims to
match the same entities (i.e., nodes) across two or more graphs [91, 98, 43, 46, 48, 72, 54, 105, 13, 75].
It has been widely applied to many real-world applications ranging from protein network matching in
bioinformatics [33, 63], user account linking in different social networks [62, 51, 100, 37, 101, 21, 38],
and knowledge translation in multilingual knowledge bases [87, 124], to geometric keypoint matching
in computer vision [22]. Existing research efforts on graph matching can be classified into three
broad categories: (1) structure-based techniques, which rely only upon the topological information
to match two or multiple input graphs [43, 49, 95, 46, 54, 105, 13, 96, 84, 40, 67, 57, 38, 24]; (2)
attribute-based approaches, which utilize highly discriminative structure and/or attribute features for
ensuring the matching effectiveness [93, 94, 51, 10, 65, 16, 88, 100, 28, 39, 18, 97, 50, 52, 22]; and
(3) heterogeneous methods, which employ heterogeneous structural, content, spatial, and temporal
features to further improve the matching performance [92, 34, 44, 98, 83, 99, 77, 59, 102, 103, 21].

Recent literature has shown that both traditional and deep graph learning algorithms remain highly
sensitive to adversarial attacks, i.e., carefully designed small perturbations in graph structure and
attributes can cause the models to produce wrong prediction results [14, 126, 64, 125, 123, 69,
90, 74, 45, 85, 80, 127]. We have witnessed various effective attack models to cause failures of
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node classification [14, 126, 74, 86, 125, 71, 19, 70], community detection [9, 78, 7, 41], network
embedding [6, 4, 5], link prediction [104], similarity search [15], malware detection [30], and
knowledge graph embedding [90]. However, there is still a paucity of analyses of the vulnerability of
graph matching under adversarial attacks, which is much more difficult to study. Most of the existing
models to fool other graph learning tasks conduct the adversarial attacks on a single graph but the
graph matching task analyzes both intra-graph and inter-graph interactions of multiple graphs. In this
work, we aim to answer the following questions: (1) Are graph matching algorithms sensitive to small
perturbation of graph structure? (2) How do we develop effective and imperceptible perturbations for
degrading the performance of deep graph matching models?

A large number of research advances in adversarial attacks on graph data utilize iterative gradient-
based methods to produce effective adversarial perturbations that fool a graph learning model [68, 76,
14, 125, 86, 71, 89, 8]. However, a recent study reports that the iterative gradient-based methods, such
as Fast Gradient Sign Method (FGSM) [26] and Projected Gradient Descent (PGD) [47], start the
attacks from original examples and add perturbations monotonically along the direction of gradient
descent, resulting in a lack of diversity and adaptability of generated iterative trajectories [61]. This
often leads to invalid attacks since the iterative trajectories have difficulties crossing decision boundary
of target learning model with small perturbation. Can we find a shortcut across the decision boundary
to derive more effective attacks by beginning from good attack starting points in the graph matching?

Traditionally, graph matching techniques are based on the assumption of feature consistency across
graphs: Two nodes in different graphs are more likely to be found to be matching if they have similar
topological and/or attribute features in respective graphs [98, 93, 10, 17, 28, 96]. These methods
compute the similarity (or distance) scores between pairwise nodes across graphs and choose the node
pairs with largest similarity (or smallest distance) as matching results [101, 88, 39, 38]. Intuitively, if
an attacker perturbs a node by throwing it into a dense region in the graph with many similar nodes,
i.e., a pile of nodes similar to each other, such that this attacked node is similar to many neighbors,
then it is hard for humans or defender programs to recognize it from the node pile. In addition, if
two matched nodes are simultaneously moved to such dense regions in respective graphs, then this
dramatically increases the difficulty in matching them correctly among many similar candidate nodes.

To our best knowledge, this work is the first to study adversarial attacks on graph matching.

We propose to utilize kernel density estimation (KDE) technique to estimate the probability density
function of nodes in two graphs, to understand the intrinsic distribution of graphs. By maximizing
the estimated densities of nodes to be attacked, we push them to dense regions in respective graphs to
generate adversarial nodes that are indistinguishable from many neighbors in dense regions. This
increases the chance of producing wrong matching results as well as reduces the risk of perturbations
being detected by humans or by defender programs. Our analysis is the first to introduce the KDE
technique to conduct imperceptible attacks on graph data.

Searching for good attack starting points in large graphs is computationally inefficient. We develop
a meta learning-based projected gradient descent (MLPGD) model to quickly adapt to a variety of
new search tasks on multiple batches of target nodes for deriving effective attacks. However, the
MLPGD model is non-smooth and non-differential, as the perturbation is a multi-step process and the
projection at each step is non-differential. A Gaussian smoothing method is designed to approximate
a smoothed model, and a Monte Carlo REINFORCE method is used to estimate the model gradient.

Empirical evaluation on real datasets demonstrates the superior performance of the GMA model
against several state-of-the-art adversarial attack methods on graph data. Moreover, we validate that
the attack strategies are transferable to other popular graph learning models in Appendix A.2.

2 Problem Definition

Given two graphs G1 and G2 to be matched, each is denoted as Gs = (V s, Es) (s = 1 or 2), where
V s = {vs1, · · · , vsNs} is the set of Ns nodes and Es = {(vsi , vsj ) : 1 ≤ i, j ≤ Ns} is the set of edges.
Each Gs has an Ns × Ns binary adjacency matrix As, where each entry As

ij = 1 if there exists
an edge (vsi , v

s
j ) ∈ Es; otherwise As

ij = 0. As
i: specifies the ith row vector of As. In this paper, if

there are no specific descriptions, we use vs
i to denote a node vsi itself and its representation As

i:, i.e.,
vs
i = As

i: and we utilize vs
ij to specify the jth dimension of vs

i , i.e., vs
ij = As

ij .
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The dataset is divided into two disjoint sets D′ and D. The former denotes a set of known matched
node pairs D′ = {(v1

i ,v
2
k)|v1

i↔v2
k,v

1
i ∈ V 1,v2

k ∈ V 2}, where v1
i↔v2

k indicates that two nodes
v1
i and v2

k belong to the same entity. The latter, denoted by D = {(v1
i ,v

2
k)|v1

i↔v2
k,v

1
i ∈ V 1,v2

k ∈
V 2}, is used to evaluate the graph matching performance, where the nodes (but not their matchings)
are also observed during training. The goal of graph matching is to utilize D′ as the training data
to identify the one-to-one matching relationships between nodes v1

i and v2
k in the test data D. By

following the same idea in existing efforts [101, 88, 39, 38], this paper aims to minimize the distances
between projected source nodes M(v1

i ) ∈ D′ and target ones v2
k ∈ D′. The node pairs (v1

i ,v
2
k) ∈ D

with the smallest distances are selected as the matching results.

min
M

L where L = E(v1
i ,v

2
k
)∈D′‖M(v1

i )− v2
k‖22 (1)

where M denotes an injective one-to-one matching function M : v1
i ∈ V 1 7→ v2

k ∈ V 2.

The adversarial attack problem is defined as maximally degrading the matching performance of
M on the test data D by injecting edge perturbations (including edge insertion and deletion) into
Gs = (V s, Es) (s = 1 or 2), leading to two adversarial graphs Ĝs = (V̂ s, Ês). We assume the
attacker has limited capability, so that he/she can only make small perturbations.

3 Imperceptible Attacks with Node Density Estimation and Maximization
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Figure 1: Imperceptible Attacks

Intuitively, in Eq.(1), if there exist nodes v1
j similar to v1

i , i.e.,
v1
j ≈ v1

i , such that ‖M(v1
j ) − v2

k‖22 < ‖M(v1
i ) − v2

k‖22, then a
wrong matching (v1

j ,v
2
k) will be generated. In addition, if there

are many such v1
j s around v1

i , then it is hard to recognize v1
i from

a pile of similar nodes. Thus, if we move v1
i to dense regions

that contain many similar v1
j s, then this dramatically increases

the possibility of deriving the wrong matching (v1
j ,v

2
k) among

many similar candidate nodes. Also, as many v1
j s are around

the adversarial node v̂1
i , it is difficult for humans or defender

programs to detect v̂1
i , as shown in a toy example in Figure 1.

Motivated by this, we propose to employ kernel density estima-
tion (KDE) method to generate imperceptible perturbations. In
statistics, the KDE is to estimate the probability density function

f(x) of a random variable x with unknown distribution [55]. It helps reveal the intrinsic distribution.

Concretely, let v1 be a N1-dimensional random variable to denote all nodes {v1
i , · · · ,v1

N1} in graph
G1 with an unknown density f . A function f̂(x) is estimated to best approximate f(x).

f̂(v1) =
1

N1det(B)

N1∑
i=1

K
(
B−1 (v1 − v1

i

))
(2)

where det(·) denotes the determinant operation. B > 0 is a bandwidth to be estimated. It is
an N1 × N1 diagonal matrix B = diag(b1, · · · , bN1), which has strong influence on the density
estimation f̂(v1). A good B should be as small as the data can allow. K is a product symmetric
kernel that satisfies

∫
K(x)dx = 1 and

∫
xK(x)dx = 0. The above vector-wise form f̂(v1) can be

rewritten as an element-wise form, where v1
j represents the jth dimension in v1.

f̂(v1) =
1

N1

N1∑
i=1

N1∏
j=1

1

bj
K
(v1

j − v1
ij

bj

)
(3)

The derivative ∂f̂(v1)
∂bj

w.r.t. each bandwidth bj in B is computed as follows, where K(x) = d logK(x)
dx .

∂f̂(v1)

∂bj
=

1

N1

N1∑
i=1

∂
[∏N1

l=1
1
bl
K
(v1

l−v1
il

bl

)]
∂bj

= − 1

N1

N1∑
i=1

( 1

bj
+

v1
l − v1

il

b2j
K
(v1

l − v1
il

bj

)) N1∏
l=1

1

bl
K
(v1

l − v1
il

bl

)
(4)

Traditional KDE methods often fail on high-dimensional data [29, 60, 32, 36], when bandwidths
need to be selected for each dimension. A greedy search method is utilized to select bandwidths in

3



the KDE: If a dimension j is insignificant, then changing the bandwidth bj for that dimension should
have a weak impact on f̂(v1), while the changing bj for an important j should cause a large change

in f̂(v1). Fortunately, ∂f̂(v1)
∂bj

can differentiate these two types of dimensions. Based on the above
analysis, we greedily decrease bj with a sequence b0, b0s, b0s2, · · · for a parameter 0 < s < 1, until
bj is smaller than a certain threshold τj , to see if a small change in bj can result in a large change in

f̂(v1). The method also offers a good way to estimate
[∂f̂(v1)

∂b1
, · · · , ∂f̂(v

1)
∂bN1

]
along a sparse path.

Concretely, f̂(v1) is estimated by beginning with an initial B = diag(b0, · · · , b0) for a large b0, and
then estimate ∂f̂(v1)

∂bj
as follows and decrease bj if ∂f̂(v1)

∂bj
is large.

∂f̂(v1)

∂bj
=

1

N1

N1∑
i=1

∂
[∏N1

l=1
1
bl
K
(v1

l−v1
il

bl

)]
∂bj

=
1

N1

N1∑
i=1

K
(v1

j−v1
ij

bj

)
K
(v1

j−v1
ij

bj

) N
1∏

l=1

K
(v1

l − v1
il

bl

)
=

1

N1

N1∑
i=1

∂f̂(v1
i )

∂bj

(5)
The corresponding variance Var

(
∂f̂(v1)
∂bj

)
is given below.

Var
(∂f̂(v1)

∂bj

)
= Var

( 1

N1

N1∑
i=1

∂f̂(v1
i )

∂bj

)
(6)

Theorems 1-5 in Appendix A.5 provide the theoretical analysis about the density estimation, deriva-
tives, and variances for well understanding the KDE technique.

In this work, assuming that the graph data follow the Gaussian distribution, a product Gaussian kernel
K is used to estimate the node density f̂(v1). ∂f̂(v1)

∂bj
is accordingly updated as follows.

∂f̂(v1)

∂bj
=

C

N1

N1∑
i=1

((
v1
j − v1

ij

)2 − b2j) N1∏
l=1

K
(v1

l − v1
il

bl

)
∝ 1

N1

N1∑
i=1

((
v1
j − v1

ij

)2 − b2j) N1∏
l=1

K
(v1

l − v1
il

bl

)
=

1

N1

N1∑
i=1

((
v1
j − v1

ij

)2 − b2j) exp
(
−

N1∑
l=1

(
v1
l − v1

il

)2
2b2j

)
(7)

where C denotes a proportionality constant C = 1
b3j

∏N1

l=1
1
bl

. It can be safely ignored to avoid com-

putation overflow when bl → 0 for large N1. The bandwidth estimation is presented in Algorithm 1.

Based on the estimated B and the Gaussian kernel K, the closed form of f̂(v1) is derived below.

f̂(v1) =
1

N1

N1∑
i=1

N1∏
j=1

K
(v1

j − v1
ij

bj

)√ |B + Σ|
|Σ| ×exp

(
−

(v1 − µ)T
(
Σ−1 − (B + Σ)−1

)
(v1 − µ)

2

)
(8)

where µ and Σ are the maximum likelihood estimation of the mean vector and covariance matrix of
the Gaussian distribution. Please refer to Appendices A.6 and A.7 for detailed derivation of f̂(v1).

As two graphs G1 and G2 often have different structures and distributions and thus the same KDE
method as Algorithm 1 is utilized to estimate the density ĝ(v2) of v2. Based on the estimations f̂(v1)
and ĝ(v2), the attacker aims to maximize the following loss LD with imperceptible perturbations.

LD =
∑

(v̂1
i ,v̂

2
k
)∈D

L(v̂1
i , v̂

2
k) where L(v̂1

i , v̂
2
k) = ‖M(v̂1

i )− v̂2
k)‖22 + f̂(v̂1

i ) + ĝ(v̂2
k) (9)

where v̂1
i = v1

i +δ1i (and v̂2
k = v2

k +δ2k) denote adversarial versions of clean nodes v1
i (and v2

k) inG1

(and G2) by adding a small amount of edge perturbations δ1i (and δ2k) through our proposed MLPGD
method in the next section, such that M(v̂1

i ) is far away from v̂2
k and thus the matching accuracy is

decreased. In addition, we push v1
i and v2

k to dense regions to generate v̂1
i and v̂2

k, by maximizing
f̂(v̂1

i ) and ĝ(v̂2
k), such that v̂1

i and v̂2
k are indistinguishable from their neighbors in perturbed graphs.

This reduces the possibility of perturbation detection by humans or defender programs.
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Algorithm 1 Bandwidth Matrix Estimation
Input: graph G1 = (V 1, E1), parameter 0 < s < 1, initial bandwidth b0, and parameter c.
Output: Bandwidth matrix B.

1: Initialize all b1, · · · , bN1 with b0;
2: for each j = 1 to N1

3: do
4: Estimate the derivative ∂f(v1)

∂bj
and variance Var( ∂f(v

1)
∂bj

) in Eqs.(6)-(7);

5: Compute the threshold τj =
√

2 ·Var( ∂f(v
1)

∂bj
) · log(cN1);

6: if
∣∣ ∂f(v1)

∂bj

∣∣ > τj , then Update bj = bjs;

7: while
∣∣ ∂f(v1)

∂bj

∣∣ > τj

8: Return B.

Algorithm 2 Meta Learning-based Projected Gradient Descent (MLPGD)
Input: Batches D1, · · · , DC in a set D of node pairs, initial general policy parameters {θ1, θ2}, adaptation
step size α, meta step size β.
Output: Optimized {θ1, θ2}.

1: Repeat until convergence
2: Sample C batches of anchor node pairs D1, · · · , DC ;
3: for c = 1 to C
4: Estimate gradient ec = e

(
Dc, {θ1, θ2}

)
;

5: Compute adapted parameters {θ1c , θ2c} = {θ1, θ2}+ αec;
6: Update parameters {θ1, θ2} = {θ1, θ2}+ β

C

∑C
c=1 e

(
Dc, {θ1c , θ2c}

)
;

7: Return {θ1, θ2}.

4 Effective Attacks via Meta Learning-based Projected Gradient Descent
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Figure 2: Effective Attacks

In Figure 2, two dashed purple curves denote the deci-
sion boundary of graph matching. If we move a clean
node v1

i across the decision boundary to generate an
adversarial node v̂1

i , then we have other nodes v1
j to

makeM(v1
j ) and v2

k become more similar thanM(v̂1
i )

and v2
k, and thus a wrong matching (v1

j ,v
2
k) will be

produced. Blue and green polylines denote attack tra-
jectories starting from original and good starting pints
with gradient descent method respectively. A shortcut
from good starting points (v1

i )0 or (v2
k)0 is able to cr-

oss the peak of the decision boundary and converge quickly, while the trajectories from the original
nodes v1

i or v2
k take long walks to cross the non-peak boundary.

Based on the attack loss in Eq.(9), we propose to integrate meta learning and PGD into an MLPGD
model, to produce more effective adversarial nodes with good starting points towards graph matching.

(v1
i )

(t+1) = Π41
i
sgn
[
ReLU

(
∇(v1

i )
tL((v1

i )
t, (v2

k)t)
)]

(v2
k)(t+1) = Π42

k
sgn
[
ReLU

(
∇(v2

k
)tL((v1

i )
t, (v2

k)t)
)]
, t = 1, · · · , T

(10)

where (v1
i )t and (v2

k)t denotes the adversarial nodes of v1
i and v2

k derived at step t. ε specifies
the budget of allowed perturbed edges for each attacked node. 41

i = {(δ1i )t|1T (δ1i )t ≤ ε, (δ1i )t ∈
{0, 1}N1}, where (δ1i )t = ‖(v1

i )t − v1
i ‖22, represents the constraint set of the projection operator Π,

i.e., it encodes whether an edge of v1
i is modified or not. 42

k has the similar definition for v2
k. The

composition of the ReLU and sign operators guarantees (v1
i )t ∈ {0, 1}N1

and (v2
k)t ∈ {0, 1}N2

, as
it adds (or removes) an edge or keeps it unchanged when an derivate in the gradient is positive (or
negative). The outputs (v1

i )T and (v2
k)T at final step T are used as the adversarial nodes v̂1

i and v̂2
k.

Searching for attack starting points for each (v1
i ,v

2
k) in large graphs is computationally inefficient.

Meta learning techniques aim to train a general model with general parameters that can quickly
adapt to a variety of new learning tasks with refined parameters [23, 3, 42, 56]. This offers a great
opportunity to find good attack starting points (v1

i )0 and (v2
k)0 for all (v1

i ,v
2
k) ∈ D with lower cost,

such that the generated v̂1
i and v̂2

k by the PGD model can maximize the attack loss LD in Eq.(9).
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Algorithm 3 Gradient Estimation e
(
Dc, {θ1, θ2}, N, λ

)
Input: Batch Dc, general parameters {θ1, θ2}, number of samples N in Monte Carlo REINFORCE, smoothing
parameter λ.
Output: Gradient estimation of a.

1: Sample N i.i.d. Gaussian matrices g1, · · · ,gN ∼ N (0, I);
2: Return gradient estimation 1

Nλ

∑N
i=1 a

(
Dc, {θ1, θ2}+ λgi

)
gi.

Algorithm 4 Adversarial Attack a
(
Dc, {θ1c , θ2c}

)
Input: Batch Dc, perturbation budget ε, specific parameters {θ1c , θ2c}
Output: Attack loss LDc on Dc.

1: LDc = 0;
2: for each (v1

i ,v
2
k) ∈ Dc

3: Generate attack starting points (v1
i )

0 = h1
(
v1
i |θ1c

)
and (v2

k)0 = h2
(
v2
k|θ2c

)
;

4: Utilize PGD attack to generate adversarial nodes (v1
i )
T and (v2

k)T in Eq.(10);
5: Aggregate attack loss LDc+ = L

(
(v1
i )
T , (v2

k)T
)

in Eq.(9);
6: Return LDc .

Algorithm 2 presents the pseudo code of our MLPGD model. D is partitioned into C batches
D1, · · · , DC , each with equal size of |D|/C. The search process on each batch Dc (1 ≤ c ≤ C)
is treated as a single task, which aims to find good (v1

i )0 and (v2
k)0 for Dc to maximize the attack

loss LDc =
∑

(v̂1
i ,v̂

2
k)∈Dc

L(v̂1
i , v̂

2
k). A general model that has general parameters θ1, θ2 is learnt to

quickly adapt to search tasks on multiple batches. The learnt θ1, θ2 should be sensitive to changes of
each Dc, such that small changes in θ1, θ2 will produce high rise on LDc over any of D1, · · · , DC .
Line 4 estimates the gradient of LDc by calling Algorithm 3. In Line 5, when adapting to the task
on a new Dc, θ1, θ2 become specific parameters θ1c , θ

2
c for Dc. Here, we use {θ1c , θ2c} to denote

the concatenation matrix of θ1c and θ2c . The parameters are trained by maximizing the attack loss
a
(
Dc, {θ1c , θ2c}

)
w.r.t. general parameters θ1, θ2 across batches. The meta objective is given below.

maxLDc = max
θ1,θ2

C∑
c=1

a
(
Dc, {θ1c , θ2c}

)
=

C∑
c=1

a
(
Dc, {θ1, θ2}+ αec

)
(11)

In Line 6, the meta optimization is performed over the general θ1, θ2, while the objective is computed
using the specific θ1c , θ

2
c . The general θ1, θ2 are updated in terms of the attack loss on each batch.

{θ1, θ2} = {θ1, θ2}+
β

C

C∑
c=1

e
(
Dc, {θ1c , θ2c}

)
(12)

Algorithm 4 exhibits the adversarial attack module a
(
Dc, {θ1c , θ2c}

)
on a batch Dc (1 ≤ c ≤ C). In

Line 3, two neural networks h1 and h2 with specific parameters θ1c and θ2c are designed to generate
the attack starting points (v1

i )0 and (v2
k)0 of each (v1

i ,v
2
k) ∈ Dc. The last layers of h1 and h2 use the

composition of the ReLU [53] and Softsign [25] as activation function to ensure (v1
i )0 ∈ {0, 1}N1

and (v2
k)0 ∈ {0, 1}N2

. In Line 4, the PGD attack in Eq.(10) is utilized to generate the adversarial
nodes v̂1

i and v̂2
k. Line 5 calculates the attack loss LDc on Dc to provide task-specific feedback.

Standard meta learning models utilizes gradient ascent/descent techniques to compute the updated
parameters on new tasks [23, 3, 42, 56]. However, the attack module in Algorithm 4 is non-smooth
and non-differential w.r.t. parameters θ1, θ2, θ1c , and θ2c , since the perturbation is a multi-step process
as well as the projection at each step is non-differential. Therefore, Algorithm 3 is proposed to
employ Gaussian smoothing technique to approximate a smoothed attack module.

â
(
Dc, {θ1, θ2}

)
≈ (2π)−

d
2

∫
a
(
Dc, {θ1, θ2}+ λg

)
exp

(
− 1

2
‖g‖22

)
dg

= Eg∼N (0,I)a
(
Dc, {θ1, θ2}+ λg

) (13)

where â is the Gaussian smoothing of a and differentiable everywhere. λ is a smoothing parameter,
and d is the number of entries in {θ1, θ2}. g ∼ N (0, I) that has the same size as {θ1c , θ2c} is
interpreted as policy exploration directions, i.e., as perturbations in policy space to be explored. Thus,
the policy perturbations in g are introduced to θ1c and θ2c respectively. â is obtained by perturbing
a at a given point along Gaussian directions and averaging the evaluations. And then, Algorithm 3
estimates the gradient of â via Monte Carlo REINFORCE method [79].
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Table 2: Mismatching rate (%) with 5% perturbed edges
AS SNS DBLP

Attack Model SNNA CrossMNA DGMC SNNA CrossMNA DGMC SNNA CrossMNA DGMC
Clean 53.9 46.6 34.7 45.2 50.4 41.6 56.1 51.9 63.2
Random 57.5 49.9 37.6 48.8 52.0 46.8 59.8 54.0 68.8
RL-S2V 56.5 51.8 36.5 51.3 53.2 45.8 62.6 56.7 69.3
Meta-Self 63.1 55.1 45.0 55.1 64.8 51.3 65.7 63.7 73.3
CW-PGD 61.7 59.1 49.6 54.9 63.0 49.6 68.7 66.6 75.4
GF-Attack 57.9 53.7 39.5 52.9 59.6 47.9 64.9 61.1 69.1
CD-ATTACK 59.0 51.7 42.7 54.0 59.8 50.2 64.0 61.8 72.0
GMA 64.2 62.9 54.9 61.2 69.6 55.7 74.2 74.3 80.7

e
(
Dc, {θ1, θ2}

)
≈ ∇θ1,θ2 â

(
Dc, {θ1, θ2}

)
≈ (2π)−

d
2

∫
a
(
Dc, {θ1, θ2}+ λg

)
exp

(
− 1

2
‖g‖22

)
gdg

=
1

λ
Eg∼N (0,I)a

(
Dc, {θ1, θ2}+ λg

)
g ≈ 1

Nλ

N∑
i=1

a
(
Dc, {θ1, θ2}+ λgi

)
gi, gi ∼ N (0, I)

(14)

5 Experimental Evaluation
Table 1: Experiment Datasets

Dataset AS SNS DBLP
Graph v1 v2 Last.fm LiveJournal 2013 2014
#Nodes 10,900 11,113 5,682 17,828 28,478 26,455
#Edges 31,180 31,434 23,393 244,496 128,073 114,588

#Matched Nodes 6,462 2,138 4,000

In this section, we will show the ef-
fectiveness of the GMA model in
this work for deep graph matching
tasks over three groups of datasets:
social networks (SNS) [98], au-
tonomous systems (AS) [2], and D-

BLP coauthor graphs [1], as shown in Table 1.

Baselines. We compare the GMA model with six state-of-the-art graph attack models. Random
Attack randomly adds and removes edges to generate perturbed graphs. RL-S2V [14, 123] generates
adversarial attacks on graph data based on reinforcement learning. Meta-Self [125] is a poisoning
attack model for node classification by using meta-gradients to solve the bilevel optimization problem.
CW-PGD [86] developed a PGD topology attack to attack a predefined or a retrainable GNN. GF-
Attack [5] attacks general learning methods by devising new loss and approximating the spectrum.
CD-ATTACK [41] hides nodes in the community by attacking the graph autoencoder model. The
majority of existing efforts focus on adversarial attacks on single graph learning. To our best
knowledge, there are no other attack baselines on graph matching available. We replace the original
losses in the baselines with the matching loss for fair comparison in the experiments.

Variants of GMA model. We evaluate four variants of GMA to show the strengths of different
components. GMA-KDE only uses the KDE and density maximization to generate imperceptible
attacks. GMA-PGD only utilizes the basic PGD [47] to produce effective attacks. GMA-MLPGD
employs our proposed MLPGD model to well choose good attack starting points in the PGD. GMA
operates with the full support of both KDE and MLPGD components.

Graph matching algorithms. We validate the effectiveness of the above attack models with three
representative deep graph matching methods. SNNA [39] is an adversarial learning framework to
solve the weakly-supervised identity matching problem by minimizing the distribution distance.
CrossMNA [13] is a cross-network embedding-based supervised network alignment method by
learning inter/intra-embedding vectors for each node and by computing pairwise node similarity
scores across networks. Deep graph matching consensus (DGMC) [22] is a supervised graph matching
method that reaches a data-driven neighborhood consensus between matched node pairs.

Evaluation metrics. We use two popular measures in graph matching to verify the attack qual-
ity: Accuracy [93, 10, 95] and Precision@K [101, 13, 97]. A larger mismatching rate (i.e., 1 -
Accuracy on test data) or a smaller Precision@K shows a better attack. K is fixed to 30 in all tests.

Attack performance on various datasets with different matching algorithms. Table 2 exhibits
the mismatching rates of three deep graph matching algorithms on test data by eight attack models
over three groups of datasets. We randomly sample 10% of known matched node pairs as training
data and the rest as test data. For all attack models, the number of perturbed edges is fixed to 5%
in these experiments. It is observed that among eight attack methods, no matter how strong the
attacks are, the GMA method achieve the highest mismatching rates on perturbed graphs in most
experiments, showing the effectiveness of GMA to the adversarial attacks. Compared to the graph
matching results under other attack models, GMA, on average, achieves 21.3%, 18.8%, and 19.2%
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Figure 4: Precision with varying training ratios
improvement of mismatching rates on AS, SNS, and DBLP respectively. In addition, the promising
performance of GMA with all three graph matching models implies that GMA has great potential as
a general attack solution to other graph matching methods, which is desirable in practice.

Attack performance with varying perturbation edges. Figure 3 presents the graph matching
quality under eight attack models by varying the ratios of perturbed edges from 2% to 25%. It is
obvious that the attacking performance improves for each attacker with an increase in the number
of perturbed edges. This phenomenon indicates that current deep graph matching methods are very
sensitive to adversarial attacks. GMA achieves the lowest Precision values (< 0.488), which are
still better than the other seven methods in most tests. Especially, when the perturbation ratio is large
than 10%, the Precision values drop quickly.

Impact of training data ratios. Figure 4 shows the quality of two graph matching algorithms on
SNS by varying the ratio of training data from 2% to 25%. Here, the number of perturbed edges is
fixed to 5%. We make the following observations on the performances by eight attack models. (1)
The performance curves keep increasing when the training data ratio increases. (2) GMA outperforms
other methods in most experiments with the lowest Precision: < 0.482 with SNNA and < 0.571
with DGMC respectively. Even when there are many training data available (≥ 20%), the quality
degradation by GMA is still obvious, although more training data makes the graph matching models
be resilient to poisoning attacks under a small perturbation budget.

Ablation study. Figure 5 presents the mismatching rates of graph matching on SNS with four variants
of the GMA attack model. We have observed the complete GMA achieves the highest mismatching
rates (> 54.9%) on AS, (> 55.7%) over SNS, and (> 74.2%) on DBLP, which are obviously better
than other versions. Notice that GMA-MLPGD performs quite well in most experiments, compared
with GMA-PGD. A reasonable explanation is that searching from good attack starting points can help
the MLPGD converge quickly by crossing the peak of the decision boundary. In addition, GMA-KDE
achieves the better attack performance than GMA-MLPGD. A rational guess is that it is difficult to
correctly match two nodes results when they lie in dense regions with many similar nodes, although
the main goal of KDE is to generate imperceptible attacks. These results illustrate both KDE and
MLPGD models are important in producing effective attacks in graph matching.

Impact of perturbation budget ε. Figure 6 (a) measures the performance effect of ε in the MLPGD
model for the graph matching by varying ε from 1 to 5. It is observed that when increasing ε, the
Precision of the GMA model decreases substantially. This demonstrates that it is difficult to train a
robust graph matching model under large ε constraint. However, a large ε can be easily detected by
humans or by defender programs. Notice that the average node degree of three groups of datasets is
between 2.9 and 13.9. Thus we suggest generating both imperceptible and effective attacks for the
graph matching task under ε between 2 and 3, such that ε is smaller than the average node degree.

Time complexity analysis Based on [20], the complexity of meta learning is O(d2), where d is the
problem dimension. In the context of graph matching, it is the number of nodes in two graphs (Ns,
s = 1 or 2). Both density estimation and PGD have complexity of O((Ns)2). Thus, the overall
complexity is O((Ns)2), which is the same as most existing attack methods that search the entire
graphs to find weak edges to attack.

Impact of meta step size α. Figure 6 (b) shows the impact of α in our MLPGD model over three
groups of datasets. The performance curves initially raise when α increases. Intuitively, the MLPGD
with large α can help the meta learning converge quickly. Later on, the performance curves keep
relatively stable or even decreasing when α continuously increases. A reasonable explanation is that
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the too large α makes the meta learner take a big walk with rapid pace, such that it may miss the
optimal meta parameters. Thus, it is important to determine the optimal α for the MLPGD model.

6 Related Work

Adversarial Attacks on Graph Data. Several recent studies have presented that graph learning
models, especially deep learning-based models, are highly sensitive to adversarial attacks, i.e.,
carefully designed small deliberate perturbations in graph structure and attributes can cause the
models to produce incorrect prediction results [64, 69, 90, 74, 45, 85, 80, 127]. The current graph
adversarial attack techniques mainly fall into two categories in terms of the attack surface: (1)
evasion attacks occur after the target model is well trained in clean graphs, i.e., the learned model
parameters are fixed during evasion attacks. The attacker tries to evade the graph learning models
by generating malicious samples during testing phase [14, 126]; and (2) poisoning attacks, known
as contamination of the training data, take place during the training time of deep learning models.
An adversary tries to poison the training data by injecting carefully designed examples to cause
failures of the target model on some given test samples [126, 69, 125, 4, 123]. Since transductive
learning is widely used in most graph analysis tasks, the test samples (but not their labels) are
participated in the training stage, which leads to the popularity of poisoning attacks. Various
adversarial attack models have been developed to show the vulnerability of graph learning models in
node classification [14, 126, 74, 86, 125, 71, 19, 70], community detection [9, 78, 7, 41], network
embedding [6, 4, 5], link prediction [104], similarity search [15], malware detection [30], and
knowledge graph embedding [90].

Graph Matching. Graph data analysis has attracted active research in the last decade [110, 111,
11, 106, 12, 107, 108, 66, 113, 109, 112, 114, 35, 115, 117, 116, 119, 118, 81, 82, 120, 121].
Graph matching is one of the most important research topics in the graph domain, which aims
to match the same entities (i.e., nodes) across two or more graphs and has been a heated topic in
recent years [91, 98, 62, 46, 48, 101, 13]. Research activities can be classified into three broad
categories. (1) Topological structure-based techniques, which rely on only the structural information
of nodes to match multiple or two input networks, including IONE [43], GeoAlign [46], Low-
rank EigenAlign [54], FRUI-P [105], CrossMNA [13], MOANA [96], GWL [84], MSUIL [38],
DeepMGGE [24], and KEMINA [122]; (2) Structure and/or attribute-based approaches, which utilize
highly discriminative structure and attribute features for ensuring the matching effectiveness, such as
FINAL [93, 94], ULink [51], CAlign [10], MASTER [65], gsaNA [88], CoLink [100], REGAL [28],
UUIL [37], SNNA [39], RANA [58], CENALP [18], ORIGIN [97], OPTANE [50], and Deep
Graph Matching Consensus [22]; (3) Heterogeneous methods employ heterogeneous structural,
content, spatial, and temporal features to further improve the matching performance, including
COSNET [98], Factoid Embedding [83], HEP [99], LHNE [77], and DPLink [21]. Several papers
review key achievements of graph matching across online information networks including state-of-
the-art algorithms, evaluation metrics, representative datasets, and empirical analysis [62, 27, 31, 73].

7 Conclusions

In this work, we have studied the graph matching adversarial attack problem. First, we proposed to
utilize kernel density estimation technique to estimate and maximize the densities of attacked nodes
and generate imperceptible perturbations, by pushing attacked nodes to dense regions in two graphs.
Second, we developed a meta learning based projected gradient descent method to well choose attack
starting points and improve the search performance of PGD for producing effective perturbations.
The GMA model achieves superior attack performance against several representative attack models.
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Broader Impact

Graph data are ubiquitous in the real world, ranging from biological, communication, and transporta-
tion graphs, to knowledge, social, and collaborative networks. Many real-world graphs are essentially
crowdsourced projects, such as social and knowledge networks, where information and knowledge are
produced by internet users who came to the sites. Thus, the quality of crowdsourced graph data is not
stable, depending on human knowledge and expertise. In addition, it is well known that the openness
of crowdsourced websites makes them vulnerable to malicious behaviors of interested parties to gain
some level of control of the websites and steal users’ sensitive information, or deliberately influence
public opinion by injecting misleading information and knowledge into crowdsourced graphs.

Graph matching is one of the most important research topics in the graph domain, which aims to
match the same entities (i.e., nodes) across two or more graphs [91, 98, 43, 46, 48, 72, 54, 105, 13, 75].
It has been widely applied to many real-world applications ranging from protein network matching in
bioinformatics [33, 63], user account linking in different social networks [62, 51, 100, 37, 101, 21, 38],
and knowledge translation in multilingual knowledge bases [87, 124], to geometric keypoint matching
in computer vision [22]. Owing to the openness of crowdsourced graphs, more work is needed to
analyze the vulnerability of graph matching under adversarial attacks and to future develop robust
solutions that are readily applicable in production systems.

A potential downside of this research is about the application of user account linking in different
social networks due to the user privacy issues. Recent advances in differential privacy and privacy
preserving graph analytics have shown the superior performance of protecting sensitive information
about individuals in the datasets. Therefore, these techniques offer a great opportunity to integrate
them into the vulnerability analysis of graph matching, for alleviating the user privacy threats.
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