
Appendix

A. Proofs
A.1. Theorem 1 (Section 2.2)

Theorem 1. Suppose data generator is represented by the hierarchical model P (Dτ |θτ) and P (θτ), and define L(Q;D) =
log Eθ∼Q P (D|θ) for distributionQ over θ. Let (Dtr

τ , D
eval
τ) be independent samples from task τ , and considerQ determined

by Dtr
τ via Q = g(Dtr

τ). Then
P (θτ |Dtr

τ , P (θτ)) = arg max
g

Eτ L(g(Dtr
τ);Deval

τ) (1)

Proof. For any distribution Q, observe that Eθ∼Q P (D|θ) is a distribution over data D. For clarity of the proof, we denote
Eθ∼g(Dtrτ) P (D|θ) by conditional distribution Pg(D|Dtr

τ). Denote P (Deval
τ |Dtr

τ) = P (Deval
τ |Dtr

τ ; Θ?) where subscript ?
denotes the underlying truth. Then,

Eτ L(g(Dtr
τ);Deval

τ) = Eτ log Eθ∼g(Dtrτ) P (Deval
τ |θ) (2)

= EDtrτ
[
EDevalτ |Dtrτ logPg(D

eval
τ |Dtr

τ)
]

(3)

The cross entropy term achieves maximum as Pg(Deval
τ |Dtr

τ) = P (Deval
τ |Dtr

τ), that is,∫
P (Deval

τ |θ)Q(θ)dθ =

∫
P (Deval

τ |θ)P (θ|Dtr
τ)dθ (4)

Equation holds when Q(θ) = P (θ|Dtr
τ), the posterior distribution of θ given Dtr

τ . In other words, we have g(Dtr
τ) =

P (θτ |Dtr
τ , P (θτ)), generating posterior from Dtr

τ . Lastly, to finish the proof, note that this (point-wise) maximum is feasible,
because g is a function of Dtr

τ and the cross entropy terms is inside the expectation/integral over Dtr
τ .

As suggested in article, if we parameterize the prior as P (θτ ; Θ), then this theorem motivates an estimator Θ̂ for meta-training
by empirical risk minimization (“training in the same way as testing”, more explanation below):

Θ̂ = arg max
Θ

∑
τ

L
(
P (θτ |Dtr

τ ,Θ);Deval
τ

)
(5)

A.2. Asymptotic consistency and normality of L[2] estimator (Section 2.2)

Similar to MLE (L[1] case), this is also an M-estimator, thus under some regularity conditions [Van der Vaart, A. (1998).
Asymptotic Statistics. Cambridge University Press.] we can establish asymptotic normality for Θ̂:

√
n(Θ̂n −Θ?)→d N

(
0, R−1SR−1

)
(6)

where n is the number of tasks in meta-training set, and

R = Eτ

(
∂2

∂Θ∂ΘT
L
(
P (θτ |Dtr

τ ,Θ);Deval
τ

) ∣∣∣∣
Θ?

)
(7)

S = Eτ

[(
∂

∂Θ
L
(
P (θτ |Dtr

τ ,Θ);Deval
τ

) ∣∣∣∣
Θ?

)(
∂

∂Θ
L
(
P (θτ |Dtr

τ ,Θ);Deval
τ

) ∣∣∣∣
Θ?

)T]
(8)

Appendix

As comparison, in the MLE case, S = −R = I(Θ?) is Fisher information, thus the asymptotic variance is given by I(Θ?)−1,
which is also the Cramer-Rao lower bound. For our L[2] case, first we use the Corollary: L

(
P (θτ |Dtr

τ ,Θ);Deval
τ

)
=

L(Θ;Dtr
τ , D

eval
τ)− L(Θ;Dtr

τ). Then, with some calculation we obtain

R−1SR−1 =
m

m− k
I(Θ?)−1 (9)

where |Dtr
τ | = k and |Deval

τ | = m− k. This suggests that the asymptotic variance of L[2] is larger than that of L[1] (lower
efficiency) unless k = 0 (validation set only, where L[2] degenerates to L[1]). This is expected, because L[2] “wasted”
some sample on its cross-validation formulation. Intuitively, the variance (or CI) can be described by the curvature of L at
maximum. Note that from L[2] = L(Θ;Dtr

τ , D
eval
τ)− L(Θ;Dtr

τ), part of the curvature is cancelled out by the existence of
second term, resulting in a larger variance of Θ̂.

A.3. Bound of GEM gradient estimation error (Section 3.2)

We show a general proposition in VI (or other measure approximation methods). Define

g(x) = EZ∼P f(x, Z) (10)
g̃(x) = EZ∼Q f(x, Z) (11)

To make g̃(x) ≈ g(x), we let Q ≈ P , in the sense that DKL(Q‖P) is minimized over Q. Then

‖g(x)− g̃(x)‖ =

∥∥∥∥EZ∼P

[
f(x, Z)

(
1− q(Z)

p(Z)

)]∥∥∥∥ (12)

≤ EZ∼P

[
‖f(x, Z)‖ ·

∣∣∣∣1− q(Z)

p(Z)

∣∣∣∣] (13)

≤
[
EZ∼P ‖f(x, Z)‖2

] 1
2 ·

[
EZ∼P

∣∣∣∣1− q(Z)

p(Z)

∣∣∣∣2
] 1

2

(14)

≤M · EZ∼P
∣∣∣∣1− q(Z)

p(Z)

∣∣∣∣ (15)

= M ·
∫
|p(z)− q(z)| dz (16)

= 2M ·DTV(P,Q) (definition of totoal variation) (17)

≤
√

2M ·
√
DKL(Q‖P) (Pinsker’s inequality) (18)

where M =
[
EZ∼P ‖f(x, Z)‖2

] 1
2

. In our discussion of gradient approximation, we let x = Θ, z = θ, f(x, z) =

∇Θ log p(θ|Θ), and p(z) = p(θ|D,Θ). Then M =
[
Eθ∼p(θ|D,Θ) ‖∇Θ log p(θ|Θ)‖2

] 1
2

A.4. L[2] property (Section 3.2)

Property 1. L(Θ, Dtr
τ ;Dval

τ) = L(Θ;Dtr
τ

⋃
Dval
τ)− L(Θ;Dtr

τ)

Appendix

Proof.

L(Θ, Dtr
τ ;Dval

τ) = logP (Dval
τ |Θ, Dtr

τ)

= log

∫
P (Dval

τ |θτ) ∗ P (θτ |Θ, Dtr
τ)dθτ

= log

∫
P (Dval

τ |θτ) ∗ P (Dtr
τ |θτ)P (θτ |Θ)

P (Dtr
τ |Θ)

dθτ

= log

∫
P (Dval⊕tr

τ |θτ)P (θτ |Θ)

P (Dtr
τ |Θ)

dθτ

= log
P (Dval⊕tr

τ |Θ)

P (Dtr
τ |Θ)

= L(Θ;Dtr
τ

⋃
Dval
τ)− L(Θ;Dtr

τ)

B. Theory
B.1. generative model of RL (Section 2.2)

Using the relation between posterior and ELBO we have P (θ|D; Θ) = arg maxg Eθ∼g logP (D|θ) − DKL(g|Θ) =
arg minEθ∼gL(D, fθ) + DKL(g|Θ). In RL, D is trajectories {xt, at, rt}Ht=1. In policy gradient, π(a|x) = fθ(x)(a), so
L(D, fθ) =

∑
t π(at|xt) ∗ rt =

∑
t fθ(xt)(at) ∗ rt. The posterior tends to find distribution of θ that maximize the expected

loss function under regularization of a KL-distance to the prior. For a given environment, when data is infinitely sufficient
(at least sufficient {xt, at, rt} tuples those appear in the optimal policy MDP), the posterior goes to a delta distribution of
the optimal policy.

B.2. non-uniqueness, fast-adaptation, A? and Gaussian (Section 2.3)

For neural networks f(; θ), there exist many local minimums that have the similar good performance. For each task, our
objective is to find any one of them instead of the only true optimal among them. Inspired by this important observation, we
model the case as non-uniqueness where more than one best parameter θτ exist for each task τ . We denote the set of best
parameters for task τ as {θτi(τ)}nττi=1, where nτ is the number of coexisting best parameters for task τ . If we choose any
one of the best parameters for each task and form a set {τi} we can get a corresponding distribution θτi(τ) ∼ P{τi}(θτ)
induced by P (τ) (change of variable). There are

∏
nτ choices of sets and the same number of distributions P{τi}(θτ)

denoted as P . Theorem 1 holds for any distribution in P which means we can use any of them as prior to come up with
optimal decision rules at meta-testing.

However, it’s not easy to model an arbitrary prior distribution with effective and efficient Bayesian inference. The common
feasible Bayesian Inference method for neural networks is gradient based variational inference with Gaussian parametric
approximation. This method only works well for distributions that are uni-modal with small variance or multi-modal and
each with small variance(which can be modeled by mixture Gaussian) for two reasons. First, the smaller the variance of the
distribution the lower the approximate error of Gaussian(property of Gaussian approximation). Second, prior P also serves
as initial points in the fast-adaptation Bayesian inference procedure. This requires P{τi}(θτ) to be compact enough such
that each task posterior can be attained within a few variational inference gradient steps.

For single cluster of tasks, we show empirical evidences in Appendix C that there exist such kind of a distribution. In
another word, there exist a small neighbouring area A? where most tasks have at least one best parameter inside it as shown
in Figure 1(a). Some other works about multi-modal meta-learning also provide evidences for the feasibility of applying
mixture Gaussian to multi-cluster tasks situation which our methods can be adapted to (Grant et al., 2018b; Rasmussen,
2000). In this work we focus on the uni-modal situation and leave the multi-modal situation to future work. So in this work,
we use Gaussian P (θ; Θ) in the above framework. By doing so P (θ; Θ) will converge to the best fit of the smallest variance
distribution in P because Gaussian fits the smallest variance distribution best.

Appendix

B.3. co-ordinate descent (Section 3.2)

Following the ELBO property mentioned in Section 3.2 we have

max
Θ

L(Θ;Dτ) ' max
Θ

EP (θτ ;λ∗
τ (Θ))[logP (Dτ , θτ |Θ)− logP (θτ ;λ∗τ (Θ))]

= max
Θ

EP (θτ ;λ∗
τ (Θ))[logP (Dτ |θτ) + logP (θτ |Θ)− logP (θτ ;λ∗τ (Θ))]

= max
Θ

[EP (θτ ;λ∗
τ (Θ)) logP (Dτ |θτ)]−KL(P (θτ ;λ∗τ (Θ)) ‖ P (θτ |Θ)) (19)

= max
Θ

ELBO(τ)(λ∗τ (Θ),Θ)

= max
Θ,λτ

[EP (θτ ;λτ) logP (Dτ |θτ)]−KL(P (θτ ;λτ) ‖ P (θτ |Θ)) (20)

Now we can show that algorithm GEM-BML is an stochastic co-ordinate descent algorithm to optimize ELBO and thus
optimize L[1] = EτL(Θ;Dτ). For each iteration we sample a batch of tasks τ and optimize over λτ and Θ alternately. At
inner-update, we fix Θ and maximize (20) in terms of λτ , λτ ← arg maxλτ ELBO

(τ)(λτ ,Θ) which corresponds to the
posterior computation in Line 2,3 of Subroutine GEM-BML. At meta-update, we fix λτ and improve (20) in terms of Θ,
Θ ← Θ − β∇ΘKL(P (θτ ;λτ) ‖ P (θτ |Θ)) = Θ − βEθ∼P (θ;λτ)∇Θ log[P (θ; Θ)] which corresponds to the Θ update in
Line 4 of Subroutine GEM-BML and Line 10 of Algorithm 1.

B.4. recasting related works to our framework (Section 4)

For simpicity, we first set up some notations as follows:
sg: stop gradient
D2 = Deval

τ

D1 = Dtr
τ

λ2(Θ): trained posterior given D2

⋃
D1

λ1(Θ): trained posterior given D1

Li(Θ): EP (θτ ;Θ) logP (Di|θτ)
Lposi,j (Θ): EP (θτ ;λi(Θ)) logP (Dj |θτ), the gradients of which are estimated by LRP or Flipout (Kingma et al., 2015; Zhang
et al., 2018).
Lposi = Lposi,i

Recall that L(Θ;Dτ) ' ELBO(τ)(λτ (Dτ ; Θ); Θ) = [EP (θτ ;λτ (Dτ ;Θ)) logP (Dτ |θτ)] − KL[P (θτ ;λτ (Dτ ; Θ)) ‖
P (θτ |Θ)]. Apply ELBO gradient estimator to L[1]

τ = L(Θ;D1) we get ∇Θ[Lpos1 (Θ) − KL(λ1(Θ),Θ)] which is the
meta-gradient of Amortized BML. In the original work they have a variant of ∇Θ[Lpos1,2 (Θ)−KL(λ1(Θ),Θ)] to improve

the generalization. Apply ELBO gradient estimator to L[2]
τ = L(λτ (D1; Θ);D2)(simply replact Θ of λτ (D1; Θ)) we get

∇Θ[Lpos2 (Θ)−KL(λ2(Θ), λ1(Θ))] which corresponds to the meta-gradient of PMAML.

Apply GEM gradient estimator ĝ = Eθτ∼P (θτ ;λτ (Dτ ,Θ))∇Θ log[P (θτ ; Θ)] to L[1]
τ and L[2]

τ as the above procedure we
get GEM-BML:∇Θ[KL(sg(λ1(Θ)),Θ) , KL(sg(λ2(Θ)),Θ)] and KL-Chaser Loss: ∇Θ[KL(sg(λ2(Θ)), λ1(Θ))]. The
Chaser Loss meta-gradient in BMAML is∇Θ[‖ sg(λ2(Θ))− λ1(Θ) ‖2] which is similar to KL-Chaser Loss but replace
the KL loss with l2 loss.

B.5. Advantages of our methods (Section 4)

Observe that all methods in the above matrix requires to compute the posterior parameters λτ (Dτ ; Θ) first and use it to
compute the sampled meta-loss function gradient ∇ΘL

[i]
τ . Following the convention of (Finn et al., 2017), we define the

step of computing λτ (Dτ ; Θ) as inner-update and the step of computing ∇ΘL
[i]
τ as meta-update. Notice that both the

L[2] = Eτ∈L(λτ (Dtr
τ ; Θ);Dval

τ) column and the ELBO-gradient involves the computation of ∇Θλτ (Dτ ; Θ). This means
the inner-update computation of these three methods(highlighted in colour) has to be built in Tensors in order to compute
the gradients by auto-grad. This tensor building and backProps procedure has several drawbacks. First, this procedure is
time-consuming, if using SGD for inner-update, the computation time grows rapidly as the number of inner-update gradient
steps increase as we show in Experiment (Figure 2), which limits the number of maximum steps. Empirical evidence is

Appendix

provided in C.2 where multiple inner-update gradient steps are necessary for this framework of methods to work. Second,
this procedure limits the choice of optimization method in inner-update. The only optimization method so far that can be
trivially written in Tensors is SGD. However, in many situations SGD is not enough or sub-optimal for this framework to
work. We show policy-gradient RL examples in Experiment where Trust Region optimization instead of SGD in inner-update
is necessary and supervise learning examples where ADAM optimizer works better than SGD. Our method, on the other
way, avoids the computation of∇Θλτ (Dτ ; Θ) and thus avoids the drawbacks mentioned above. Since it only requires the
value of inner-update result λτ (Dτ ; Θ) instead of the Tensor of optimization process, the meta-update and inner-update can
be decoupled. For inner-update, it has much more degree of freedom in choosing optimization methods to compute the
value of λτ (Dτ ; Θ) without the burden of building Tensors on optimization process as mentioned above. For meta-update, it
avoids back-propagation computations and does not involve with data explicitly since it only requires the value of λτ (Dτ ; Θ)
to compute meta-gradient (Line 4 of Subroutine GEM-BML and GEM-BML+). This gives our method more potential for
distributed computing and privacy sensitive situations. Also notice that, if assuming independence between neural network
layers, the GEM-gradient can be computed among different neural network layers in parallel, which may largely reduce the
computation time in deep neural networks.

B.6. Other methods to compute Meta-Gradient (Section 3.2)

There are several other methods of Subroutine Meta-Gradient in previous works. (Grant et al., 2018a) uses Gaus-
sian P (θ|Θ) and approximate P (Dτ |θ) with Gaussian by applying Laplace approximation which uses a second-order
Taylor expansion of P (Dτ |θ). However, there are evidences show that for neural network P (Dτ |θ) can be highly
asymmetric. Approximate it with symmetric distribution such as Gaussian may cause a series of problem. (Yoon
et al., 2018) proposes to use M particles Θ = {θm}Mm=1 to represent θ ∼ P (θ|Θ) and compute gradients on them
∇ΘL(Θ;Dτ) = ∇{θm}Mm=1

log[1
M

∑M
m=1 P (Dτ |θm)]. This methods requires O(M2) times more computation in each

gradient iteration.

B.7. Gaussian case solution (Section 3.2)

Under Gaussian approximation, we assume the prior and approximate posteriors to be P (θτ |Θ) ∼ N(µΘ,Λ
−1
Θ)

and q(θτ ;λtrτ) ∼ N(µtrθτ ,Λ
tr
θτ

), q(θτ ;λtr⊕valτ) ∼ N(µtr⊕valθτ
,Λtr⊕valθτ

). Then the meta-gradient of GEM-BML+
∇ΘL(Θ, Dtr;Dval) has close form solution given as follows.

∂L(Θ, Dtr;Dval)

∂µΘ
=
∑
τ∈

(µtr⊕valθτ
− µtrθτ)TΛ−1

Θ

∂L(Θ, Dtr;Dval)

∂Λ−1
Θ

=
∑
τ∈
−1

2
(Λtr⊕valθτ

− Λtrθτ)

− 1

2
(µtr⊕valθτ

− µtrθτ)(µtr⊕valθτ
+ µtrθτ − 2µΘ)T

(21)

C. Experiment
C.1. Meta-Gradient estimation error (Section 3.2)

To study the question of meta-gradient accuracy, we considers a synthetic lineare regression example. This provides an
analytical expression for the true meta-gradient ∇ΘL(Θ;Dτ), allowing us to compute the estimation error of different
Meta-Gradient subroutines. We plot in Figure 1 the estimation error of repeated random runs. We find that both GEM
and ELBO-gradient asymptotically match the exact meta-gradient, but GEM computes a better approximation in finite
iterations with more stability.

C.2. Necessity of many inner-update steps example (Section 1)

This example is based on the same sinusoidal function regression problem in Section 5.1 with a slightly easier setting
than the challenging one. All the settings are the same as described in Section 5.1 except the noise parameter A = 0 and
ω ∈ [0.5, 1.0]. We plot in Figure 2 the meta-test result for MAML with number of inner-update equals to 1,2,3. We can see
clearly that in this case multiply inner-update steps is necessary and important for MAML to work. We observe similar

Appendix

Figure 1. Meta-Gradient estimation error

Figure 2. Necessity of many inner-update steps example

phenomena for other methods under our extended EB framework.

C.3. A* (Section 2.3)

We use MAML for this experiment on sinusoidal function regression with the default setting and image classification on
Omniglot. Let Θ be a well learned initial point(delta prior) by the meta-train process. At meta-test, denote θi as the adapted
parameter(delta posterior) from Θ on a new task i. We have verified that MAML works on the two settings we use for this
experiment in the sense that L(Di; θi)� L(Di; Θ). Now we provide evidence that the area enclosed by {θi}, i ∼ P (τ) is
a small neighboring area A∗ that any point within it is a good initial point with good meta-test behaviour. To be specific,
we randomly choose any point within the convex combination of {θi}, i ∈ Tmeta−test as initial point Θ, then use it as
initial point for meta-test on new tasks. We plot in Figure 3 the meta-test result of some random runs and the average of
100 random runs. We can see that the original trained initial point does have the best performance but other random initial
points within A∗ also have good performance. We also observe that random initial points within A∗ has lower error before
adaptation while losing some fast adaptation ability. This is consistent with our intuition that MAML tends to find a point
in the center of A∗ which has the best few-step reach-out ability to all task parameters within A∗. While a random initial
points within A∗ may be close to some of the task parameters and a little bit more far away from other task parameters.

C.4. Experiment Details

We summarize the hyperparameters in Table 1, 2 and 3, in which Meta-batch size is the number of tasks used in one
meta-update iteration. All experiments were conducted on a single NVIDIA (Tesla P40) GPU.

Appendix

Figure 3. A?

C.4.1. REGRESSION

All comparing models are trained using the same network architecture and initialized with the same parameters. For all
models, the negative log likelihood − logP (Dτ |θτ) is the mean squared error between the predicted and true y value and
the same for loss functions in all other models.

Meta-update Learning Rate 0.001
Inner-update Learning Rate 0.001

Inner Gradient steps at meta-train 1
Inner Gradient steps at meta-test 10

Meta-batch Size 5

Table 1. Hyperparameters for sinusoidal regressions.

C.4.2. CLASSIFICATION

The set up of N-way classification is as follows: select N unseen classes, provide the model with 1 or 5 different instances of
each of the N classes, and evaluate the model’s ability to classify new instances within the N classes. For Omniglot, 1200
characters are selected for training, and the remaining are used for testing, irrespective of the alphabet. Each of the characters
is augmented with rotations by multiples of 90 degrees (Santoro et al., 2016). Our Bayesian Neural Network follows the
same architecture as the embedding function used by (Finn et al., 2017), which has 4 modules with 3× 3 convolutions and
64 filters, followed by batch normalization ((Ioffe & Szegedy, 2015)), a ReLU non-linearity, and 2× 2 max-pooling. The
Omniglot images are downsampled to 28× 28, so the dimensionality of the last hidden layer is 64. The last layer is fed into
a softmax (Vinyals et al., 2016). For Omniglot, we used strided convolutions instead of max-pooling. For MiniImagenet, we
used 32 filters per layer to reduce overfitting. For all models, the negative log likelihood− logP (Dτ |θτ) is the cross-entropy
error between the predicted and true class.

Omniglot,5-class Omniglot,5-class miniImageNet
Meta-update Learning Rate 0.001 0.001 0.001
Inner-update Learning Rate 0.01 0.01 0.001

Inner Gradient steps at meta-train 1 5 5
Inner Gradient steps at meta-test 10 10 10

Meta-batch Size 32 16 4

Table 2. Hyperparameters for few-shot image classifications.

Appendix

C.4.3. REINFORCEMENT LEARNING

In 2D Navigation, the point agent is trained to move to different goal positions in 2D, randomly chosen for each task within
a unit square. The observation is it current position, and actions are velocity clipped to be in the range [–0.1, 0.1]. The
reward is the negative squared distance to the goal. For MuJoCo continuous control, we perform goal velocity and goal
direction two kinds of task on half cheetah (our available current infrastructure is limited to perform experiment on more
advanced environment like 3D ant, we leave it to future work). In the goal velocity task, the agent receives higher rewards as
its current velocity approaches the goal velocity of the task. In the goal direction task, the reward is the magnitude of the
velocity in either the forward or backward direction. The goal velocity is sampled uniformly at random from [0.0, 2.0] for
the cheetah.

2D navigation half-cheeah, goal velocity half-cheeah, forward/backward
Meta-update Learning Rate 0.001 0.001 0.001
Inner-update Learning Rate 0.1 0.1 0.1

Inner Gradient steps at meta-train 1 1 1
Inner Gradient steps at meta-test 3 3 3

Meta-batch Size 20 40 40
Inner-batch Size 20 20 20

Table 3. Hyperparameters for reinforcement learning.

References
Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. arXiv preprint arXiv:1703.03400,

2017.

Grant, E., Finn, C., Levine, S., Darrell, T., and Griffiths, T. Recasting gradient-based meta-learning as hierarchical bayes. arXiv preprint
arXiv:1801.08930, 2018a.

Grant, E., Jerfel, G., Heller, K., and Griffiths, T. L. Modulating transfer between tasks in gradient-based meta-learning. 2018b.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

Kingma, D. P., Salimans, T., and Welling, M. Variational dropout and the local reparameterization trick. In Advances in neural information
processing systems, pp. 2575–2583, 2015.

Rasmussen, C. E. The infinite gaussian mixture model. In Advances in neural information processing systems, pp. 554–560, 2000.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T. Meta-learning with memory-augmented neural networks. In
International conference on machine learning, pp. 1842–1850, 2016.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. Matching networks for one shot learning. In Advances in neural information
processing systems, pp. 3630–3638, 2016.

Yoon, J., Kim, T., Dia, O., Kim, S., Bengio, Y., and Ahn, S. Bayesian model-agnostic meta-learning. In Advances in Neural Information
Processing Systems, pp. 7343–7353, 2018.

Zhang, S., Wen, L., Bian, X., Lei, Z., and Li, S. Z. Single-shot refinement neural network for object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 4203–4212, 2018.

