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Abstract

Pruning neural network parameters is often viewed as a means to compress models,
but pruning has also been motivated by the desire to prevent overfitting. This
motivation is particularly relevant given the perhaps surprising observation that
a wide variety of pruning approaches increase test accuracy despite sometimes
massive reductions in parameter counts. To better understand this phenomenon,
we analyze the behavior of pruning over the course of training, finding that prun-
ing’s benefit to generalization increases with pruning’s instability (defined as the
drop in test accuracy immediately following pruning). We demonstrate that this
“generalization-stability tradeoff” is present across a wide variety of pruning settings
and propose a mechanism for its cause: pruning regularizes similarly to noise in-
jection. Supporting this, we find less pruning stability leads to more model flatness
and the benefits of pruning do not depend on permanent parameter removal. These
results explain the compatibility of pruning-based generalization improvements
and the high generalization recently observed in overparameterized networks.

1 Introduction

Studies of generalization in deep neural networks (DNNs) have increasingly focused on the observa-
tion that adding parameters improves generalization (as measured by model accuracy on previously
unobserved inputs), even when the DNN already has enough parameters to fit large datasets of
randomized data [1, 2]. This surprising phenomenon has been addressed by an array of empirical and
theoretical analyses [3–13], all of which study generalization measures other than parameter counts.

Reducing memory-footprint and inference-FLOPs requirements of such well-generalizing but overpa-
rameterized DNNs is necessary to make them broadly applicable [14], and it is achievable through
neural network pruning, which can substantially shrink parameter counts without harming accuracy
[15–21]. Moreover, many pruning methods actually improve generalization [15–17, 22–30].

At the interface of pruning and generalization research, then, there’s an apparent contradiction. If
larger parameter counts don’t increase overfitting in overparameterized DNNs, why would pruning
DNN parameters throughout training improve generalization?

We provide an answer to this question by illuminating a regularization mechanism in pruning separate
from its effect on parameter counts. Specifically, we show that simple magnitude pruning [17, 18]
produces an effect similar to noise-injection regularization [31–37]. We explore this view of pruning
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Figure 1: A pruning algorithm’s instability on pruning iteration i is instabilityi =
tpre,i−tpost,i

tpre,i
, where

tpre,i and tpost,i are the pruned DNN’s test accuracies measured immediately before and immediately after
(respectively) pruning iteration i. Pruning algorithm stability on iteration i is stabilityi = 1− instabilityi, the
fraction of accuracy remaining immediately after a pruning event.

as noise injection through a proxy for the level of representation “noise” or corruption pruning injects:
the drop in accuracy immediately after a pruning event, which we call the pruning instability (Figure
1 illustrates the computation of instability). While stability (stability = 1− instability) is often the
goal of neural network pruning because it preserves the function computed [15], stable pruning could
be suboptimal to the extent that pruning regularizes by noising representations during learning.

Supporting the framing of pruning as noise-injection, we find that pruning stability is negatively corre-
lated with the final level of generalization attained by the pruned model. Further, this generalization-
stability tradeoff appears when making changes to any of several pruning algorithm hyperparameters.
For example, pruning algorithms typically prune the smallest magnitude weights to minimize their
impact on network activation patterns (i.e., maximize stability). However, we observe that while
pruning the largest magnitude weights does indeed cause greater harm to stability, it also increases
generalization performance. In addition to suggesting a way to understand the repercussions of
pruning algorithm design and hyperparameter choices, then, these results reinforce the idea that
pruning’s positive effect on DNN generalization is more about stability than final parameter count.

While the generalization-stability tradeoff suggests that pruning’s generalization benefits may be
present even without the permanent parameter count reduction associated with pruning, a more
traditional interpretation suggests that permanent removal of parameters is critical to how pruning
improves generalization. To test this, we allow pruned connections back into the network after it has
adapted to pruning, and we find that the generalization benefit of permanent pruning is still obtained.
This independence of pruning-based generalization improvements from permanent parameter count
reduction resolves the aforementioned contradiction between pruning and generalization.

We hypothesize that lowering pruning stability (and thus adding more representation noise) helps
generalization by encouraging more flatness in the final DNN. Our experiments support this hypoth-
esis. We find that pruning stability is negatively correlated with multiple measures of flatness that
are associated with better generalization. Thus, pruning and overparameterizing may improve DNN
generalization for the same reason, as flatness is also a suspected source of the unintuitively high
generalization levels in overparameterized DNNs [3, 4, 9, 11, 12, 38–40].

2 Approach

Our primary aim in this work is to better understand the relationship between pruning and general-
ization performance, rather than the development of a new pruning method. We study this topic by
varying the hyperparameters of magnitude pruning algorithms [17, 18] to generate a broad array of
generalization improvements and stability levels.2 The generalization levels reported also reflect the
generalization gap (train minus test accuracy) behavior because all training accuracies at the time of
evaluation are 100% (Section 3.2 has exceptions that we address by plotting generalization gaps).

In each experiment, every hyperparameter configuration was run ten times, and plots display all ten
runs or a mean with 95% confidence intervals estimated from bootstrapping. Here, we discuss our
hyperparameter choices and methodological approach. Please see Appendix A for more details.

Models, data, and optimization We use VGG11 [41] with batch normalization and its dense
layers replaced by a single dense layer, ResNet18, ResNet20, and ResNet56 [42]. Except where noted
in Section 3.2, we train models with Adam [43], which was more helpful than SGD for recovering
accuracy after pruning (perhaps related to the observation that recovery from pruning is harder when

2Our code is available at https://github.com/bbartoldson/GeneralizationStabilityTradeoff.

2

https://github.com/bbartoldson/GeneralizationStabilityTradeoff


learning rates are low [44]). We use CIFAR10 data [45] without data augmentation, except in Section
3.2 where we note use of data augmentation (random crops and horizontal flips) and Appendix F
where we use CIFAR100 with data augmentation to mimic the setup in [10]. We set batch size to 128.

Use of `1- and `2-norm regularization Pruning algorithms often add additional regularization via
a sparsifying penalty [22, 24–26, 28, 30, 46], which obfuscates the intrinsic effect of pruning on
generalization. Even with a simple magnitude pruning algorithm, the choice between `1- and `2-norm
regularization affects the size of the generalization benefit of pruning [17], making it difficult to
determine whether changes in generalization performance are due to changes in the pruning approach
or the regularization. To avoid this confound, we study variants of simple magnitude pruning in
unpenalized models, except when we note our use of the training setup of [42] in Section 3.2.

Eschewing such regularizers may have another benefit: in a less regularized model, the size of the
generalization improvement caused by pruning may be amplified. Larger effect sizes are desirable, as
they help facilitate the identification of pruning algorithm facets that improve generalization. To this
end, we also restrict pruning to the removal of an intermediate number of weights, which prevents
pruning from harming accuracy, even when removing random or large weights [18].

Pruning schedule and rates For each layer of a model, the pruning schedule specifies epochs on
which pruning iterations occur (for example, two configurations in Figure 2 prune the last VGG11
convolutional layer every 40 epochs between epochs 7 and 247). On a pruning iteration, the amount
of the layer pruned is the layer’s iterative pruning rate (given as a fraction of the layer’s original
size), and a layer’s total pruning percentage is its iterative pruning rate multiplied by the number
of scheduled pruning iterations. With the aforementioned schedule, there are seven pruning events,
and a layer with total pruning percentage 90% would have an iterative pruning rate of 90

7 % ≈ 13%.
Except where we note otherwise, our VGG11 and ResNet18 experiments prune just the last four
convolutional layers with total pruning percentages {30%, 30%, 30%, 90%} and {25%, 40%, 25%,
95%}, respectively. This leads to parameter reductions of 42% for VGG11 and 46% for ResNet18.

Our experiments and earlier work [47] indicated that focusing pruning on later layers was sufficient
to create generalization and stability differences while also facilitating recovery from various kinds
of pruning instability (lower total pruning percentages in earlier layers also helped recovery in
[18, 30]). As iterative pruning rate and schedule vary by layer to accommodate differing total pruning
percentages, we note the largest iterative pruning rate used by a configuration in the plot legend. In
Section 3.2, we test the dependence of our results on having layer-specific hyperparameter settings by
pruning 10% of every layer in every block of ResNet18, ResNet20, and ResNet56.

Parameter scoring and pruning target We remove entire filters (structured pruning), and we
typically score filters of VGG11 using their `2-norm and filters of ResNet18—which has feature
map shortcuts not accounted for by filters—using their resulting feature map activations’ `1-norms
[18, 48], which we compute with a moving average. Experiments in Section 3.2, Appendix B, and
Appendix F use other scoring approaches, including `1-norm scoring of ResNet filters in Section 3.2.
We denote pruning algorithms that target/remove the smallest-magnitude (lowest-scored) parameters
with an "S" subscript (e.g. PruneS or Prune_S), random parameters with an "R" subscript, and the
largest-magnitude parameters with an "L" subscript. Please see Appendix A for more pruning details.

Framing pruning as noise injection Pruning is typically a deterministic procedure, with the
weights that are targeted for pruning being defined by a criterion (e.g., the bottom 1% of weights in
magnitude). Given weights meeting such a criterion, pruning can be effected through their multiplica-
tion by a Bernoulli(p) distributed random variable, where p = 0. Setting p > 0 would correspond
to DropConnect, a DNN noise injection approach and generalization of dropout [33–35]. Thus, for
weights meeting the pruning criterion, pruning is a limiting case of a noise injection technique. Since
not all weights matter equally to a DNN’s computations, we measure the amount/salience of the
“noise” injected by pruning via the drop in accuracy immediately following pruning (see Figure 1).

In Section 3.3, we show that pruning’s generalization benefit can be obtained without permanently
removing parameters. Primarily, we achieve this by multiplying by zero—for a denoted number of
training batches—the parameters we would normally prune, then returning them to the model (we run
variants where they return initialized at the values they trained to prior to zeroing, and at zero as in
[49]). In a separate experiment, we replace the multiplication by zero with the addition of Gaussian
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Figure 2: Less stable pruning leads to higher generalization in VGG11 (top) and ResNet18 (bottom) when
training on CIFAR-10 (10 runs per configuration). (Left) Test accuracy during training of several models
illustrates how adaptation to less stable pruning leads to better generalization. (Right) Means reduce along the
epoch dimension (creating one point per run-configuration combination).

noise, which has a variance equal to the variance of the unperturbed parameters on each training
batch and a larger variance on the first batch of a new epoch. Please see Appendix D for more details.

Computing flatness In Section 3.4, we use test data [12] to compute approximations to the traces
of the Hessian of the loss H (curvature) and the gradient covariance matrix C (noise).3 H indicates
the gradient’s sensitivity to parameter changes at a point, while C shows the sensitivity of the gradient
to changes in the sampled input (see Figure 6) [12]. The combination of these two matrices via the
Takeuchi information criterion (TIC) [50] is particularly predictive of generalization [12]. Thus, in
addition to looking at H and/or C individually, as has been done in [11, 40], we also consider a rough
TIC proxy Tr(C)/Tr(H) inspired by [12]. Finally, similar to analyses in [3, 11, 40], we compute
the size ε of the parameter perturbation (in the directions of the Hessian’s dominant eigenvectors)
that can be withstood before the loss increases by 0.1.

3 Experiments

3.1 The generalization-stability tradeoff

Can improved generalization in pruned DNNs simply be explained by the reduced parameter count, or
rather, do the properties of the pruning algorithm play an important role in the resultant generalization?
As removing parameters from a DNN via pruning may make the DNN less capable of fitting to the
noise in the training data [15, 16, 21], we might expect that the generalization improvements observed
in pruned DNNs are entirely explained by the number of parameters removed at each layer. In which
case, methods that prune equal amounts of parameters per layer would generalize similarly.

Alternatively, the nature of the particular pruning algorithm might determine generalization im-
provements. While all common pruning approaches seek to preserve important components of the
function computed by the overparameterized DNN, they do this with varying degrees of success,
creating different levels of stability. More stable approaches include those that compute a very
close approximation to the way the loss changes with respect to each parameter and prune a single
parameter at a time [16], while less stable approaches include those that assume parameter magnitude
and importance are roughly similar and prune many weights all at once [17]. Therefore, to the extent
that differences in the noise injected by pruning explain differences in pruning-based generalization
improvements, we might expect to observe a relationship between generalization and pruning stability.

3We use “flatness” loosely when discussing the trace of the gradient covariance, which is large/“sharp” when
the model’s gradient is very sensitive to changes in the data sample and small/“flat” otherwise.
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Figure 3: Increasing the iterative pruning rate (and decreasing the number of pruning events to hold total pruning
constant) leads to less stability (left), and can allow methods that target less important parameters to generalize
better (center). At a particular iterative rate, the Pearson correlation between generalization and stability is
always negative (right), a similar pattern holds with Kendall’s rank correlation. A baseline has 85.2% accuracy.

To determine whether pruning algorithm stability affects generalization, we compared the stability
and final test accuracy of several pruning algorithms with varying pruning targets and iterative pruning
rates (Figure 2). Consistent with the nature of the pruning algorithm playing a role in generalization,
we observed that less stable pruning algorithms created higher final test accuracies than those which
were stable (Figure 2, right; VGG11: Pearson’s correlation r = −.73, p-value = 4.4e−6; ResNet18:
r = −.43, p-value = .015). While many pruning approaches have aimed to be as stable as possible,
these results suggest that pruning techniques may actually facilitate better generalization when they
induce less stability. In other words there is a tradeoff between the stability during training and the
resultant generalization of the model. Furthermore, these results show that parameter-count- and
architecture-based [21] arguments are not sufficient to explain generalization levels in pruned DNNs,
as the precise pruning method plays a critical role in this process.

Figure 2 also demonstrates that pruning events for PruneL with a high iterative pruning rate (red
curve, pruning as much as 14% of a given convolutional layer per pruning iteration) are substantially
more destabilizing than other pruning events, but despite the dramatic pruning-induced drops in
performance, the network recovers to higher performance within a few epochs. Several of these
pruning events are highlighted with red arrows. Please see Appendix B for more details.

Appendix B also shows results with a novel scoring method that led to a wider range of stabilities and
generalization levels, which improved the correlations between generalization and stability in both
DNNs. Thus, the visibility of the generalization-stability tradeoff is affected by pruning algorithm
hyperparameter settings, accenting the benefit of designing experiments to allow large pruning-based
generalization gains. In addition, these results suggest that the regularization levels associated with
various pruning hyperparameter choices may be predicted by their effects on stability during training.

3.2 Towards understanding the bounds of the generalization-stability tradeoff

In Figure 2, decreasing pruning algorithm stability led to higher final generalization. Will decreasing
stability always help generalization? Is the benefit of instability present in smaller DNNs and when
training with SGD? Here, we address these and similar questions and ultimately find that the tradeoff
has predictable limits but is nonetheless present across a wide range of experimental hyperparameters.

Impact of iterative pruning rate on the generalization-stability tradeoff For a particular prun-
ing target and total pruning percentage, pruning stability in VGG11 monotonically decreases as we
raise the iterative pruning rate up to the maximal, one-shot-pruning level (Figure 3 left). Thus, if
less stability is always better, we would expect to see monotonically increasing generalization as we
raise iterative pruning rate. Alternatively, it’s possible that we will observe a generalization-stability
tradeoff over a particular range of iterative rates, but that there will be a point at which lowering
stability further will not be helpful to generalization. To test this, we compare iterative pruning rate
and test accuracy for each of three pruning targets (Figure 3 center).

For pruning targets that are initially highly stable (PruneS and PruneR), raising the iterative pruning
rate and decreasing stability produces higher generalization up until the one-shot pruning case
(Figure 3 center). When the pruning target lacks stability at the initial iterative rate (PruneL), further
decreasing stability is harmful to generalization. These results suggest that the generalization stability
tradeoff is present across a wide range of iterative pruning rates, but, critically, that there are limits to
the benefits of further decreasing stability once it is already at a low level.
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Figure 4: Among pruned models, lower pruning stability is associated with higher generalization and lower
generalization gaps (overfitting) in ResNet18, ResNet20, and ResNet56 when training with weight decay and
data augmentation. Blue and orange dots represent models pruned with 3% and 5% iterative rates, respectively.

Interestingly, we found that the generalization-stability tradeoff grew weaker as the iterative pruning
rate increased as well (Figure 3 right). Notably, however, the tradeoff was present for all iterative
pruning rates studied (though at the highest iterative rates, the correlation is no longer significant). This
result suggests that not only does the generalization improvement decrease as stability decreases past
some threshold, the strength of the tradeoff itself also decreases as stability decreases, highlighting
that there is a “sweet spot” at which decreased stability is most helpful.

Impact of traditional training and pruning on the generalization-stability tradeoff Our exper-
iments thus far (e.g. those shown in Figure 2) pruned only a subset of layers of large models trained
with Adam, without weight decay or data augmentation. It’s possible that reductions in stability only
improve generalization in such a regime. Alternatively, the tradeoff may be present when making
changes to these factors.

We investigate this important matter by evaluating the relationship between generalization and
stability in ResNet18, ResNet20, and ResNet56 when training using the hyperparameters described
in [42] (e.g., we employ SGD with weight decay and data augmentation). Further, we simplify our
pruning approach by removing 10% of the filters of each convolutional layer of each block, scoring
filters with their `1-norms. Parameters are removed either three times during training (epochs {41,
71, 101}) or twice during training (epochs {41, 101}), creating iterative rates of roughly 3% and 5%.

Consistent with the generalization-stability tradeoff explaining generalization levels across various
training and pruning scenarios, Figure 4 shows that reductions in stability improve both generalization
and the generalization gap in pruned models. In Appendix C.4, we build on these results and show a
stability regime where lower stability leads to generalization levels higher than the baseline model’s.

Impact of total pruning percentage on the generalization-stability tradeoff We raised the total
pruning percentage in the Figure 2 ResNet18 experiments from 46% to 59% and found that the
generalization-stability tradeoff was still present. Interestingly, however, PruneL seemingly induced
too much instability and ceased to outperform PruneS at this higher total pruning percentage, consis-
tent with prior work [18] which found that pruning large weights was harmful. Please see Appendix
C for these additional results and more details of the experiments in this section.

Taken together, these results demonstrate that while the generalization-stability tradeoff was present
across a wide range of pruning hyperparameters, it consistently broke down once pruning stability
dropped below some threshold, at which point further reducing stability did not lead to generalization
improvements. This failure mode highlights the need to frame the benefits of lower stability as a part
of a tradeoff rather than a free lunch. Further, it is consistent with the comparison to noise-injection,
wherein the noise is moderate (e.g., increasing the dropout rate past 0.8 harms generalization) [31–37].
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3.3 Iterative magnitude pruning as noise injection

We have alluded to the idea that simple magnitude pruning performs a kind of noise injection, with
the peculiarity that the noise is applied permanently or not at all. Removing the permanence of
pruning by allowing weight reentry can mitigate the parameter reduction of pruning, making it more
similar to a traditional noise-injection regularizer, and allowing us to test whether the permanent
reduction in parameters caused by pruning is critical to its effect on generalization.

As a baseline, we consider PruneL applied to VGG11, judging filter magnitude via the `2-norm. We
then modify this algorithm to, rather than permanently prune filters, simply set the filter weights to
zero, then allow the zeroed weights to immediately resume training in the network ("Zeroing 1" in
Figure 5 top). However, by allowing pruned weights to immediately recover, Zeroing 1 differs from
pruning noise, which causes the unpruned features to be trained in the absence of the pruned feature
maps.
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Figure 5: Generalization improvements from prun-
ing bear resemblance to those obtained by using
temporary multiplicative zeroing (top) and additive
Gaussian noise (bottom), as long as the noise is
applied for enough batches/steps.

To retain this potentially regularizing aspect of prun-
ing noise, we held weights to zero for 50 and 1105
consecutive batches, as well. As a related experi-
ment, we measured the impact of adding Gaussian
noise to the weights either once (Gaussian 1) or re-
peatedly over a series of training batches (Gaussian
50/1105 in Figure 5 bottom).

If the capacity reduction associated with having
fewer parameters is not necessary to explain prun-
ing’s effect on generalization, then we would ex-
pect that the generalization behavior of temporary
pruning noise injection algorithms could mimic the
generalization behavior of PruneL. Alternatively, if
having fewer weights is a necessary component of
pruning-based generalization improvements, then
we would not expect close similarities between the
generalization phenomena of PruneL and temporary
pruning noise injection.

Consistent with the idea that the noise injected by
pruning leads to the generalization benefits observed
in pruned DNNs, applying zeroing noise for 50
batches to filters (rather than pruning them com-
pletely) generates strikingly similar final general-
ization performance to PruneL (Figure 5 top). In
fact, throughout training, both methods have similar
levels of instability and test accuracy. This result
suggests that pruning-based generalization improvements in overparameterized DNNs do not require
the model’s parameter count to be reduced.

Finally, we evaluated the impact of adding Gaussian noise to parameters at various points throughout
training. Consistent with the generalization-stability tradeoff, we found that when Gaussian noise
was added for a long enough duration (Gaussian 1105; purple line in Figure 5 bottom), performance
increased substantially. This result demonstrates that the generalization-stability tradeoff is not
specific to pruning, and that noise injected by pruning is simply a special case of noise more broadly.

Additional results and experimental details are in Appendix D. For example, an alternative version of
this analysis zeros weights for N batches, then allows them back in at their pre-zeroing values. This
method creates instability similar to regular pruning’s, and produces a similar generalization benefit.
Also, we provide a visualization of the weight noising methods that we use here.

3.4 Flatness: a mechanism for pruning-based generalization improvements?

Our results thus far suggest that noise injection is the mechanism through which pruning improves
generalization. Can the noise pruning adds to representations translate to flatness in the final model
that improves generalization? Here, we address this question.
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Figure 6: Less pruning stability improves measures of model robustness to noise in the parameters and change in
the inputs. These two types of model “flatness” are in turn correlated with generalization. “Scratch” pruning
[18, 21] trains the pruned architecture from the outset and is thus 100% stable.

Given the many successful versions of noise injection [31–37], and pruning’s relationship to dropout
[51, 52], we hypothesize that pruning noise can produce flatness in the resulting model that’s helpful
to generalization. Specifically, we expect that less stable pruning, which introduces more significant
noise by definition, will translate to heightened model robustness to changes in data sample and
parameters (flatness). Furthermore, we expect that the heightened flatness will translate to higher
generalization, consistent with empirical evidence and theory suggesting that flatness is helpful to
generalization in overparameterized DNNs [3, 4, 11, 12, 38–40, 53].

Alternatively, it’s possible that the observed relationship between pruning stability and generalization
is merely correlation, that pruning noise helps in a way unrelated to flatness, or that flatness differences
don’t explain the generalization benefits created by pruning. If we observed a positive or no correlation
between stability and flatness, or a negative correlation between flatness and generalization, then our
experiments would support one of these alternative hypotheses.

To test these hypotheses, we compute several measures of flatness, and examine their relationships to
pruning stability and final generalization in VGG11. We find that there is also a tradeoff between
flatness and stability, as decreasing stability led to flatter minima for all flatness measures (Figure 6
and Appendix E). Furthermore, increased flatness statistically significantly improved generalization.
Thus, we find evidence supporting the hypothesis that less pruning stability leads to greater flatness
of a kind that is helpful to generalization.

This result also suggests that the generalization-stability tradeoff we observe may be mediated
by increases to the flatness of the converged solution. Specifically, after DNNs recover from the
corruption of representations issued by pruning, they not only generalize better but also are less
sensitive to data sample and parameter changes. Supporting treatment of pruning as noise injection,
this flattening effect is enhanced by representation corruption that is more salient (less stable pruning).

More broadly, these findings add to the recent empirical evidence showing that flatness can explain
generalization levels in DNNs when parameter counts cannot [3, 40]. We also corroborate the
recent observation that there is utility in moving beyond parameter flatness and also looking at the
gradient covariance to understand generalization performance [11, 12]. Finally, these findings resolve
the contradiction between the observation that pruning improves generalization and the emerging
generalization theory that de-emphasizes or removes the role of parameter counts [1, 6, 54]. Appendix
E contains all of our flatness results and details on our measurements of flatness.
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4 Related work

Many pruning studies have shown that the pruned DNN has heightened generalization [17, 22–30],
and this is consistent with the fact that pruning may be framed as a regularization (rather than
compression) approach. For example, variational Bayesian approaches to pruning via sparsity-
inducing priors [20, 26] frame weight removal as a means to reduce model description length, which
may improve the likelihood of the model obtaining good generalization [55]. However, the relevance
of the Bayesian/MDL explanation to the regularization done by variational pruning strategies depends
on the choice of prior [56]. More importantly, non-Bayesian pruning can improve generalization and
even outperform variational approaches [57], showing that pruning regularizes in non-Bayesian ways.

Pruning to improve generalization has also been inspired by analyses of VC dimension, a measure of
model capacity [15, 16]. Overfitting can be bounded above by an increasing function of VC dimension,
which itself often increases with parameter counts, so fewer parameters can lead to a guarantee of less
overfitting [58]. While generalization in some learning environments can be eloquently explained
by parameter-count-based bounds, such bounds can be so loose in practice that tightening them by
reducing parameter counts does not imply better generalization [39]. In fact, generalization in deep
neural networks tends to improve as model size increases [1, 2, 6, 7, 10], suggesting that model-size
reduction inadequately describes pruning’s DNN regularization mechanism (see Appendix F).

More recent generalization bounds consider how the DNN responds to parameter noise [4, 9, 38, 39],
which (along with the gradient covariance) is predictive of generalization in practice [11, 12]. Our
results provide empirical support for such theory, as we find that iterative DNN pruning may improve
both generalization and flatness by creating various noisy versions of the internal representation of
the data, which unpruned parameters try to fit to, as in noise-injection regularization [33–36].

Flatness and neural network pruning were previously linked by an algorithm that removed weights
when doing so led to a flatter loss surface [59]. We show that a flat-minimum-search algorithm is not
required to flatten models via pruning: simple magnitude pruning injects noise that flattens DNNs.

Dropout creates particularly similar noise to pruning, as it temporarily sets random subsets of layer
outputs to zero (likely changing an input’s internal representation every epoch). Indeed, applying
dropout-like zeroing noise to a subset of features during training can encourage robustness to a post-
hoc pruning of that subset [51, 52]. The iterative DNN pruning noise analyzed in our experiments
differs, however, as it is: applied less frequently, permanent, not random, and less well studied.

When pruning noise is strong enough to alter DNN predictions, accuracy will likely move closer
to chance-level, in which case we say the pruning stability (defined in Figure 1) falls. The pruning
literature has other measures of pruning’s impact on the network, including how much pruning
affects the values of the weights in the resulting subnetwork (the unpruned weights) via the Euclidean
distance between two subnetwork copies trained with and without the removal of the weights targeted
by pruning [60]. Our stability measure characterizes an immediate change in accuracy caused by
pruning, allowing us to study how noise injection relates to pruning’s effect on generalization.

Permanent removal of parameters is not required to obtain generalization benefits of pruning with
DSD (dense-sparse-dense training), retraining a model after pruning then returning the pruned weights
to the model for a final training phase [49]. Relative to DSD, we demonstrate the effects of multiple
different pruning schemes and argue that a scheme with less stability produces better generalization.

5 Discussion

We demonstrated the presence of a generalization-stability tradeoff in neural network pruning that
stems from the generalization benefits of pruning less stably, which heightens flatness by intensifying
a noise-injection-like effect that does not require permanent parameter removal to be effective.
Thus, our results show how pruning-based generalization improvements can be consistent with
generalization bounds that do not depend on parameter counts [6, 54], and they provide empirical
support for generalization theory based on flatness/noise-robustness [4, 38, 39].

Our results suggest that the generalization-stability tradeoff is a useful framework for analyzing the
effect of pruning hyperparameters on pruned-model generalization. For example, the fact that iterative
pruning outperforms one-shot pruning [17] can be seen through this framework as an observation
about repeated noise injections being preferable to one (perhaps unhelpfully large) injection of noise.
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Broader Impact

This work focuses on resolving an apparent contradiction in the scientific understanding of the
relationship between pruning and generalization performance. As such, we believe its primary
impact will be on other researchers and it is unlikely to have substantial broader impacts. That said,
understanding the mechanisms underlying our models is important for the safe deployment of such
models in application domains. Our work takes a step in that direction, and we hope may help pave
the way for further understanding.
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