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Abstract

In this paper, we propose a unified analysis of variants of distributed SGD
with arbitrary compressions and delayed updates. Our framework is general
enough to cover different variants of quantized SGD, Error-Compensated SGD
(EC-SGD) and SGD with delayed updates (D-SGD). Via a single theorem, we
derive the complexity results for all the methods that fit our framework. For
the existing methods, this theorem gives the best-known complexity results.
Moreover, using our general scheme, we develop new variants of SGD that
combine variance reduction or arbitrary sampling with error feedback and
quantization and derive the convergence rates for these methods beating the
state-of-the-art results. In order to illustrate the strength of our framework,
we develop 16 new methods that fit this. In particular, we propose the
first method called EC-SGD-DIANA that is based on error-feedback for biased
compression operator and quantization of gradient differences and prove the
convergence guarantees showing that EC-SGD-DIANA converges to the exact
optimum asymptotically in expectation with constant learning rate for both
convex and strongly convex objectives when workers compute full gradients
of their loss functions. Moreover, for the case when the loss function of
the worker has the form of finite sum, we modified the method and got
a new one called EC-LSVRG-DIANA which is the first distributed stochastic
method with error feedback and variance reduction that converges to the
exact optimum asymptotically in expectation with a constant learning rate.

1 Introduction

We consider distributed optimization problems of the form

min
x∈Rd

{
f(x) = 1

n

n∑
i=1

fi(x)
}
, (1)

where n is the number of workers/devices/clients/nodes. The information about function
fi is stored on the i-th worker only. Problems of this form appear in the distributed or
federated training of supervised machine learning models [42, 30]. In such applications,
x ∈ Rd describes the parameters identifying a statistical model we wish to train, and fi is
the (generalization or empirical) loss of model x on the data accessible by worker i. If worker
i has access to data with distribution Di, then fi is assumed to have the structure

fi(x) = Eξi∼Di [fξi(x)] . (2)
Dataset Di may or may not be available to worker i in its entirety. Typically, we assume that
worker i has only access to samples from Di. If the dataset is fully available, it is typically
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finite, in which case we can assume that fi has the finite-sum form1:

fi(x) = 1
m

m∑
j=1

fij(x). (3)

Communication bottleneck. The key bottleneck in practical distributed [14] and feder-
ated [30, 21] systems comes from the high cost of communication of messages among the
clients needed to find a solution of sufficient qualities. Several approaches to addressing this
communication bottleneck have been proposed in the literature.
In the very rare situation when it is possible to adjust the network architecture connecting the
clients, one may consider a fully decentralized setup [6], and allow each client in each iteration
to communicate to their neighbors only. One can argue that in some circumstances and in a
certain sense, decentralized architecture may be preferable to centralized architectures [34].
Another natural way to address the communication bottleneck is to do more meaningful
(which typically means more expensive) work on each client before each communication
round. This is done in the hope that such extra work will produce more valuable messages
to be communicated, which hopefully results in the need for fewer communication rounds.
A popular technique of this type which is particularly relevant to Federated Learning is
based in applying multiple local updates instead of a single update only. This is the main
idea behind Local-SGD [43]; see also [4, 15, 22, 24, 29, 46, 50]. However, in this paper, we
contribute to the line work which aims to resolve the communication bottleneck issue via
communication compression. That is, the information that is normally exchanged—be it
iterates, gradients or some more sophisticated vectors/tensors—is compressed in a lossy
manner before communication. By applying compression, fewer bits are transmitted in each
communication round, and one hopes that the increase in the number of communication
rounds necessary to solve the problem, if any, is compensated by the savings, leading to a
more efficient method overall.
Error-feedback framework. In order to address these issues, in this paper we study a
broad class of distributed stochastic first order methods for solving problem (1) described by
the iterative framework

xk+1 = xk − 1
n

n∑
i=1

vki , (4)

ek+1
i = eki + γgki − vki , i = 1, 2, . . . , n. (5)

In this scheme, xk represents the key iterate, vki is the contribution of worker i towards the
update in iteration k, gki is an unbiased estimator of ∇fi(xk) computed by worker i, γ > 0
is a fixed stepsize and eki is the error accumulated at node i prior to iteration k (we set
to e0

i = 0 for all i). In order to better understand the role of the vectors vki and eki , first
consider the simple special case with vki ≡ γgki . In this case, eki = 0 for all i and k, and
method (4)–(5) reduces to distributed SGD:

xk+1 = xk − γ
n

n∑
i=1

gki . (6)

However, by allowing to chose the vectors vki in a different manner, we obtain a more general
update rule than what the SGD update (6) can offer. Stich and Karimireddy [46], who studied
(4)–(5) in the n = 1 regime, show that this flexibility allows to capture several types of
methods, including those employing i) compressed communication, ii) delayed gradients, and
iii) minibatch gradient updates. While our general results apply to all these special cases
and more, in order to not dilute the focus of the paper, in the main body of this paper we
concentrate on the first use case—compressed communication—which we now describe.
Error-compensated compressed gradient methods. Note that in distributed SGD (6),
each worker needs to know the aggregate gradient gk = 1

n

∑n
i=1 g

k
i to form xk+1, which

is needed before the next iteration can start. This can be achieved, for example, by each
1The implicit assumption that each worker contains exactly m data points is for simplicity only;

all our results have direct analogues in the general setting with mi data points on worker i.
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worker i communicating their gradient gki to all other workers. Alternatively, in a parameter
server setup, a dedicated master node collects the gradients from all workers, and broadcasts
their average gk to all workers. Instead of communicating the gradient vectors gki , which
is expensive in distributed learning in general and in federated learning in particular, and
especially if d is large, we wish to communicate other but closely related vectors which can
be represented with fewer bits. To this effect, each worker i sends the vector

vki = C(eki + γgki ), ∀i ∈ [n] (7)
instead, where C : Rd → Rd is a (possibly randomized, and in such a case, drawn independently
of all else in iteration k) compression operator used to reduce communication. We assume
throughout that there exists δ ∈ (0, 1] such that the following inequality holds for all x ∈ Rd

E
[
‖C(x)− x‖2] ≤ (1− δ)‖x‖2. (8)

For any k ≥ 0, the vector ek+1
i =

∑k
t=0 γg

t
i − vti captures the error accumulated by worker

i up to iteration k. This is the difference between the ideal SGD update
∑k
t=0 γg

t
i and the

applied update
∑k
t=0 v

t
i . As we see in (7), at iteration k the current error eki is added to the

gradient update γgki—this is referred to as error feedback—and subsequently compressed,
which defines the update vector vki . Compression introduces additional error, which is added
to eki , and the process is repeated.
Compression operators. For a rich collection of specific operators satisfying (8), we refer
the reader to Stich and Karimireddy [46] and Beznosikov et al. [7]. These include various
unbiased or contractive sparsification operators such as RandK and TopK, respectively,
and quantization operators such as natural compression and natural dithering [18]. Several
additional comments related to compression operators are included in Section B.

2 Summary of Contributions

We now summarize the key contributions of this paper.
�General theoretical framework. In this work we propose a general theoretical framework
for analyzing a wide class of methods that can be written in the the error-feedback form
(4)-(5). We perform complexity analysis under µ-strong quasi convexity (Assumption 3.1)
and L-smoothness (Assumption 3.2) assumptions on the functions f and {fi}, respectively.
Our analysis is based on an additional parametric assumption (using parameters A, A′, B1,
B′1, B2, B′2, C1, C2, D1, D′1, D2, D3, η, ρ1, ρ2, F1, F2, G) on the relationship between the
iterates xk, stochastic gradients gk, errors ek and a few other quantities (see Assumption 3.4,
and the stronger Assumption 3.3). We prove a single theorem (Theorem 3.1) from which
all our complexity results follow as special cases. That is, for each existing or new specific
method, we prove that one (or both) of our parametric assumptions holds, and specify the
parameters for which it holds. These parameters have direct impact on the theoretical rate
of the method. A summary of the values of the parameters for all methods developed in this
paper is provided in Table 5 in the appendix. We remark that the values of the parameters
A,A′, B1, B

′
1, B2, B

′
2, C1, C2 and ρ1, ρ2 influence the theoretical stepsize.

� Sharp rates. For existing methods covered by our general framework, our main conver-
gence result (Theorem 3.1) recovers the best known rates for these methods up to constant
factors.
� Eight new error-compensated (EC) methods. We study several specific EC methods
for solving problem (1). First, we recover the EC-SGD method first analyzed in the n = 1 case
by Stich and Karimireddy [46] and later in the general n ≥ 1 case by Beznosikov et al. [7].
More importantly, we develop eight new methods: EC-SGDsr, EC-GDstar, EC-SGD-DIANA2,

2Inspired by personal communication with D. Kovalev in November 2019 who shared a key
algorithm and preliminary results of our paper, Stich [45] studied almost the same algorithm and
also other related methods and independently derived convergence rates. Our work was finalized
and submitted to NeurIPS 2020 in June 2020, while the results in [45] were obtained in Summer
2020 and appeared on arXiv in September 2020. Moreover, in our work, we obtain tighter rates (see
Table 1 for the details).
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Table 1: Complexity of Error-Compensated SGD methods established in this paper. Symbols:
ε = error tolerance; δ = contraction factor of compressor C; ω = variance parameter
of compressor Q; κ = L/µ; L = expected smoothness constant; σ2

∗ = variance of the
stochastic gradients in the solution; ζ2

∗ = average of ‖∇fi(x∗)‖2; σ2 = average of the uniform
bounds for the variances of stochastic gradients of workers. EC-GDstar, EC-LSVRGstar and
EC-LSVRG-DIANA are the first EC methods with a linear convergence rate without assuming
that ∇fi(x∗) = 0 for all i. EC-LSVRGstar and EC-LSVRG-DIANA are the first EC methods
with a linear convergence rate which do not require the computation of the full gradient
∇fi(xk) by all workers in each iteration. Out of these three methods, only EC-LSVRG-DIANA
is practical. †EC-GD-DIANA is a special case of EC-SGD-DIANA where each worker i computes
the full gradient ∇fi(xk).

Problem Method Alg # Citation Sec # Rate (constants ignored)

(1)+(3) EC-SGDsr Alg 3 new J.1 Õ

(
L
µ

+ L+
√
δLL

δµ
+ σ2

∗
nµε

+

√
L(σ2
∗+ζ2
∗/δ)

µ
√
δε

)
(1)+(2) EC-SGD Alg 4 [46] J.2 Õ

(
κ
δ

+ σ2
∗

nµε
+

√
L(σ2
∗+ζ2
∗/δ)

δµ
√
ε

)
(1)+(3) EC-GDstar Alg 5 new J.3 O

(
κ
δ

log 1
ε

)
(1)+(2) EC-SGD-DIANA Alg 6 new J.4

Opt. I: Õ
(
ω + κ

δ
+ σ2
nµε

+
√
Lσ2

δµ
√
ε

)
Opt. II: Õ

(
1+ω
δ

+ κ
δ

+ σ2
nµε

+
√
Lσ2

µ
√
δε

)
(1)+(3) EC-SGDsr-DIANA Alg 7 new J.5

Opt. I: Õ

(
ω + L

µ
+
√
LL
δµ

+ σ2
∗

nµε
+

√
Lσ2
∗

δµ
√
ε

)
Opt. II: Õ

(
1+ω
δ

+ L
µ

+
√
LL
δµ

+ σ2
∗

nµε
+

√
Lσ2
∗

µ
√
δε

)
(1)+(2) EC-GD-DIANA† Alg 6 new J.4 O

((
ω + κ

δ

)
log 1

ε

)
(1)+(3) EC-LSVRG Alg 8 new J.6 Õ

(
m + κ

δ
+

√
Lζ2
∗

δµ
√
ε

)
(1)+(3) EC-LSVRGstar Alg 9 new J.7 O

((
m + κ

δ

)
log 1

ε

)
(1)+(3) EC-LSVRG-DIANA Alg 10 new J.8 O

((
ω + m + κ

δ

)
log 1

ε

)

EC-SGDsr-DIANA, EC-GD-DIANA, EC-LSVRG, EC-LSVRGstar and EC-LSVRG-DIANA. Some of
these methods are designed to work with the expectation structure of the local functions fi
given in (2), and others are specifically designed to exploit the finite-sum structure (3). All
these methods follow the error-feedback framework (4)–(5), with vki chosen as in (7). They
differ in how the gradient estimator gki is constructed (see Table 2 for a compact description
of all these methods; formal descriptions can be found in the appendix). As we shall see,
the existing EC-SGD method uses a rather naive gradient estimator, which renders it less
efficient in theory and practice when compared to the best of our new methods. A key
property of our parametric assumption described above is that it allows for the construction
and modeling of more elaborate gradient estimators, which leads to new EC methods with
superior theoretical and practical properties when compared to prior state of the art.
� First linearly converging EC methods. The key theoretical consequence of our
general framework is the development of the first linearly converging error-compensated
SGD-type methods for distributed training with biased communication compression. In
particular, we design four such methods: two simple but impractical methods, EC-GDstar and
EC-LSVRGstar, with rates O

(
κ
δ ln 1

ε

)
and O

((
m+ κ

δ

)
ln 1

ε

)
, respectively, and two practical

but more elaborate methods, EC-GD-DIANA, with rateO
((
ω + κ

δ

)
ln 1

ε

)
, and EC-LSVRG-DIANA,

with rate O
((
ω +m+ κ

δ

)
ln 1

ε

)
. In these rates, κ = L/µ is the condition number, 0 < δ ≤ 1

is the contraction parameter associated with the compressor C used in (7), and ω is the
variance parameter associated with a secondary unbiased compressor3 Q which plays a key
role in the construction of the gradient estimator gki . The complexity of the first and third

3We assume that EQ(x) = x and E‖Q(x)− x‖2 ≤ ω‖x‖2 for all x ∈ Rd.
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Table 2: Error compensated methods developed in this paper. In all cases, vki = C(eki + γgki ).
The full descriptions of the algorithms are included in the appendix.

Problem Method gki Comment

(1) + (3) EC-SGDsr 1
m

m∑
j=1

ξij∇fij(xk)
E [ξij ] = 1

EDi
[
‖∇fξi(x)−∇fξi(x∗)‖2]
≤ 2LDfi(x, x∗)

(1) + (2) EC-SGD ∇fξi(xk)
(1) EC-GDstar ∇fi(xk)−∇fi(x∗) known ∇fi(x∗) ∀i

(1) + (2) EC-SGD-DIANA ĝki − hki + hk

E
[
ĝki
]

= ∇fi(xk)
Ek

[
‖ĝki −∇fi(xk)‖2] ≤ D1,i

hk+1
i = hki + αQ(ĝki − hki )

hk = 1
n

n∑
i=1

hki

(1) + (3) EC-SGDsr-DIANA ∇fξk
i
(xk)− hki + hk

E
[
∇fξk

i
(xk)

]
= ∇fi(xk)

EDi
[
‖∇fξi(x)−∇fξi(x∗)‖2]
≤ 2LDfi(x, x∗)

hk+1
i = hki + αQ(∇fξk

i
(xk)− hki )

hk = 1
n

n∑
i=1

hki

(1) + (3) EC-LSVRG
∇fil(xk)−∇fil(wki )

+∇fi(wki )

l chosen uniformly from [m]

wk+1
i =

{
xk, with prob. p,
wki , with prob. 1− p

(1) + (3) EC-LSVRGstar
∇fil(xk)−∇fil(wki )

+∇fi(wki )−∇fi(x∗)

l chosen uniformly from [m]

wk+1
i =

{
xk, with prob. p,
wki , with prob. 1− p

(1) + (3) EC-LSVRG-DIANA

ĝki − hki + hk

where
ĝki = ∇fil(xk)
−∇fil(wki ) +∇fi(wki )

hk+1
i = hki + αQ(ĝki − hki )

hk = 1
n

n∑
i=1

hki

l chosen uniformly from [m]

wk+1
i =

{
xk, with prob. p,
wki , with prob. 1− p

methods does not depend on m as they require the computation of the full gradient ∇fi(xk)
for each i. The remaining two methods only need to compute O(1) stochastic gradients
∇fij(xk) on each worker i.
The first two methods, while impractical, provided us with the intuition which enabled us to
develop the practical variant. We include them in this paper due to their simplicity, because
of the added insights they offer, and to showcase the flexibility of our general theoretical
framework, which is able to describe them. EC-GDstar and EC-LSVRGstar are impractical
since they require the knowledge of the gradients {∇fi(x∗)}, where x∗ is an optimal solution
of (1), which are obviously not known since x∗ is not known.
The only known linear convergence result for an error compensated SGD method is due to
Beznosikov et al. [7], who require the computation of the full gradient of fi by each machine
i (i.e., m stochastic gradients), and the additional assumption that ∇fi(x∗) = 0 for all i. We
do not need such assumptions, thereby resolving a major theoretical issue with EC methods.
� Results in the convex case. Our theoretical analysis goes beyond distributed opti-
mization and recovers the results from Gorbunov et al. [11], Khaled et al. [25] (without
regularization) in the special case when vki ≡ γgki . As we have seen, in this case eki ≡ 0 for
all i and k, and the error-feedback framework (4)–(5) reduces to distributed SGD (6). In this
regime, the relation (19) in Assumption 3.4 becomes void, while relations (15) and (16) with
σ2

2,k ≡ 0 are precisely those used by Gorbunov et al. [11] to analyze a wide array of SGD
methods, including vanilla SGD [41], SGD with arbitrary sampling [13], as well as variance
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reduced methods such as SAGA [9], SVRG [20], LSVRG [17, 31], JacSketch [12], SEGA [16] and
DIANA [37, 19]. Our theorem recovers the rates of all the methods just listed in both the
convex case µ = 0 Khaled et al. [25] and the strongly-convex case µ > 0 Gorbunov et al. [11]
under the more general Assumption 3.4.
� DIANA with bi-directional quantization. To illustrate how our framework can be
used even in the case when vki ≡ γgki , eki ≡ 0, we develop analyze a new version of DIANA
called DIANAsr-DQ that uses arbitrary sampling on every node and double quantization4,
i.e., unbiased compression not only on the workers’ side but also on the master’s one.
� Methods with delayed updates. Following Stich [44], we also show that our approach
covers SGD with delayed updates [1, 3, 10] (D-SGD), and our analysis shows the best-known
rate for this method. Due to the flexibility of our framework, we are able develop several new
variants of D-SGD with and without quantization, variance reduction, and arbitrary sampling.
Again, due to space limitations, we put these methods together with their convergence
analyses in the appendix.

3 Main Result

In this section we present the main theoretical result of our paper. First, we introduce our
assumption on f , which is a relaxation of µ-strong convexity.
Assumption 3.1 (µ-strong quasi-convexity). Assume that function f has a unique minimizer
x∗. We say that function f is strongly quasi-convex with parameter µ ≥ 0 if for all x ∈ Rd

f(x∗) ≥ f(x) + 〈∇f(x), x∗ − x〉+ µ
2 ‖x− x

∗‖2. (9)

We allow µ to be zero, in which case f is sometimes called weakly quasi-convex (see [44] and
references therein). Second, we introduce the classical L-smoothness assumption.
Assumption 3.2. L-smoothness We say that function f is L-smooth if it is differentiable
and its gradient is L-Lipschitz continuous, i.e., for all x, y ∈ Rd

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. (10)

It is a well-known fact [38] that L-smoothness of convex function f implies that

‖∇f(x)−∇f(y)‖2 ≤ 2L(f(x)− f(y)− 〈∇f(y), x− y〉) def= 2LDf (x, y). (11)

We now introduce our key parametric assumption on the stochastic gradient gk. This is a
generalization of the assumption introduced by Gorbunov et al. [11] for the particular class
of methods described covered by the EF framework (4)–(5).
Assumption 3.3. For all k ≥ 0, the stochastic gradient gk is an average of stochastic
gradients gki such that

gk = 1
n

n∑
i=1

gki , E
[
gk | xk

]
= ∇f(xk). (12)

Moreover, there exist constants A, Ã, A′, B1, B2, B̃1, B̃2, B
′
1, B

′
2, C1, C2, G,D1, D̃1, D

′
1, D2, D3 ≥

0, and ρ1, ρ2 ∈ [0, 1] and two sequences of (probably random) variables {σ1,k}k≥0 and
{σ2,k}k≥0, such that the following recursions hold:

1
n

n∑
i=1

∥∥ḡki ∥∥2 ≤ 2A(f(xk)− f(x∗)) +B1σ
2
1,k +B2σ

2
2,k +D1, (13)

1
n

n∑
i=1

E
[∥∥gki − ḡki ∥∥2 | xk

]
≤ 2Ã(f(xk)− f(x∗)) + B̃1σ

2
1,k + B̃2σ

2
2,k + D̃1, (14)

E
[
‖gk‖2 | xk

]
≤ 2A′(f(xk)− f(x∗)) +B′1σ

2
1,k +B′2σ

2
2,k +D′1, (15)

E
[
σ2

1,k+1 | σ2
1,k, σ

2
2,k
]
≤ (1− ρ1)σ2

1,k + 2C1
(
f(xk)− f(x∗)

)
+Gρ1σ

2
2,k +D2,(16)

E
[
σ2

2,k+1 | σ2
2,k
]
≤ (1− ρ2)σ2

2,k + 2C2
(
f(xk)− f(x∗)

)
, (17)

4In the concurrent work (which appeared on arXiv after we have submitted our paper to NeurIPS)
a similar method was independently proposed under the name of Artemis [40]. However, our analysis
is more general, see all the details on this method in the appendix. This footnote was added to the
paper during the preparation of the camera-ready version of our paper.

6



where ḡki = E
[
gki | xk

]
.

Let us briefly explain the intuition behind the assumption and the meaning of the introduced
parameters. First of all, we assume that the stochastic gradient at iteration k is conditionally
unbiased estimator of ∇f(xk), which is a natural and commonly used assumption on the
stochastic gradient in the literature. However, we explicitly do not require unbiasedness of
gki , which is very useful in some special cases. Secondly, let us consider the simplest special
case when gk ≡ ∇f(xk) and f1 = . . . = fn = f , i.e., there is no stochasticity/randomness in
the method and the workers have the same functions. Then due to ∇f(x∗) = 0, we have that

‖∇f(xk)‖2
(11)
≤ 2L(f(xk)− f(x∗)),

which implies that Assumption 3.3 holds in this case with A = A′ = L, Ã = 0 and
B1 = B2 = B̃1 = B̃2 = B′1 = B′2 = C1 = C2 = D1 = D̃1 = D′1 = D2 = 0, ρ = 1,
σ2

1,k ≡ σ2
2,k ≡ 0.

In general, if gk satisfies Assumption 3.4, then parameters A, Ã and A′ are usually connected
with the smoothness properties of f and typically they are just multiples of L, whereas
terms B1σ

2
1,k, B2σ

2
2,k, B̃1σ

2
1,k, B̃2σ

2
2,k, B′1σ2

1,k, B′2σ2
2,k and D1, D̃1, D′1 appear due to the

stochastic nature of gki . Moreover, {σ2
1,k}k≥0 and {σ2

2,k}k≥0 are sequences connected with
variance reduction processes and for the methods; without any kind of variance reduction
these sequences contains only zeros. Parameters B1 and B2 are often 0 or small positive
constants, e.g., B1 = B2 = 2, and D1 characterizes the remaining variance in the estimator
gk that is not included in the first two terms.
Inequalities (16) and (17) describe the variance reduction processes: one can interpret ρ1 and
ρ2 as the rates of the variance reduction processes, 2C1(f(xk)−f(x∗)) and 2C2(f(xk)−f(x∗))
are “optimization” terms and, similarly to D1, D2 represents the remaining variance that
is not included in the first two terms. Typically, σ2

1,k controls the variance coming from
compression and σ2

2,k controls the variance taking its origin in finite-sum type randomization
(i.e., subsampling) by each worker. In the case ρ1 = 1 we assume that B1 = B′1 = C1 = G =
0, D2 = 0 (for ρ2 = 1 analogously), since inequality (16) becomes superfluous.
However, in our main result we need a slightly different assumption.
Assumption 3.4. For all k ≥ 0, the stochastic gradient gk is an unbiased estimator of
∇f(xk):

E
[
gk | xk

]
= ∇f(xk). (18)

Moreover, there exist non-negative constants A′, B′1, B
′
2, C1, C2, F1, F2, G,D

′
1, D2, D3 ≥

0, ρ1, ρ2 ∈ [0, 1] and two sequences of (probably random) variables {σ1,k}k≥0 and {σ2,k}k≥0
such that inequalities (15), (16) and (17) hold and

3L
K∑
k=0

wkE‖ek‖2 ≤ 1
4

K∑
k=0

wkE
[
f(xk)− f(x∗)

]
+ F1σ

2
1,0 + F2σ

2
2,0 + γD3WK (19)

for all k,K ≥ 0, where ek = 1
n

∑n
i=1 e

k
i and {WK}K≥0 and {wk}k≥0 are defined as

WK =
K∑
k=0

wk, wk = (1− η)−(k+1), η = min
{
γµ
2 ,

ρ1
4 ,

ρ2
4
}
. (20)

This assumption is more flexible than Assumption 3.3 and helps us to obtain a unified
analysis of all methods falling in the error-feedback framework. We emphasize that in this
assumption we do not assume that (13) and (14) hold explicitly. Instead of this, we introduce
inequality (19), which is the key tool that helps us to analyze the effect of error-feedback and
comes from the analysis from [46] with needed adaptations connected with the first three
inequalities. As we show in the appendix, this inequality can be derived for SGD with error
compensation and delayed updates under Assumption 3.3 and, in particular, using (13) and
(14). As before, D3 hides a variance that is not handled by variance reduction processes and
F1 and F2 are some constants that typically depend on L,B1, B2, ρ1, ρ2 and γ.
We now proceed to stating our main theorem.
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Theorem 3.1. Let Assumptions 3.1, 3.2 and 3.4 be satisfied and γ ≤ 1/4(A′+C1M1+C2M2).
Then for all K ≥ 0 we have

E
[
f(x̄K)− f(x∗)

]
≤ (1− η)K 4(T 0+γF1σ

2
1,0+γF2σ

2
2,0)

γ + 4γ (D′1 +M1D2 +D3) (21)

when µ > 0 and

E
[
f(x̄K)− f(x∗)

]
≤ 4(T 0+γF1σ

2
1,0+γF2σ

2
2,0)

γK + 4γ (D′1 +M1D2 +D3) (22)

when µ = 0, where η = min {γµ/2, ρ1/4, ρ2/4}, T k def= ‖x̃k − x∗‖2 +M1γ
2σ2

1,k +M2γ
2σ2

2,k and

M1 = 4B′1
3ρ1

, M2 = 4(B′2+ 4
3G)

3ρ2
.

All the complexity results summarized in Table 1 follow from this theorem; the detailed
proofs are included in the appendix. Furthermore, in the appendix we include similar results
but for methods employing delayed updates. The methods, and all associated theory is
included there, too.

4 Numerical Experiments

To justify our theory, we conduct several numerical experimentson logistic regression problem
with `2-regularization:

min
x∈Rd

{
f(x) = 1

N

N∑
i=1

log (1 + exp (−yi · (Ax)i)) + µ
2 ‖x‖

2
}
, (23)

where N is a number of features, x ∈ Rd represents the weights of the model, A ∈ RN×d
is a feature matrix, vector y ∈ {−1, 1}N is a vector of labels and (Ax)i denotes the i-th
component of vector Ax. Clearly, this problem is L-smooth and µ-strongly convex with
L = µ+ λmax(A>A)/4N, where λmax(A>A) is a largest eigenvalue of A>A. The datasets were
taken from LIBSVM library [8], and the code was written in Python 3.7 using standard
libraries. Our code is available at https://github.com/eduardgorbunov/ef_sigma_k.
We simulate parameter-server architecture using one machine with Intel(R) Core(TM) i7-9750
CPU 2.60 GHz in the following way. First of all, we always use such N that N = n ·m and
consider n = 20 and n = 100 workers. The choice of N for each dataset that we consider
is stated in Table 3. Next, we shuffle the data and split in n groups of size m. To emulate

Table 3: Summary of datasets: N = total # of data samples; d = # of features.

a9a w8a gisette mushrooms madelon phishing
N 32, 000 49, 700 6, 000 8, 000 2, 000 11, 000
d 123 300 5, 000 112 500 68

the work of workers, we use a single machine and run the methods with the parallel loop in
series. Since in these experiments we study sample complexity and number of bits used for
communication, this setup is identical to the real parameter-server setup in this sense.
In all experiments we use the stepsize γ = 1/L and `2-regularization parameter µ =
10−4λmax(A>A)/4N. The starting point x0 for each dataset was chosen so that f(x0)− f(x∗) ∼
10. In experiments with stochastic methods we used batches of size 1 and uniform sampling
for simplicity. For LSVRG-type methods we choose p = 1/m.
Compressing stochastic gradients. The results for a9a, madelon and phishing can be
found in Figure 1 (included here) and for w8a, mushrooms and gisette in Figure 3 (in the
Appendix). We choose number of components for TopK operator of the order max{1, d/100}.
Clearly, in these experiments we see two levels of noise. For some datasets, like a9a, phishing
or mushrooms, the noise that comes from the stochasticity of the gradients dominates the
noise coming from compression. Therefore, methods such as EC-SGD and EC-SGD-DIANA
start to oscillate around a larger value of the loss function than other methods we consider.
EC-LSVRG reduces the largest source of noise and, as a result, finds a better approximation of
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the solution. However, at some point, it reaches another level of the loss function and starts to
oscillate there due to the noise coming from compression. Finally, EC-LSVRG-DIANA reduces
the variance of both types, and as a result, finds an even better approximation of the solution.
In contrast, for the madelon dataset, both noises are of the same order, and therefore,
EC-LSVRG and EC-SGD-DIANA behave similarly to EC-SGD. However, EC-LSVRG-DIANA again
reduces both types of noise effectively and finds a better approximation of the solution after
a given number of epochs. In the experiments with w8a and gisette datasets, the noise
produced by compression is dominated by the noise coming from the stochastic gradients.
As a result, we see that the DIANA-trick is not needed here.
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Figure 1: Trajectories of EC-SGD, EC-SGD-DIANA, EC-LSVRG and EC-LSVRG-DIANA applied to
solve logistic regression problem with 20 workers.

Compressing full gradients. In order to show the effect of DIANA-type variance reduction
itself, we consider the case when all workers compute the full gradients of their functions,
see Figure 2 (included here) and Figures 4–7 (in the Appendix). Clearly, for all datasets
except mushrooms, EC-GD with constant stepsize converges to a neighborhood of the solution
only, while EC-GDstar and EC-GD-DIANA converge with linear rate asymptotically to the
exact solution. EC-GDstar always show the best performance, however, it is impractical: we
used a very good approximation of the solution to apply this method. In contrast, EC-DIANA
converges slightly slower and requires more bits for communication; but it is practical and
shows better performance than EC-GD. On the mushrooms datasets, EC-GD does not reach
the oscillation region after the given number of epochs, therefore, it is preferable there.
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Figure 2: Trajectories of EC-GD, EC-GD-star and EC-DIANA applied to solve logistic regression
problem with 20 workers.
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