Appendix

In the beginning of this Appendix, we will provide the overall organization of the Appendix and
notation table for the paper. Then we will include description of lower bound on the warm-up duration
and briefly comment on their goal in helping to achieve the regret result.

Appendix organization and notation: In Appendix |A] we revisit the precise definitions of LDC
and DFC policies and introduce the technical properties that will be used in the proofs. We also
provide Lemma [A.T| that shows that any stabilizing LDC policy can be well-approximated by an DFC
policy. In Appendix [B] we provide the details of SysID procedure that recovers model parameter
estimates from the estimate of Gy, obtained by @I) Appendix [C|provides the detailed pseudocode
of ADAPTON. In Appendix D] we provide the proof Theorem |I|step by step. In Appendix [E} we
provide the persistence of excitation guarantees for ADAPTON which enables us to achieve consistent
estimates by using the new system identification method. In particular, in Appendix [E.T|we show the
persistence of excitation during the warm-up, in Appendix [E.2] we formally define the persistence of
excitation property of the controllers in M, i.e. (43), and finally in Appendix [E.3] we show that the
control policies of ADAPTON achieve persistence of excitation during the adaptive control. Appendix
shows that execution of ADAPTON results in stable system dynamics. In Appendix (Gl we state the
formal regret result of the paper, Theorem [5]and provides its proof. Appendix [H]briefly looks into the
case where the loss functions are convex. Finally, in Appendix [Il we provide the supporting technical
theorems and lemmas. Table [2] provides the notations used throughout the paper.

Warm-up duration: The duration of warm-up is chosen as Ty, > T},.x, Where,

Tmax = maX{HlevTovTAaTB7Tc>T TclaTcacaTT}- (20)

€g

This duration guarantees an accountable first estimate of the system (7}, see Appendix [E.I)), the
stability of the online learning algorithm on the underlying system (74, Tz, see Appendi, the
stability of the inputs and outputs (T, see Appendix[E.3), the persistence of excitation during the
adaptive control period (T, see Appendix [E.3), an accountable estimate at the first epoch of adaptive
control (T¢, see Appendix [E.3)), the conditional strong convexity of expected counterfactual losses
(T, see Appendix [FI)) and the existence of a good comparator DFC policy in M (T}, see Appendix
. The precise expressions are given throughout the Appendix in stated sections.
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Table 2: Useful Notations for the Analysis

System Not. | Definition

(C] Unknown discrete-time linear time invariant system with dynamics of
Ty Unobserved (latent) state

Yt Observed output

Uy Input to the system

wy Process Noise, w; ~ N (0,02 1)

2 Measurement noise, z; ~ N(0,021)

L (ye, ug) Revealed loss function after taking action wu;

DY Steady state error covariance matrix of state estimation under ©

F Kalman filter gain in the observer form, F'= AXC T(C YO+ O’EI ) -t

e Innovation process, e; ~ N (0, CECT + 021

D(A) Growth rate of powers of A, ®(A) = sup, >, A7 /p(A)”

G Markov operator, G = {G1},>¢ with GI%! =0, and Vi >0, GI! =C A"~ B
Gy System parameter to be estimated

o1 Regressor in the estimation, concatenation of H, input-output pairs
b(G) Nature’s y, b:(G) =y — Zf;é Glily,_;

Gt Operator that maps history of noise and open-loop inputs to ¢

Policy Not. |

m LDC policy

) Proper decay function, nonincreasing, limy: o ¥(h') = 0

II(v) LDC class with decay function v, Vr € II(v)), Zi>h||G;M | <9(h), Yh
Gl Markov operator of induced closed-loop system by 7

M(H'") DFC policy of length H', M(H') := { MU} X -1,

uM Input designed by DEC policy uM = -7 = Mlilp, ;(G)

M Given set of persistently exciting DFC controllers

M, Optimal policy in hindsight in M

(Mg, G;) | Counterfactual input, Z{io_ ! Mt[l]bt_j_l(ai)
Ui (M, (A}l) Counterfactual output, bt(éi) + Zszl ng]ﬂt_j(Mt, al)

fi(M;,G;) | Counterfactual loss, £ (g (M, G;), @i (M, G;))

Quantities |

H Length of Markov parameter matrix, G(H)

H, Length of estimated operator Gy,

H’ Length of DFC policy

e} Bound on the Markov operator, >_,<, |G| < kg

Kb Bound on Nature’s y, ||b:(G)|| < kp

Ku Bound on input ||u]|

Ky Bound on output ||y |

KM Bound on the DFC policy, Zfigl MU < kpq = (14 7)ky
Ko Maximum of decay function, 1(0)

Ya(h) Induced decay function on G, 3°,-, |G|

Trvase = T Base length of first adaptive control epoch and warm-up duration
Estimates |

Q\y,l Estimate of G, at epoch ¢

G(H) Estimate of Markov parameter matrix

by CA-}Z) Estimate of Nature’s y,

ea(i,9) Estimation error of Markov operator estimate at epoch 4, @(1 V2  Thase)
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A Details on LDC Policies and pFC Policies

Linear Dynamic Controller (LDC): An LDC policy, 7, is a s dimensional linear controller on a
state s7 € R® of a linear dynamical system (A, By, Cr, D), with input yJ and output u], where
the state dynamics and the controller evolves as follows,

5?+1 = Azs{ + Bryy, uf = Crs{ + Dryy. 2D

Deploying a LDC policy 7 on the system © = (A, B, C') induces the following joint dynamics of the
xf, s7 and the observation-action process:

2| _|A+BD:C BCx| |} n Iy BDr| |we| |yf|_| C Osa||af n Odxn La | |we
S?—H BC Ar S:tr Osxn Br ze |’ U? D, C Cx 3? Omxn D | | 2t

| S ——
AL B Cr Dy

where (A!., B.., CL, D..) are the associated parameters of induced closed-loop system. We define the
Markov operator for the system (A’., B.,CL, D.), as G = {G, [z‘]}i=0’ where G/, o = D!, and
Vi> 0,0 =LA B Let B, , == [DIBT BT and €%, , = [D:C Cxl.

Proper Decay Function: Let ¢ : N — R>( be a proper decay function, such that 1 is non-increasing
and limp’_,o 10(h') = 0. For a Markov operator G, 1) (h) defines the induced decay function on G,
ie., v (h) =5, |G| TI(1) denotes the class of LDC policies associated with a proper decay

function v, such that for all € II(), and allh > 0, 3, ||G§T[i] || < 9(h). Let ky == 1(0).

DFC Policy: A DFC policy of length H’ is defined with a set of parameters, M(H’) := { M fI:/ o b
prescribing the control input of uM = Zfi(; gl b;—i(G), and resulting in state :CMI and obser-
vation y%l. In the following, directly using the analysis in Simchowitz et al. [6], we show that for
any 7 € I1(¢)) and any input u] at time step ¢, there is a set of parameters M (H'), such that uM is
sufficiently close to u7T, and the resulting y[" is sufficiently close to yM.

Lemma A.1. Suppose ||b:(G)|| < kyp forall t < T for some k. For any LDC policy w € T1(v)), there
exista H' length DFC policy M(H') such that ||uf —uM | <y (H')ky, and ||yf—yf/l|| <Y(H"kgkKe.
One of the DFC policies that satisfy this is M) =D, and MU' =C"_ A’ Z713,’“]‘0;" 0<i<H'.

Tt

Proof. Let B} ,, = [I,},,, 0Jy,]", and B} , := [D]B" B]]", the columns of B, applied on
process noise, and measurement noise respectively. Similarly C} , = [C' 0Osxq] and O}, =

[D-C (] are rows of C. generating the observation and action.

Rolling out the dynamical system defining a policy 7 in (2I]), we can restate the action u] as follows,

t—1 t—1
T __ / 7 =11y ’ 1 i—1 1
Uy = Drze + E Cﬂ,uAﬂ' Brr,zzt—i + E Cﬂ,uAﬂ Bﬂ',wwt—i
i=1 i=1

Tul T U W Tt

t—1 i—1
=Dnze+ > CL AT BL s i+ Ch Bl ywi + Y Ch AT BL w
i=1 1=2

t—1 t—1
} : / ri—1 1y } : / ri—1 1y

= Dﬂ-Zt + Cﬂ,uAﬂ' Bmzzt_i + D,TC’wt_l + Cﬂ.’uAﬂ. B,T_’wwt_i
i=1 =2

A+BD.C
B.C

T T,w

Note that A’ B, is equal to { } . Based on the definition of A’ in , we restate A/

as follows,

Al =

T

A+ BD,C BC,| [BD.C BC, A 0.,
B.C A | T | B.c A, |Tlo
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For any given bounded matrices A’ and A, and any integer ¢ > 0, we have

i [A + BD,C Bcﬂ]i

m B.C A,
_ [A+BD,C BC,|" ' [BD.C BC.] [A+BD,C BC:]"'[ A Opnys
=| B.C A, B.C A, |T| B.C A, Ouxn Osxs
_[A+BD,.C BC.]"'[BD.C BC,
- B.C A B.C A
A+ BD,C BC," ?[BD,C BC,\[ A 0,x.
tl B.C A, B:C  Ar | |Osxn O
_[a+BD.C BC, TETAZ Ongs
BWC A7r Osxn OSXS

[ A Opus] = -1 [BD:C BC:[ A 0]
—{om 0 ]*Z}A” [Bﬂc AWHOM o}
J:

SXs

We use this decomposition to relate 7 and uM. Now considering A;FIB;MU, fori —1 > 0we
have

. i—1 . . . i—1
rie1 AL , i—1|BDC BC,||At—1-J . Al N Ry i—1—j
O T Do e Lo B o T
=

Os><n . Os><n
J=1

Using this equality in the derivation of u] we derive,

Tt

t—1
u;’ =D,z + Z cr. Al 1_1Bg7zzt_i + D, Cwi_1
=1

t—1 i t—1 -1 o
+ Z [D.C  Cy] {(Iixn] we—; + Z Cr Z A;J_lB;nZCALlfJ Wi
i=2 i=2 j=1

t—1 t—1 t—1i—1
, 7 i1 5 i—1 ’ 1 31 i—1—j
=D,z + E CmuAﬂ Bmzzt_i—k E D, CA ™ w_;+ E E CTl'ﬂ,LAﬂ' Bﬂ,}chz4Z Tws_;
el i=1 i=2 j=1

Note that b;(G) = z; + Zf: CA*™ Ly, =z, + Zf;i C A*~'w,_;. Inspired by this expression,
we rearrange the previous sum as follows:

t—1 t—1 t—1di—1
uf = D,r<zt+z CAi—lw“) +>CLALTIBL s+ Yy O AT B CAT Ty,
=1 =1 =2 j=1
t—1 t—1 t—2 t—1
—Dw<zt+z CA“wH> +>CL AT B s+ Y Y AT BL CAT T,
i=1 i=1 j=li=j+1

t—1 t—1 t—2 t—j—1
i—1 ’ 1 i—1 / 1 J=1 t—j—i—1
=D |z+ g CA Fwe_ |+ E CruAr  Brziit E Cr Az B, g CA™Y w;
i=1 i=1 j=1 =1
Tl

t—1
=Dab+ > Ch AL T BL by
i=1
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Now setting M%) = D, and MU = C..  A"""'B. _forall 0 < i < H’, we conclude that for any
LDC policy 7 € TI, there exists at least one length H' DFC policy M[(H’) such that
¢
u;r - U}VI = Z C;r,uAfrrlilB;r,zbt—i
i=H'

Using Cauchy Schwarz inequality we have

t
luf = at < || Y Cr AL By b | < O (H')my
i=H’

which states the first half of the Lemma.
Using the definition of yJ in @, we have

t—1 t—1

yr =z + Y CA™ w4+ > Gl .
i=1 i

Similarly for y™ we have,

t—1 t—1

y%vl =z + Z CA= L, + Z G[i]u%\fi.

i=1 i

Subtracting these two equations, we derive,
t—1 t—1 t—1
Yyt — Z/iw = Z Gm“f—i - Z G[i]“tl\fi = Z Gl (ui_; — UMJ
[ [ i

resulting in
lyf =yl < Y(H' )k
which states the second half of the Lemma. O

This lemma further entails that any stabilizing LDC can be well approximated by a DFC that belongs
to the following set of DFCs,

P H' -1 i
MUH' ) = {M(H) = (MG T ) < ey

indicating that using the class of DFC policies as an approximation to LDC policies is justified.

B Model Parameters Identification Procedure, SYSID

Algorithm Elgives the model parameters identification algorithm, SysIp, that is executed after
recovering Gy ; in the beginning of each epoch ¢. SysID is similar to Ho-Kalman method [[16] and
estimates the system parameters from Gy, ;.

First of all, notice that Gy = [F, G| where
F = [CF, CAF, ..., CA"-"'F] e R™*™m e,
G=[CB, CAB, ..., CA"-'B] e R™*PHe,
Given the estimate for the truncated ARX model
Gyi=[Fi1, ..., Fip,Giq,...,Gipl,

where F ; is the 5°th m x m block of F;, and G j is the j’th m x p block of G; forall 1 < j < H..
SysID constructs two dy X (d2 + 1) Hankel matrices Hp. and Hg_ such that (4, k)th block of Hankel

matrix is Fi,(j+k—1) and é’i,(j+k—1) respectively. Then, it forms the following matrix ;.

Hi = [HE, Héi} .
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Recall that from (A, F)-controllability of ©, we have that | TAT || < v < 1 for some similarity
transformation 7" and the dimension of latent state, n, is the order of the system for the observable
log(cuT?V/m/VX)

log(1/v)
constant ¢y, we can pick d; > n and do > n such d; + dy + 1 = H.. This guarantees that the
system identification problem is well-conditioned. Using Definition [2.T} if the input to the SYSID was
Gy = [F, G] then constructed Hankel matrix, 7 would be rank n,

H=[CT, ..., (CA"NYNTIF, ..., A2F B, ..., A%2B]
=O0(A,C,dy) [C(A, F,dy+1), A®F,  C(A,B,dy+1), A®B]
:O(Aacvdl) [F7 AC(AvFad2+1)7 B7 AC(Avad2+1)]

where for all k > n, C(A, B, k) defines the extended (A, B) controllability matrix and O(4, C, k)
defines the extended (A, C') observability matrix. Notice that G, and # are uniquely identifiable for
a given system ©, whereas for any invertible T € R™*", the system resulting from

A =T 'AT, B =T"'B, ¢’ =CT, FF =T 'F

and controllable system. For H, > max {Qn +1, } for some problem dependent

gives the same Gy and . Similar to Ho-Kalman algorithm, SysIp computes the SVD of ijyi and
estimates the extended observability and controllability matrices and eventually system parameters

up to similarity transformation. To this end, SysID constructs 7; by discarding (ds + 1)th and
(2d2 + 2)th block columns of H;, i.e. if it was H then we have,

H™ =O0(A,C,dy) [C(A,F,dy+1), C(A,B,dy+1)].
The SysIp procedure then calculates N, the best rank-n approximation of 7:{,;, obtained by setting its

all but top n singular values to zero. The estimates of O(A, C, d;), C(A, F,dy+1) and C(A, B,dy +
1) are given as

Ni = U2 52V T = 04(A,C,dy) [Ci(A,F,do+ 1), Ci(A,B,dy+1)].

From these estimates SYSID recovers CA‘Z as the first m x n block of Oi(ﬁ, C,dy), BZ as the first
n x p block of C;(A, B, dy + 1) and F; as the first n x m block of C;(A, F,dy + 1). Let H;" be the
matrix obtained by discarding 1st and (dy 4 2)th block columns of #;, i.e. if it was 7{ then

HY =0(A,C,dy) A [C(A,F,dy+1), C(A,B,dy+1)].
Therefore, SYSID recovers jll as,
A; =O0l(A4,C.d)) Hi [Co(A, F.dy+1), Cu(A,B,dy+1)]".
Using the definition of A=A—FC,the algorithm obtains At = /it + Fté't.

Algorithm 1 SysIp

1: Input: gAy,i, H., system order n, dy,ds such thatd; +do +1 = H,
2: Form two d; x (do + 1) Hankel matrices Hp and Hg  from Gy =

~

[Fi1,. .., Fim., Git,. .., Gig.], and construct H; = [Hfi, HG;} € Rmdix (m+p)(da+1)

3: Obtain H; by discarding (dy + 1)th and (2 + 2)th block columns of H;
4: Using SVD obtain N; € R x(m+p)d2  the best rank-n approximation of H;~
5: Obtain U;, 5, V; = SVD(WV;)

6: Construct éi(f_l, C,dy) = Ui2t1/2 € Rmdixn
7: Construct [C;(A4, F,dy + 1), Ci(A4, B,dy + 1)] = %;/2V; € Rnx(m+p)d>
8: Obtain C; € R™*"_the first m rows of f)i(A, C,dy)

9: Obtain B; € R™*P, the first p columns of Ci(ﬁ, B,ds +1)

10: Obtain Fi € R™ ™ the first m columns of Ci(/_l, F,dy+1)
11: Obtain ;" by discarding 1st and (dy + 2)th block columns of H;
12: Obtain ;11 = ():r(le, C,dy) 7:[:_ [Cl(/i, F,ds + 1), Ci(le, B,d; + ].)]T

13: Obtain A; = A; + FC;
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C ADAPTON

Algorithm 2 ADAPTON

1: Input: 7, H, H', T, M

2: —— WARM-UP

3: fort=1,...,7T, do

4:  Deploy u;~N(0,021)

5: Store Dr, = {ys, ut};[;“l, set t1 =Tpase =T, t =Tpase +1, and M, as any member of M
6: ADAPTIVE CONTROL

7. fori=1,2,...do

8: Solve using Dy, estimate A;, B;, C; using SysIDp (Alg. |1) and construct G;(H)
9: Compute b, (G;) =Y - Zle GEJ]UT_J', v <t

10:  while ¢ <t;+2""'Tyose and t <T do _
11: Observe y;, and compute b:(G;) := y — Zle GEJ]Ut_j

12: Commit to u; = Zf:/(jl Mt[j] bi—; ((A}@), observe /4, and pay a cost of £;(yy, us)
13: Update Mt+1 = p’I"OjM (Mt — ’I’]tVft (Mt, Gz)), Dt+1 = Dt U {yt; Ut}, sett=t+1
14: ti+1 =t + 2i71Tbase

D Proof of Theorem /(1]

In this section, we provide the proof of Theorem [I] with precise expressions. In Appendix [D.T] we
show the self-normalized error bound on the (I0), Theorem[3] In Appendix[D.2] assuming persistence
of excitation, we convert the self-normalized bound into a Frobenius norm bound to be used for
parameter estimation error bounds in Appendix Theorem[d] Finally, we consider the Markov
parameter estimates constructed via model parameter estimates in Appendix [D.4] which concludes
the proof of Theorem [T}

D.1 Self-Normalized Bound on Finite Sample Estimation Error of

First consider the effect of truncation bias term, C A*<z;_p_. Notice that A is stable due to (A, F)-
controllability of © [17], i.e., |[TAT || < v < 1 for some similarity transformation 7. Thus,
CAHegy g is order of v, In order to get consistent estimation, for some problem dependent
2

constant cyy, we set H, > W, resulting in a negligible bias term of order 1/7"2. Using
this we first obtain a self-normalized finite sample estimation error of (I0):

Theorem 3 (Self-normalized Estimation Error). Let Gy be the solution to (10) at time . For the
given choice of H., define

Vo= + ) 60
i=H.
Let |M| p < S. For 6 € (0,1), with probability at least 1 — 6, for all t < 7, Gy lies in the set Cg, (t),

where R N
Cg, (t) = {gy, : Tr((Gy — gy/)Vt(gy - gy’)T) < B},
Sfor B, defined as follows,

det (V;)'/? /H.,
- SCT 4 020 log |~ ¥r)
Br m||CECT + 021 log <5det()\l)1/2 + 5V + T

Proof. For a single input-output trajectory {y:, u; }7_;, where 7 < T', using the representation in (8),
we can write the following for the given system,

Y, =®,G," + FE, + N, where (22)

Noise
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Gy = [CF, CAF, ..., CA""'F, OB, CAB, ..., CA"<=1B] ¢ Rm*(m+p)H:

Yr = [ym., Y11y ..., yr]| € RO—HIxm

D, = (b, dH. 41, .-, ¢;] € RT—H)x(mAp)He
E,=len,, .41, -, ;] € RU—He)xm

N;= [C’AHmO7 CAHep, .. -aCAchr_He]TeR(T*Hc)Xm.

_C'jy is the solution to , ie, miny ||V, — @, X T||%Z + \||X|%. Hence, we get Q:,'— = (®Jd, +
ATy,

~

Gy

(@0, + AI)'®] (9.6, + E, + N,)] '

= [(®]®, + \[)'®] (E; + N,) + (@] @, + A)'@] .G, "

FA@] B, + A T'Gy T — N@T D, + A1) G, ]

— [(® @, + M) B B, + (B0, + M) 'O N, + Gy, T — A D, + A)"'G, ]

Using éy, we get

~

| Te(X(Gy — Gy) ) (23)
= | Te(X(®] &, + N) 'O E) 4+ Te(X(®] @, + M) LRI N,) = ATr(X (2] @, + A1) 716, )|
< Te(X (@] @, + AT E) | 4 | Te(X (@] @, + AT N,)| + A Te(X (@] @, + )16, )|

< \/Tr(X(<I>7T<I>T FAD)TLXT) Te(E] ©,(9] @, + M) 10T E,) (24)

+ T X (@@, + AD=LXT) Tr(N @, (9] @, + )BT N,)

+ M TE(X (@T B, + A1)~ XT) Te(Gy (T @, + A)1G, )

= /TH(X(®I@, +AD)1XT)

TH(ET @ (T3, +A) 10T E, )4/ Tr(NT &, (DT B, +A)~1DT N, )+ A/ Tr(Gy (BT &, +A)-1G,
T T T T T T y T y

where follows from | Tr(ABCT)| < /Tr ABAT) Tr(CBC'T) for positive definite B due to
Cauchy Schwarz (weighted inner-product). For X = (Qy Gy) (@], + ), we get

VTH(Gy — G)Va(Gy — Gy)T) < To(ET @,V 0T B, ) + /T (NT @,V 0T N, ) + VAGy | 7
(25)

where V. is the regularized design matrix at time 7. Let max;<, ||¢;]] < YvH. and
maxpy, <i<r ||| < X, ie., in data collection bounded inputs are used. The first term on the
right hand side of can be bounded using Theorem since e; is ||CXCT + 021 ||-sub-Gaussian
vector. Therefore, for 6 € (0, 1), with probability at least 1 — 4,

\/ - det (V,)'/?
TI"(EI(I)tV-,— ‘I’IET) < mHCZCT-‘rO'zIH 10g W (26)
(§)
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For the second term,

\/Tr NT® Vi 'eIN,) < f||NT<I> Alr < ,/T Z ¢i(CAHex; p )T

<T\/7maXHq5Z CA"ey; TH
<TV/chH€nwxu¢Ana;H||
- A i<t €

< T,/%\\C||UHeT\/Hex.

gives

s 1 2log(T)+log(YX)+0.5log(m/\)+lo C
Picking H, = (1) +log( %;5(15/1})5( /M) +log(I[C1)

\/Tr NT® VT '®TN,) < T2\/H (27)

Combining (26) and (27) gives the self-normalized estimation error bound state in the theorem. [J

D.2 Frobenius Norm Bound on Finite Sample Estimation Error of (10)

Using this result, we have

Umin(VT)HQ\y - gy”%“ < Tr((éy - gy)‘/;t(é\y - gy)T)

det (V;)'/? VA,
< m||CECT + 21| log (e(V)) + SV + TTQ

5 det(M)1/2

For persistently exciting inputs, i.e., omin(V;) > 027 for o, > 0, using the boundedness of ¢;, i.e.,
max;< ||¢:]| < T+ He, we get,

m|CsCT + 021 (log(l/é) + He(vg+p) log ()\(m-H?)-‘r'r’I‘ )) + Sf+

A(m+p)
TN/T

This result shows that under persistent of excitation, the novel least squares problem provides
consistent estimates and the estimation error is O(1/v/T) after T samples.

IGy — Gyl <

D.3 Bound on Model Parameters Estimation Errors

After estimating Q\y, we deploy SysID (Appendix [B) to recover the unknown system parameters. The
outline of the algorithm is given in Algorithm[I} Note that the system is order n and minimal in the
sense that the system cannot be described by a state-space model of order less than n. Define Tg,
such that at Tg_, ||Gy — Gy || < 1. Let Ty = Tg, %, T =Tg, i(::zg) We have the following
result on the model parameter estimates:

Theorem 4 (Model Parameters Estimation Error). Let H be the concatenation of two Hankel
matrices obtained from Gy. Let A, B,C, F' be the system parameters that SYSID provides for Gy.

At time step t, let flt, Bt, C’t, F} denote the system parameters obtained by SYSID using Q\y. For the
described system in the main text H is rank-n i.e., due to controllability-observability assumption.
For t > max{Tg ,Tn,TB}, for the given choice of H., there exists a unitary matrix T € R"*"

such that, © = (A, B,C,F) € (C4 x Cp x Cc x Cr) where
Calt) = {A’ e RV ||A, — TTA'T|| < [B’A(t)} ,

Cu(t) = {B’ eR™P . |B,— T B|| < BB(t)},
Co(t) = {C/ eR™ " |0, — O'T|| < ﬁc(t)} ,
CrL(t) = {L' eRP*™ . |E,—TTF| < 5F(t)} ,
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for

Ba(t) =

. (Fnﬂewn +0a(H))
' o2 (H)

)16, =Gyl 3n(0) = (o) = frelt) =
for some problem dependent constant cy.

Proof. The result follows similar steps with Oymak and Ozay [3]]. The following lemma is from
Oymak and Ozay [3], it will be useful in proving error bounds on system parameters and we provide
it for completeness.

Lemma D.1 ([3]). H, H; and N', N satisfies the following perturbation bounds,

H = A7 ||} < I = Fel < Vmin {dr dz + 131Gy - Gy |
IV = N3l < 2|1 = A7 || < 2v/min{d, d2 Y19y — Gy |

The following lemma is a slight modification of Lemma B.1 in [3].

)

max{H’H+ — 7:lzr

Lemma D.2 ([3]). Suppose oumin(N) > 2||N — N|| where omin(N) is the smallest nonzero sin-
gular value (i.e. nth largest singular value) of N. Let rank n matrices N', N have singular value
decompositions USV " and UXV T There exists an n x n unitary matrix T so that
\/ 1|2
HUEW _ ﬁngH? n HVEW _ vgl/zTHZ‘ LV -N|P?
F Fon(N) = IV =N

For brevity, we have the following notation O = O(A4,C,d;), Cr = C(A, F,dy + 1), Cp =
C(A,B,dy + 1), 0y = O¢(4,C,dy), Cp, = C¢(A, F,dy + 1), Cp, = C(A,B,ds 4+ 1). In
the definition of T, we use o,,(H ), due to the fact that singular values of submatrices by column
partitioning are interlaced, i.e. 0,,(N) = 0,,(H™) > 0,,(H). Directly applying Lemma with
the condition that for given t > Ty, omin(N) > 2||N — N |l, we can guarantee that there exists a
unitary transform T such that

10n||NV — N2
on(N) ’

Since C; — C'T is a submatrix of Oy — OT, B, — T B is a submatrix of Cg, — T Cg and
Fy — T F is a submatrix of Cp, — T Cp, we get the same bounds for them stated in . Using
Lemma with the choice of dy,ds > Iée , we have

IV = N < V2H||Gy — Gyll.

This provides the advertised bounds in the theorem:

~ 2 N N 2
Hot _ OTHF + H[th C,] - T [Cr CB]HF < (28)

V20nH, |Gy — Gy
on(N)

1B, =TT BI|, |C; — CT|, |F; — TTF|| <

Notice that for t > T'5, we have all the terms above to be bounded by 1. In order to determine the

closeness of AL and A we first consider the closeness of jlt — TszlT, where A is the output obtained
by SysIp for A when the inputis Gy. Let X = OT and Y = TT[Crg Cg]. Thus, we have

1A, — TTAT||r = |O}#] [Cr, Cr,)l — XTHTYT|p
< (01~ ) itn, Cor], + " (45 - #) e, El],

M G B
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For the first term we have the following perturbation bound [53},154],

16{ = XT[|r < |04 — X||p max{ | XT|%, |Of|*} < |V — Ntlh/ rnaX{IIXT I, 16417}

Since we have o, (N) > , we have ||| < 2||NV| and 20,,(N) > ¢, (N). Thus,

1 2
—L UHW)}<%W) (29)

max{]| X, |O)*} = maX{

Combining these and following the same steps for ||[Cg, Cg, |t —Y ||, we get

40n

ot =x7],. [1€r. Gantt =], < v -] s

(30)

The following individual bounds obtained by using (29), (30) and triangle inequality:
| (0= x1) 7 (Cr, Co,t| | < O] = XT|IelIF (€, Ca,l|
w5
[ | L —
B an(N)

QA — A
on(N)

IXTIH([Cr, Cr,JT =Y

zmHN—Nt
a2 (N)

(et 4+ 1 = 7))

|7 (3 ) @, En],

IN

v (em, a1,

IN

T

Combining these we get

31/l H | H/\[ NH |”H+ W (4\/%”-/\[ Nt” (J\/))

2 T =
e =T AT = ) 2V

< 312\f2||“rl+H HN A

13/

H —HT
30 I =1

Now consider /Alt = ;lt + FtC’t. Using Lemma

|A; — TTAT|

= ||A; + £,C, — TTAT — TTFCT|

< ||Ae = TTAT||p + |(F; = TTF)Cy|lp + ITTF(Cy — CT) |

< || A = TTAT|p + |(F, — TTF)||p|IC: — CT||p + [|(Fy = TTF)|[£l|C]| + | F[[[(Ce — CT)|| £

3Lyl HT 13 10n|lN A,
S A (f)w H+||+””W)t|| +HUFI+ICIIA - Ntll\/i

31v2nH. M|, 5 13\/ 20nHe||Qy —Gyl?
_ _ 20nH,
+(IFI+1CINIGy — Gy ’ZN)
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D.4 Bound on the Markov Parameters Estimation Errors

Finally, we will consider the Markov parameter estimates that is constructed by using the parameter

estimates. From Theorem @ for some unitary matrix T, we denote AA = ||ﬁt — TTAT|,
R R m(u;ﬂwa”(m))z’
B:=|B,—T"B| = |C;—CT|. Let Ty = Tgy R .Fort > max{T4,Ts}
AA < “"T(A) and AB < 1. Using this fact, we have
H .
S IC AT B — o B
Jj=1

H-1
< AB(|BI+|ICl+1)+ Y _2(A)p" (AAB(IBII+|Cl+1) + |4 =T TAT| (IO B+ Bl +IIC||1+1)
=1

H—-1i-1
< (14 12505 ) ABUBI+ICl+D) + adqenzl 1B +HICl) ¥ 3 (4 )14l

=1 5=0

IN

2(4)
(1+ 295 ) ABBI+IC1+1)
H—-114
1)

+AAA)(ClIBI+IB+IC]+1) M;}() ( : )
2AAD(A) H-1
T ICHIBI+IBI+IC]+1) ;
2842(4)

= oAy ICHIBI+IBI+IC]+1)

B(A) 20 (A) ) 29(4)
1—p(A)  (1-p(4))2)  (1-p(4))?

Assuming that ||F'|| + [|C|| > 1 for simplicity, from the exact expressions of Theorem [} we have
AA > AB. For the given yg and 7, we can upper bound the last expression above as follow,

o(A)
< (14 12l ) ABUBI+ICl+1 +

() -

o(A

)
SAB<1+1—/)(A)

) UBI+IC]+1) +

ve = (1B + €] + 1) (1 n IClBl

H
Z||6t11{71§t _CAjleH <veAA < Mj 31D
: ot
jz1
for
D(A) 20 (A) ) 20(A)
= B+C+1(1+ + + CllliBl, (52)
16 = (IBI+IC1+1) (1+ 1=+ a2 ) + Ty I
He(m+p), (Am+p)+TY? VI
— T 2
Ke : \/m|C’EC + 021 (log(1/5)+ 5 log( Am + p) T’
(33)
\/TIJC(H/HH + Un(H))
— . 34
. b (34)
The proofofTheoremI1s completed by noticing that |G ( )—G(H)H:H[@[l] G a[H]]_

G G \/Z |Gl — glae,

E Persistence of Excitation

In this section, we provide the persistence of excitation of ADAPTON inputs that is required for
consistent estimation of system parameters as pointed out in Theorem |II We will first consider
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open-loop persistence excitation and introduce truncated open-loop noise evolution parameter G,
Appendix It represents the effect of noises in the system on the outputs. We will define G
for 2H, time steps back in time and show that last 2H, process and measurement noises provide
sufficient persistent excitation for the covariates in the estimation problem. Let 0, < 0pin (G "l). We
will show that there exists a positive oy, i.e., G ol is full row rank. In the following, (;_St = P¢; for a
permutation matrix P that gives

b T
or = [ytT,l ull e y;H u;[H} c R™P)H

We assume that, throughout the interaction with the system, the agent has access to a convex compact
set of DFCs, M which is an r-expansion of M., such that ko4 = K, 4 and all controllers M € M
are persistently exciting the system ©. In Appendix [E.2] we formally define the persistence of
excitation condition for the given set M. Finally, in Appendix [E.3] we show that persistence of
excitation is achieved by the policies that ADAPTON deploys.

E.1 Persistence of Excitation in Warm-up

Recall the state-space form of the system,
IEt+1 = AIt —+ B’th —+ we
Yy = Oy + 2. 35)

During the warm-up period, ¢t < T, the input to the system is u; ~ N (0,021). Let f; = [y u/]T.
From the evolution of the system with given input we have the following:

-
fi=Golwly 2wl oowly 2lga wlga] g
where
GO;: Omxn [me OmXp C Ome CB OA Ome CAB e CAH6_2 Ome CAHE_QB
Oan Opxm Ip><p 0p><n Opxm Op><p Oan 0p><m Opxp - 0p><n OpXm OPXP

(36)

and r? is the residual vector that represents the effect of [w;_1 z; wu;] for0 <4 < ¢ — H,, which are
independent. Notice that G® is full row rank even for H, = 1, due to first (m + p) X (m +n + p)
block. Using this, we can represent ¢, as follows

ey ]
Zt—1
ft—1 req U1 req
o + =g + where
ft—H. rnge Wt—2H,—1 rnge
Zt—2H,
R(m+p)He I ut—2H€ |
R2(n+m+p)He
[ G° I Ontp)xmtnsn) Omsn)x(mntp) Opmetp)x(mntp)
O(m+p) x (mtntp) [ G O(mtp)x (mtn+p) O(m+p)x (mtn+p)
gol — .
O(mtp)x (m+n+p) O(map)x(mtntp) -+ | G° J Otmp) x (m+n+)
(m4p)x (m+ntp) O(map)x(mintp) O(mtp)x(mantp) --- | G

(37)

During warm-up period, from Lemma D.1 of Lale et al. [9], we have that for all 1 < ¢ < T, with
probability 1 — §/2,

o] € X = (0w + ou|| BN®(A)p(A) 1 log(12nT,/3), (38)

1—p(A)?
|zl < Z == 0./2mlog(12mT,/6), (39)
luell < U = 0ur/2plog(12pT, /), (40)
lyell < 1CN1 Xw + Z. (41)
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Thus, during the warm-up phase, we have max;<i<7, [|¢:| < Twv/He, where T, = ||C|| X, +
Z + U,,. Define
32T}, log? ((2:52))

ot (@) min{ol, ol oh}

w? z u

T, =

We have the following lemma that provides the persistence of excitation of inputs in the warm-up
period.

Lemma E.1. [f the warm-up duration T, > T,, then for T, < t < T,,, with probability at least
1 — 6 we have
4% Zmin{o?, 02,02}
min wo =2l u-, 42
o (Z b0 ) ; (42)

Proof. Let 0 = O(m—+p)x (m+n+p)- Since each block row is full row-rank, we get the following
decomposition using QR decomposition for each block row:

Q°  Omsp Omsp Omep ... [R° O 0 O
Omip  @Q° Omip Omip 0 R 0 0
gol: .
Om+p Onz+p QO 0m+p (:) (:) e RO 6
Omip Omip Omip ... Q][0 0 0 ...R
R(m+p)H X (m+p)H R(m+p)Hx2(m~+n+p)H
X X X X X X
0 X X X X X ...
where R° = . € R(m+p)xH(m+n+p) where the elements in the

0 0 0 x x X

diagonal are positive numbers. Notice that the first matrix with QU is full rank. Also, all the rows of
second matrix are in row echelon form and second matrix is full row-rank. Thus, we can deduce that
G°! is full row-rank. Since G is full row rank, we have that

Elgid, | = GO %0 2 uGT

where %, ., € R2FMFIPIHX2(tmAp)H — diag(02 02, 02,...,02,02,02). This gives us

O'min(E[ét(EtTD - mln(gOl) mln{a Oi}

fort <T,. As given in —, we have that ||¢;|| < T,,+/H. with probability at least 1 — §/2.
Given this holds, one can use Theorem [6] to obtain the following which holds with probability

1—46/2:
9 2H.(m + p)
Amax <§ did] — Elos ¢T]> < 2\/2tTwHe\/1og <5).

Using Weyl’s inequality, during the warm-up period with probability 1 — &, we have

t
2H.
Omin (Z $id; ) > to) min{oy,, 02, 03} — Q@TiHe\/log <<m+p>)
=1

4]

3274 H? log (22l tr)

Forallt > T, := STy We have the stated lower bound. O

4 mi 4 4
%% mln{gw 202

Combining Lemma [E.T| with Theorem 3] gives

Re

Uom mln{fw 02,0 }

at the end of warm-up, with probability at least 1 — 24, in parallel with Appendix

HgyJ - gy” <
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E.2 Persistence of Excitation Condition of M € M

In this section, we will provide the precise condition of the DFC policies in M, which provides the
persistence of excitation if the underlying system is known while designing the control input via any
DFC policy in M. The condition is given in (43)). Note that in the controller design of ADAPTON,
we don’t have access to the actual system. In the next section, we show that even though we have
errors in the estimates, if the errors are small enough, we can still have persistence of excitation in
the inputs.

Now consider when the underlying system is known. If that’s the case, the following are the inputs
and outputs of the system:

H' -1 ,
u =Y M0 ;(G)
j=0

g =G0 GG [ul wl o ul ] 4 b(G) + e

where ry = Z;1H+1 G¥u,_ . For H, defined in Section 42, H, > max{2n +
1 e T gefne
T n
O = [yl1~--ylHe ul .. U;ILHE] € ROmHPIHe,

We have the following decompositions for ¢;:

GO gl G 0y Ok oo Oy ]
Omxp GO .0 o 0 GEEN G 0,0, o O o [bi—1 ] [ re—1
0 1 H—-1 H :

b | Omxp o Oy GO GUL G G +bt(—)He | e
Lixp Opxp Opxp Opxp Opxp Opxp  oon e oo Opxp . b »
oxp Ipxp Opxp Opxp Opxp Opxp  en on. cor o Opxp

Ut—H—H, Op 0
LOpsp Opscp oo Lpxp Opxp ... cor Opxp Us on W
Ta ERHe(m+p) x(He+H)p
0 1 H —1 I bi1(G) ]
Mm% MM M},}‘J Opxm  Opxm -+ Opxcm bi—2(G)

I MY, o M MY 0 o O :

o . bi—r41(G)
Opxcn o+ Opxem My oo e MY :

Lbi—H.— - +1(G) |
TMtGR(He+H>rXWL<H+H’+He—1)
B(G)(t)
_ - ;
Zt—2
I Om O0m C CA ... ... .. C A3
Om Im Om Om><n C ......... CAt_4 Ze_1 7}-[7H'+1
B(G)(t)= . . . Ors
Om Om oo Im Omxn «oo ... C ... CAt=He—H-H'-1 Wi—3
O, .
L wl -
U
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O ooo Iy ooo Opy Opsens ... C ... CAt—He=2

O(pHe)x((H6+H+H’71)m+(t72)n)

Oy

Combining all gives
Oy = (TGTMtOt =+ Ot) 7, + Ry.

Persistence of Excitation of M € M (H', kr() on System ©. For the given system ©, for
t>H+ H + H., TaTm, Ot + Oy is full row rank for all M € M, i.e.,

Omin(Ta T, O + Oy) > 0. > 0. (43)

E.3 Persistence of Excitation in Adaptive Control Period

In this section, we show that the Markov parameter estimates of ADAPTON are well-refined that,
the controller of ADAPTON constructed by using a DFC policy in M still provides persistence of
excitation. In other words, we will show that the inaccuracies in the model parameter estimates do
not cause lack of persistence of excitation in adaptive control period.

First we have the following lemma, that shows inputs have persistence of excitation during the
adaptive control period. Let d = min{m, p}. Using and (34), define

T

€G

8kZryHe 10T

22 2 2 2
T = 4CIKJMI€G’7G’7HTgy T, =

" 20487 H2 log (2520 ) 4 H'mplog (radv/d + 2) |

odmin{od, ot}

for

" 68Ky ke He (263 + 3k + 3)

6_ﬁmn{1abmmUaJQVMmﬁmm}}

Lemma E.2. After T, time steps in the adaptive control period, with probability 1 — 39, we have
persistence of excitation for the remainder of adaptive control period,

¢ 2 minfg2 52

o, minyo,,,o0;

omin<§ as,-aﬁ) Zt—l{G“ 3 (44)
i=1

Proof. During the adaptive control period, at time ¢, the input of ADAPTON is given by

H' -1
w= > My (@) + MP (bi-5(Ga) — b (G))
j=0

where
t—j—1 t—j—1
bj(G)=yej— Y GMu ;=2 ;+ > CAT Ty, (45)
k=1 k=1
~ H ~
bi—i(Gi) = yimj — D Gy (46)
k=1
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Thus, we obtain the following for u; and y;,

H -1 ‘ H' -1 t—j—1 .
= Z Mt[j]bt ] Z M[J] ( Z G[k G Ut j— k)
j=0

7=0 k=

=

uab(t)
T
= [G[O] G, .. G[H]][ Doul g cul ] A 0(G) +rg
where ry = Ek a1 G M,y and Z ||G[k | < va(H+ 1) < 1/10T which is bounded by

the assumption. Notice that ||uap(t)| < mMmueG(l, 0) for all t € Ty,. Using the definitions from
Appendix ¢¢ can be written as,

¢r = (TaTa, Or + Op) 1, + Re + Talap(t) (47
where )
uAb(t — 1)
uAb(t — 2)
UsB) = | (e — )
_uAb(t - .I—Ie - H)_

Consider the following,

E [¢t¢;r] =E (TGTMtOt + @t) 7”[”’[,2r (TGTMt O + @t)T + TI;r (TGTMt O + @t)T (TaUnp(t) + Ry)

+ (TaUas®) + Re) " (TaTan, Or + Op) m, + (Talas(t) + Re) T (Talas(t) + Ry)

Omin (E [¢10] |) > 02 min{c?,, 02}

—26p (km + kmbe + 1) VH((1+ kg)kmbEuea(1,0)\/ He + v/ Heky, /10T)
> o?min{c?, 0%} — QHilin (26ckmec(1,0) +1/10T)

Note that for Ty, > Ty, eg(1,6) < %Aim (3068?;52]’?22} - 1TT> with probability at least 1 — 26.
Thus, we get
o2
owmin (E [¢107 ]) > 2¢ min{o?, 02}, (48)

for all t > T,,. Using Lemma we have that for T, = (ky + ku), [|¢:] < Tev/He with
probability at least 1 — 24. Therefore, for a chosen M € M, using Theorem|[6] we have the following
with probability 1 — 3¢:

max (Z ¢z z ]) < QfT H \/ (W) (49)

In order to show that this holds for any chosen M € M, we adopt a standard covering argument.
We know that from Lemma 5.4 of Simchowitz et al. [6], the Euclidean diameter of M is at most

2k pmy/min{m, p}, i.e. |M¢||F < kagy/min{m,p} for all M; € M. Thus, we can upper bound

the covering number as follows,

H'mp
N Bl gD |- ) < (ac/minGm) +2)

The following holds for all the centers of e-balls in ||M;|| ¢, for all t > T,,,, with probability 1 — 34:

Amax (Z bid; — E[, (bT]) < 2\/%T§He\/1og (W) + H'mplog (;W min{m, p} + i)
(50)
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Consider all M in the e-balls, i.e. effect of epsilon perturbation in || M|| ¢ sets, using Weyl’s inequality
we have with probability at least 1 — 30,

ol o, SkprgHee (265, + 3kMm + 3) 1
Omin <Z¢ ¢ ) ( mll’l{O’ UZ} — \/m <1 + 107‘!)

H, 2
- 2@T3He\/log ((”;4'19)) + H'mplog (KJM min{m, p} + )
€

2 . 2 2 /-
fore < 1.Lete =minq 1, Te H;m{g“’ ,gz}2 min{m.p} . For this choice of €, we get
68k ke He (263, +3k M +3)

Fmin <Z¢¢> ) ( min{a?,, 3})

- Q@TfHe\/log <He(n;+p)) + H'mplog (fiM min{m, p} + 2>~
€

For picking T, > T, we can guarantee that after T, time steps in the first epoch we have the
advertised lower bound. O

Combining Lemma [E.2] with Theorem 3] gives

Hgy,i - ng <

Ke

)
5T [min{e2,02}
Oc 2 1Tbase 16

for all 4, with probability at least 1 — 44. Setting

2 2 2 2 2,2 2 2 2 2
2 . . 0,0 0,0, JOJy 0.0y 0.0
= min { s

(S

g

* 2 7 27 27 16 7 16
provides the guarantee in Appendix [D.2]for warm-up and adaptive control periods.
F Boundedness Lemmas

Lemma F.1 (Bounded Nature’s y). . For all t € [T, the following holds with probability at least
1-4,

6m \/log 475T
16:(G)l < k=72 2mlog — +||CH<I>( \/Ilzlllog*Jr

Proof. Using Lemma the following hold for all ¢ € [T, with probability at least 1 — 9,

o6nT 6mT 6n
lwe]| < Towy/2nlog 5 | ze]| <T.4/2mlog 5 lzoll < 4/2n||%] log 5 (52)

Thus we have,

t—1

16 (G| =l + CA'zo + ) CA™" | < ||| +|C| (AtllllwollJr(maX IthII)ZIAlH)

=0

6mT 1Og4nT
< 7z 2mlog —— + [|C]|®(4) A/ \Elllog 5 . (53)

O
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Lemma F.2 (Boundedness Lemma). Let 0 € (0,1), T > T\, > Tynax and g(H + 1) < 1/10T.
For ADAPTON, we have the boundedness of the following with probability at least 1 — 26:

Nature’s y : ||b:(G)|| < kyp, Vi,

Inputs: ||u;| < ky = 2max{Ky,, kmkKp},VEt,  Outputs: ||y|| < Ky = Kp + KKy VE, and

Nature’s y estimates: ||b,(G)| < 2ky , forall t > T,

Proof of this lemma follows similarly from the proof of Lemma 6.1 in Simchowitz et al. [6].

F.1 Additional Bound on the Markov Parameter Estimates

Imin (C)
1+[1A]2

16 ke R rG H v& Yy ) 2.2 2.2, 2
= oz T = 4CI/$M/§G7G7HTgy

2
Define a, such that o < ¢, (Ug + 02 ( ) ), where right hand side is the effective strong

convexity parameter. Define T, = Tg,
and T, = C%’Yé’Y%K?pTQy/T2.

Lemma F.3 (Additional Boundedness of Markov Parameter Estimation Error). Let Ty, > Thax, L.e.
Ty > max{Te,, Tee, Ty} and o (H + 1) < 1/10T. Then

alll j 1 « 1 r
Gl _ qlil) < .5) < mi 7 o
|| ; i ” > EG(Z ) S min AkpRmFG H/Qloss 26 MKG Ko

2c1yGYH e

with probability at least 1 — 49, where eg(i,d) = P Tt
T x T base

Proof. At the beginning of epoch i, using persistence of excitation with high probability in (31), we
get

H

~ o~ 1A . . CI’YG,Y'HK‘E
DNCAT B = OB < cali)/2 = R oY
j_l * ase

From the assumption that ¢y (H +1) < 1/107T', we have that 3 ;- 5, H@[lJ] — G| < eg(l,8)/2.
The second inequality follows from the choice of T, ,T., and T,.. O

€G

G Proofs for Regret Bound

In order to prove Theorem 2] we follow the proof steps of Theorem 5 of Simchowitz et al. [6]. The
main difference is that, ADAPTON updates the Markov parameter estimates in epochs throughout the
adaptive control period which provides decrease in the gradient error in each epoch. These updates
allow ADAPTON to remove O(\/T ) term in the regret expression of Theorem 5. In the following, we
state how the proof of Theorem 5 of Simchowitz et al. [6] is adapted to the setting of ADAPTON.

Theorem 5. Let H' satisfy H' > 3H > 1, Y(|H'/2] — H) < kpm /T and Y(H + 1) < 1/10T. If

holds for the given setting, after a warm-up period time T, > Tiax, if ADAPTON runs with step

size Ny = i—%, then with probability at least 1 — 56, the regret of ADAPTON is bounded as

3. _
< TLLk? + I2H' @1n{m7p;ﬁ;§méﬁiA - Qloss log T
Y min{«, Lkj kg } min{m, p} Lk )

a 2 2
T 2 t , o o [K&KE (Qloss + L) ) L
+Zt:Tw+1 € [logg (7T )—‘,5 H' Kk o +/<;ymax{L,E} )

w

REGRET(T')

Proof. Consider the hypothetical “true prediction” y’s, y?"““ and losses, f7"“*(M) defined in Defini-

tion 8.1 of Simchowitz et al. [6]. Up to truncation by H, they describe the true counterfactual output
of the system for ADAPTON inputs during the adaptive control period and the corresponding counter-
factual loss functions. Lemma shows that at all epoch i, at any time step t € [t;, ..., t;+1 — 1],

the gradient fP"**(M) is close to the gradient of the loss function of ADAPTON:

HVft (M,(A}i,bl(@i), N .,bt(éi)) v (M)HF < Copproxeca (i, 9), (55)
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where Cupprox = VH'kglm lig (16@0ss + 24L). For a comparing controller Mcopm, €
M(H', kaq) and the competing set M, (H{), k), where kg = (1 + 1)Ky and H) = LHT/j —H,
we have the following regret decomposition:

Ty
REGRET(T) < <th (ytaut> ( > b () Z FP™ My, H])
=1

t=T,+1 t=T,+1

warm-up regret algorithm truncation error

T
red red
Z Ftp Mt t— H Z p (omp))

t=T,+1 t=T,+1

frred policy regret
T T
Z ftpred (Mcomp) — _inf Z ft (M, G7 b1(G), ) bf(G))>

MeMy,
t=Ty,+1 t=Tyw+1

comparator approximation error

T
+< inf Z £t (M, G,b1(G), ..., b(G)) — inf > ft(y,{“,ui“)>

t=T,+1 t=T,+1

comparator truncation error

i Zet yM M Ze ™, ”*) (56)

policy approximation error

Notice that the last term is only required to extend the Theorem 2| to Corollary The result of
Theorem [2does not require the last term. We will consider each term separately.

Warm-up Regret: From and Lemma we get ZtT;“l b (ye,ue) < TyLk2.

Algorithm Truncation Error: From (T3), we get

T T T
Et (yt; Ut) - E‘tpred [Mt:tfH} < Z 4 (ytvut) ( + Z el Ut — u%ﬁ) ’
t=Ty+1 t=Ty+1 t=Ty+1
T
S Z LHJ yt_bt +ZG[Z]U,§ i
t=T,+1
T
< Z Lk, Z Glily,_;
t=Ty+1 i=H+1

< TLkykyYa(H +1)

Since ¢ (H +1) < 1/10T, we get Sy _p 1 e (Y, we) = g o1 FF M) < Liyhio, /10.

Comparator Truncation Error: Similar to algorithm truncation error above,

T
Mien/\f/lwt_;:ﬁ(M,G,bl(G),...,bt(G Mlen/\f/tﬂt ;ﬁ yM uM) < TLrgr3rive(H + 1)

< Lkgkiki/10
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Policy Approximation Error: By the assumption that M, lives in the given convex set M, and

(T3), using Lemma[A.T] we get

f f é <
Mlean,,Z t yt 7ut Z t yt ,ut =

Mﬂ

o (M ™) = ey )

&
Il
=

< T'Lty (Y(Hy)ks + ¢ (Hy)kakp)
< 2T Liy kg k) (Hp)

Since $(Hp) < wm/T, we get infmento Yoy b (WM upt) — S, Gyl upt) <
ZLHM/QyIiG,‘{b.

frred Policy Regret : In order to utilize Theorem |8, we need the strong convexity, Lipschitzness
and smoothness properties stated in the theorem. Due to Lemma [F.3] Lemmas [[4HL[.§ provide those
conditions. Combining these with (|3_3[) we obtain the following adaptation of Theorem [8}

Lemma G.1. For step size n = the following bound holds with probability 1 — §:

at’

fpred pohcy regret _|_ — E|Mt compH%'
f Ty+1

< L2H13 min{m&}l‘ééﬁéliixz 1+ Qloss l + 1 Z log i 5
S min{«, Lk? ,%G} min{m, p} Lk a, 4 +;zppmx 2\ 7, )

Proof. Let d = min{m,p}. We can upper bound the right hand side of Theorem [§| via following
proof steps of Theorem 4 of Simchowitz et al. [6]:

L2H"3dri ki, k2 « T
fpred M; — Mcom, 2 < it (1 ol 5
( Z“ ey — 482H = pIIF> S e L) o) 28\ 5

t k+1

L2H" drtrd k2 Toss T
fpredp L. + “ Z HMt Comp”% S, : b 2G2/\/l <1+ l > log ()

min{a, Lkj kg } dLk pm 0
4
Z dpprox 10g2 Ti ) d ) (57)
& =Tt w
where (57) follows from (53). O
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Comparator Approximation Error:

Lemma G.2. Suppose that H' > 2H — 1+ H, yag(H+1) < 1/10T. Then for all T > 0,
Comp. app. err. < ALKyKykpm

L? t
2
T L A (M ESI )

Proof. The lemma can be proven using the proof of Proposition 8.2 of Simchowitz et al.
[6]. Using Lemma E.3 and adapting Lemma E4 in Simchowitz et al. [6] such that

Ml;l(])mp - M[ ]Iz<H’71 + ZHO ' Zb 0 ZHO 1 (G[lb] - G[b])M>s[C]Ha+b+c:i for M* =
arg minyge Zt:TwH Le(yM, uM) and due to Lemmawe have Moy € M:

T
pred o 2 :
E comp) Mlen,/{‘/lo ft (M, G, bl(G), ceey bt(G))
t=Ty+1 t=Ty+1

T
t
<ALk g qlogz (Tﬂ ,5> Rk (kw50 )+t (H+1)+(H+H')7 [Mi=Moomp 3
w

t=Ty+1
L ) L2 t
< Z |:T M —Mecompl| 7 + 8/@5/{3/{3\4(H + H') max {L, } €& ({log2 (>—‘ ,5)]
t=Ty+1 T Tw
+ AT Liykukmtpc (H+1)
d L2 t
<ALKykukm +Z |:T HMt—McompHF + 8k2 KbliM(H + H') max {L7 T} €2 ({logQ (T >-‘ ,6)]
t=T,+1 w
O]

Combining all the terms bounded above, with 7 = ¢ gives
REGRET(T)

< Twan + Liyky /10 + Lngn%ni/lo + 2Lk pmEykaky + 4L/£y/<;u/<;M

L2H" min{m, p}rirdr2, a t
) 1 0SS 1 1 6
i ta e (o) e (5) * > %[ [om (77) | 9)

X Tt
r 4817 t
+ Z 8&3&%53\4(H+ H')max{L, a} e%; ({logg (Tw)-‘ ,5>
t=Tp+1
< Tk,
3. —
N g’ I.mn{m,pz}/fff-@‘ém?w 14 Closs log T
min{c, L}k } min{m, p} L& nm 4
T _ 2
t H'kZ K2k} (Toss + L 48172
5 (] P i 2]
t=T,,+1 w

O

Following the doubling update rule of ADAPTON for the epoch lengths, after T' time steps of agent-
environment interaction, the number of epochs is O (log T'). From Lemma at any time step ¢
during the ¢’th epoch, i.e., t € [t;,...,t; — 1], €4(i,6) = O(polylog(T) /2" Tpase). Therefore,
update rule of ADAPTON yields,

T t O(logT) . ,
Zt:TbM-EH eé((logQ (T—wﬂ , 5) = Z £ Yhaseess (i,0) < O (polylog(T))  (58)

i=1
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Using the result of (58], we can bound the third term of the regret upper bound in Theorem 5| with a
polylog(T) bound which gives the advertised result in Theoremand using the policy approximation
error term we obtain Corollary [6.1]

H Additional Results

Consider the case where the condition on persistence of excitation of M does not hold. In order to
efficiently learn the model parameters and minimize the regret, one can add an additional independent
Gaussian excitation to the control input u, for each time step ¢. This guarantees the concentration of
Markov parameter estimates, but it also results in an extra regret term in the bound of Theorem 3
If the variance of the added Gaussian vector is set to be 52, exploiting the Lipschitzness of the
loss functions, the additive regret of the random excitation is O(7'c). Following the results in
Lemma [F3] the additional random excitation helps in parameter estimation and concentration of
Markov parameters up to the error of O(polylog(T")/+/c%t). Since the contribution of the error in
the Markov parameter estimates in the Theorem [3]is quadratic, the contribution of this error in the
regret through R3 will be O(polylog(T)/5?).

Corollary H.1. When the condition on persistent excitation of all M is not fulfilled, adding indepen-
dent Gaussian vectors with variance of O(1/ TV 3) to the inputs in adaptive control period results in

the regret upper bound of O(T?/3).

I Technical Lemmas and Theorems

Theorem 6 (Matrix Azuma [53]). Consider a finite adapted sequence { X 1.} of self-adjoint matrices
in dimension d, and a fixed sequence { Ay} of self-adjoint matrices that satisfy

Er 1 X = 0and A2 = X3 almost surely.

Compute the variance parameter

o=

DA
k

IP’{/\max (ZXk> > t} <d.et/8"
k

Theorem 7 (Self-normalized bound for vector-valued martingales [56]). Let (Fy;k > 0) be a
filtration, (my; k > 0) be an R%-valued stochastic process adapted to (Fy,) , (ni; k > 1) be a real-
valued martingale difference process adapted to (Fy,) . Assume that ny, is conditionally sub-Gaussian
with constant R. Consider the martingale

Then, forallt > 0

t
Sy = Z MeME—1
k=1

and the matrix-valued processes

t
Vi = kaqm;p Vi=V4+V, t>0
k=1

Then for any 0 < § < 1, with probability 1 — §

7.\ 1/2 —1/2
det (V det(V
Vi >0, |St||2’v,1§2R210g< (74 o )
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Theorem 8 (Theorem 8 of Simchowitz et al. [6]). Suppose that K C Réand h > 1. Let F, =
K1 — R be a sequence of L. coordinatewise-Lipschitz functions with the induced unary functions
fi(z) := Fy(z,...,x) which are L¢-Lipschitz and 3-smooth. Let f.1,(x) := E[fi(z)|Fi—x] be
a-strongly convex on K for a filtration (F;),~,. Suppose that z;11 = Uk (2, — ng,), where g, =
Vfi(z) + € for ||g, ||y < Lg, and Diam(KC) < D. Let the gradient descent iterates be applied for

t > to for some to < k, with zo = z1 = - -+ = 2z, € K for k > 1. Then with step size 1, = %, the
Sfollowing bound holds with probability 1 — 6 for all comparators z, € K simultaneously:
T 6 T o L
2 2
Z fe(ze) = fi (20) — <a Z lleclls — - Z |2 — Z*||2>
t=k+1 t=k+1 t=1
kL¢ + h*Lc) Ly + kdL? + kBL kL? 1+1 + aD?
SakDQ—&—( f ) £ £ Bglog(T)—i—flog( og(; a )
@ @

Lemma I.1 (Regularized Design Matrix Lemma [56])). When the covariates satisfy ||z¢|| < ¢, with

some ¢y, > 0w.p.1 then
det (V;) A + tc?
<dl —n
%8 qet(n) = B\ T
where Vy = M\ + 22:1 22 for z; € R
Lemma 1.2 (Norm of a subgaussian vector [38]). Let v € R? be a entry-wise R-subgaussian random

variable. Then with probability 1 — 0, ||v]| < R+/2dlog(2d/$).
pred

Lemma L.3 (Lemma 8.1 of Simchowitz et al. [6]). For any M € M, let f" (M) denote the unary
counterfactual loss function induced by true truncated counterfactuals (Definition 8.1 of Simchowitz
et al. [l6]]). During the i’th epoch of adaptive control period, at any time step t € [t;, ..., tit1 — 1],
for all i, we have that

HVft (M,(A}i,bl(@i), N .,bt(@i)) oy (M)HF < Coppron € (1, 9),

where Coppror = VH'kgrmk: (160055 + 24L).

Lemma L4 (Lemma 8.2 of Simchowitz et al. [6]). For any M € M, f/"* (M) is -smooth, where

B = 16H'KiKkEloss-

Lemma L5 (Lemma 8.3 of Simchowitz et al. [6]). For any M € M, given eg(i,0) <
L / H’;l , conditional unary counterfactual loss function induced by true counterfactuals

dKkpKMKG
are a /4 strongly convex.
Lemma 1.6 (Lemma 8.4 of Simchowitz etal. [6]). Let L = 4L\ H'k2k& K pm. ForanyM € M and
for Ty > Tiax, fF md(M) is 4L ¢-Lipschitz, f¥ red [My..—p] is 4Ly coordinate Lipschitz. Moreover,
V fi (M7 Gi,b1(Gy), .. -abt(éi)) H <A4Ly.

2

maxmem ’
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