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Abstract

We propose the Canonical 3D Deformer Map, a new representation of the 3D
shape of common object categories that can be learned from a collection of 2D
images of independent objects. Our method builds in a novel way on concepts from
parametric deformation models, non-parametric 3D reconstruction, and canonical
embeddings, combining their individual advantages. In particular, it learns to
associate each image pixel with a deformation model of the corresponding 3D
object point which is canonical, i.e. intrinsic to the identity of the point and shared
across objects of the category. The result is a method that, given only sparse 2D
supervision at training time, can, at test time, reconstruct the 3D shape and texture
of objects from single views, while establishing meaningful dense correspondences
between object instances. It also achieves state-of-the-art results in dense 3D
reconstruction on public in-the-wild datasets of faces, cars, and birds.

1 Introduction

We address the problem of learning to reconstruct 3D objects from individual 2D images. While
3D reconstruction has been studied extensively since the beginning of computer vision research [49]],
and despite exciting progress in monocular reconstruction for objects such as humans, a solution to
the general problem is still elusive. A key challenge is to develop a representation that can learn the
3D shapes of common objects such as cars, birds and humans from 2D images, without access to
3D ground truth, which is difficult to obtain in general. In order to do so, it is not enough to model
individual 3D shapes; instead, the representation must also relate the different shapes obtained when
the object deforms (e.g. due to articulation) or when different objects of the same type are considered
(e.g. different birds). This requires establishing dense correspondences between different shapes, thus
identifying equivalent points (e.g. the left eye in two birds). Only by doing so, in fact, the problem
of reconstructing independent 3D shapes from 2D images, which is ill-posed, reduces to learning a
single deformable shape, which is difficult but approachable.

In this paper, we introduce the Canonical 3D Deformer Map (C3DM), a representation that meets
these requirements (Figure [I). C3DM combines the benefits of parametric and non-parametric
representations of 3D objects. Conceptually, C3DM starts from a parametric 3D shape model of the
object, as often used in Non-Rigid Structure From Motion (NR-SFM [[11]]). It usually takes the form
of a mesh with 3D vertices X1, ..., Xxg € R? expressed as a linear function of global deformation
parameters o, such that X, = Bja for a fixed operator By,. Correspondences between shapes
are captured by the identities k of the vertices, which are invariant to deformations. Recent works
such as Category-specific Mesh Reconstruction (CMR) [31]] put this approach on deep-learning rails,
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Figure 1: The C3DM representation (left) associates each pixel y of the image I with a deformation
operator B(k), a function of the object canonical coordinates x = @, (I). C3DM then reconstructs
the corresponding 3D point X as a function of the global object deformation o and viewpoint (R, t).
It extends three ideas (right): (a) non-rigid structure from motion computes a sparse parametric
reconstruction starting from 2D keypoints rather than an image; (b) a monocular depth predictor dy, (1)
non-parametrically maps each pixel to its 3D reconstruction but lacks any notion of correspondence;
() a canonical mapping ®,,(I) establishes dense correspondences but does not capture geometry.

learning to map an image I to the deformation parameters c(I). However, working with meshes
causes a few significant challenges, including guaranteeing that the mesh does not fold, rendering
the mesh onto the image for learning, and dealing with the finite mesh resolution. It is interesting to
compare parametric approaches such as CMR to non-parametric depth estimation models, which
directly map each pixel y to a depth value dy (I) [[70L[33,[18]], describing the geometry of the scene
in a dense manner. The depth estimator dy, (/) is easily implemented by means of a convolutional
neural network and is not bound to a fixed mesh resolution. However, a depth estimator has no notion
of correspondences and thus of object deformations.

Our intuition is that these two ways of representing geometry, parametric and non-parametric, can
be combined by making use of the third notion, a canonical map 57, 51,135]]. A canonical map is a
non-parametric model ®y (I) = & that associates each pixel y to the intrinsic coordinates « of the
corresponding object point. The latter can be thought of as a continuous generalization of the index k
that in parametric models identifies a vertex of a mesh. Our insight is that any intrinsic quantity —
i.e. one that depends only on the identity of the object point — can then be written as a function of «.
This includes the 3D deformation operator B,;, so that we can reconstruct the 3D point found at
pixel y as Xy = B,.a. Note that this also requires to learn the mapping s — B, which we can do
by means of a small neural network.

We show that the resulting representation, C3DM, can reconstruct the shape of 3D objects densely and
from single images, using only easily-obtainable 2D supervision at training time — the latter being
particularly useful for 3D reconstruction from traditional non-video datasets. We extensively evaluate
C3DM and compare it to CMR [31]], state-of-the-art method for monocular category reconstruction.
C3DM achieves both higher 3D reconstruction accuracy and more realistic visual reconstruction on
real-world datasets of birds, human faces, and four other deformable categories of rigid objects.

2 Related work

The literature contains many impressive results on image-based 3D reconstruction. To appreciate
our contribution, it is essential to characterize the assumptions behind each method, the input they
require for training, and the output they produce. Multiple works [41. 16} 21153} 110} 139, 127, [71} 29,
47,167,155, 1611 1451 1461 130, 1341 531,139,150, 146, 162}, 147 take as input an existing parametric 3D model
of the deformable object such as SMPL [41] or SCAPE [6] for humans bodies, or Basel [48]] for faces
and fit it to images. In our case, no prior parametric 3D model is available; instead, our algorithm
simultaneously learns and fits a 3D model using only 2D data as input.

Sparse NR-SFM methods receive sparse 2D keypoints as input and lift them in 3D, whereas C3DM
receives as input an image and produces a dense reconstruction. In other words, we wish to obtain
dense reconstruction of the objects although only sparse 2D annotations are still provided during
training. For learning, NR-SFM methods need to separate the effect of viewpoint changes and
deformations [69]]. They acheive it by constraining the space of deformations in one of the following
ways: assume that shapes span a low-rank subspace [3} [17,[16} [76]] or that 3D trajectories are smooth
in time [4, 5], or combine both types of constraints [[1} 19,38} 137]], or use multiple subspaces [[76} 2],



sparsity [73}[74] or Gaussian priors [59]. In Section@ we use NR-SFM to define one of the loss
functions. We chose to use the recent C3DPO method [44]], which achieves that separation by training
a canonicalization network, due to its state-of-the-art performance.

Dense 3D reconstruction. Differently from our work, most of the existing approaches to dense
3D reconstruction assume either 3D supervision or rigid objects and multiple views. Traditional
multi-view approaches [7]] perform 3D reconstruction by analyzing disparities between two or more
calibrated views of a rigid object (or a non-rigid object simultaneously captured by multiple cameras),
but may fail to reconstruct texture-less image regions. Learning multi-view depth estimators with [70]
or without [33]] depth supervision can compensate for lacking visual evidence. The method of Innmann
et al. [28]] can reconstruct mildly non-rigid objects, but still requires multiple views.

Most methods for single-view dense reconstruction of object categories require 3D supervision [42,
56, 20]]. In particular, AtlasNet [20] uses a representation similar to ours, mapping points on a
two-dimensional manifold to points on the object’s surface with a multi-layer perceptron (MLP).
Instead of conditioning the MLP on a shape code, we map the manifold points to embeddings; the
3D location is defined as their linear combination. Only a few methods, like C3DM, manage to learn
parametric shape from 2D data only: Cashman and Fitzgibbon [[13] propose a morphable model of
dolphins supervised with 2D keypoints and segmentation masks, while others [63} [12] reconstruct the
categories of PASCAL VOC. Most of these methods start by running a traditional SFM pipeline to
obtain the mean 3D reconstruction and camera matrices. Kar et al. [32] replace it with NR-SFM for
reconstructing categories of PASCAL3D+. VpDR [43] reconstructs rigid categories from monocular
views. Wu et al. [66] reconstruct non-rigid symmetrical shapes by rendering predicted depth maps,
albedo, and shading and ensuring symmetry, which works well for limited viewpoint variation. In
this work, C3DM reconstructs 3D shape from a single image without assuming symmetry, limited
range of viewpoints, or images related by rigid transform at training or prediction time.

A number of recent methods based on differentiable mesh rendering can also be trained with 2D
supervision only. Kanazawa et al. [31] introduced CMR, a deep network that reconstructs shape
and texture of deformable objects; it is the closest to our work in terms of assumptions, type of
supervision, and output, and is currently state of the art for reconstruction of categories other than
humans. DIB-R [15] improves the rendering technique by softly assigning all image pixels, including
background, to the mesh faces. Working with meshes is challenging since the model should learn
to generate only valid meshes, e.g. those without face intersections. Henderson et al. [26] proposed
parametrisation of a mesh that prevents intersecting faces. In contrast to these methods, we work with
point clouds and avoid computationally expensive rendering by leveraging NR-SFM pre-processing
and cross-image consistency constraints. The concurrent work, Implicit Mesh Reconstruction [60],
defines similar constraints to our reprojection and cross-image consistency using rendering-like
interpolation of 3D points on the mesh surface. We avoid this step by predicting 3D coordinates of
each pixel in a feed-forward manner. IMR does not build, as we do, on NR-SFM. The advantage is
that this enables a variant that trains without keypoint supervision. The disadvantage is that, in order
do to so, IMR has to initialise the model with a hand-crafted category-specific template mesh.

Canonical maps. A canonical map is a function that maps image pixels to identifiers of the
corresponding object points. Examples include the UV surface coordinates used by Dense Pose [22]]
and spherical coordinates [57]]. Thewlis et al. [57} 58], Schmidt et al. [51] learn canonical maps in an
unsupervised manner via a bottleneck, whereas Kulkarni et al. [35,136] do so by using consistency
with an initial 3D model. Normalized Object Coordinate Space (NOCS) [[65] also ties canonical
coordinates and object pose, however it does not allow for shape deformation; different shapes within
category have to be modelled by matching to one of the hand-crafted exemplars. Instead, we learn
the dense parametric 3D deformation model for each object category from 2D data.

3 Canonical 3D Deformer Map representation

3.1 The model

Canonical map. Let I € R¥>*#*W be animage and Q C {1,..., H} x {1,..., W} be the image
region that contains the object of interest. We consider a canonical map x = ®(y; I') sending pixels
y € © to points on the unit sphere x € S?, which is topologically equivalent to any 3D surface
S C R? without holes. It can be interpreted as a space of indices or coordinates  that identify a dense
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Figure 2: Detailed system overview. At test time, the image is passed through the network ® to obtain
the map of dense embeddings x € S2. The network B converts them individually to deformation
operators. In the meantime, the image is passed to the viewpoint network to predict the camera
orientation R and shape parameters c. Eq. (I)) combines these quantities to obtain 3D reconstruction
for each pixel within the object mask. At training time, sparse 2D keypoints are preprocessed with
C3DPO [44] to obtain “ground truth” camera orientation R* and shape parameters a*. These,
together with the C3DPO basis B*, are used in (@) to supervise the corresponding predicted variables.
On the right, three more loss functions are illustrated: reprojection loss (3)), cross-projection perceptual
loss (6)), and (8) aligning the camera orientation with average embedding direction.

system of ‘landmarks’ for the deformable object category. A landmark, such as the corner of the left
eye in a human, is a point that can be identified repeatably despite object deformations. Note that the
index space can take other forms than S2, however the latter is homeomorphic to most surfaces of 3D
objects and has the minimum dimensionality, which makes it a handy choice in practice.

Deformation model. We express the 3D location of a landmark « as X(k; I) = B(x)a(I), where
a(I) € RP are image-dependent deformation parameters and B(x) € R3*P is a linear operator
indexed by «. This makes B(k) an intrinsic property, invariant to the object deformation or viewpoint
change. The full 3D reconstruction S is given by the image of this map: S(I) = {B(k)a(I) : k €
S?}. The reconstruction X (y; I) specific to the pixel y is instead given by composition with the
canonical map:

X(y;I) = B(k)ax(I), where k= ®(y;I). (1)

Viewpoint. As done in NR-SFM, we assume that the 3D reconstruction is ‘viewpoint-free’, meaning
that the viewpoint is modelled not as part of the deformation parameters (1), but explicitly, as a
separate rigid motion (R(I),t(I)) € SE(3). The rotation R is regressed from the input image in the
form proposed by Zhou et al. [75]], and translation t(7) is found by minimizing the reprojection, see
Section [3.2| for details. We assume to know the perspective/ortographic camera model m : R? — R?
mapping 3D points in the coordinate frame of the camera to 2D image points (see sup. mat. for
details). With this, we can recover the coordinates y of a pixel from its 3D reconstruction X (y; I) as:

y =7 (R(DX(y; I) + t(I)). 2)
Note that y appears on both sides of eq. (2); this lets us define the self-consistency constraint (3).

Texture. In addition to the deformation operator B(x), any intrinsic property can be descried in
a similar manner. An important example is reconstructing the albedo I(y) of the object, which we

model as:
I(y) = C(r;B(1)), r=(y:1), 3)

where C(k; 8) maps a small number of image-specific texture parameters B(I) € R”" to the color of
landmark «. In Section[d.T} we use this model to transfer texture between images of different objects.

Implementation via neural networks. The model above includes several learnable functions that
are implemented as deep neural networks. In particular, the canonical map ®(I) is implemented



as an image-to-image convolutional network (CNN) with an R**#>W input (a color image) and

an R3*H>XW output (the spherical embedding). The last layer of this network normalizes each location
in /2 norm to project 3D vectors to S?. Functions «(I), B(I) and R(I) predicting deformation,
texture and viewpoint rotation are also implemented as CNNs. Translation t is found by minimising
the reprojection, as explained below. Finally, functions B(x) and C'(x) mapping embeddings to their
3D deformation and texture models are given by multi-layer perceptrons (MLP). The latter effectively
allows x, and the resulting 3D and texture reconstruction, to have arbitrary resolution.

3.2 Learning formulation

The forward pass and loss functions are shown in Figure 2| In order to train C3DM, we assume
available a collection of independently-sampled views of an object category {I,, }N_, E] Furthermore,
for each view, we require annotations for the silhouette €2,, of the object as well as the 2D locations
of K landmarks Y,, = (y,,1,-- -, ¥Ynx)- In practice, this information can often be extracted automati-
cally via a method such as Mask R-CNN [25] and HRNet [54], which we do for most experiments
in Sectiond] Note that C3DM requires only a small finite set of K landmarks for training, while
it learns to produce a continuous landmark map. We use the deformation basis from an NR-SFM
method as a prior and add a number of consistency constraints for self-supervision, as discussed next.

NR-SFM Prior. Since our model generalizes standard parametric approaches, we can use any such
method to bootstrap and accelerate learning. We use the output of the recent C3DPO [44]] algorithm
A = (B, Vo, RY) in order to anchor the deformation model B(x) in a visible subset V! of K
discrete landmarks, as well as the deformation and viewpoint parameters, for each training image I,,.

Note that, contrary to C3DM, C3DPO takes as input the 2D location of the sparse keypoints both at
training and test time. Furthermore, it can only learn to lift the keypoints for which ground-truth is
available at training time. In order to learn C3DM, we thus need to learn from scratch the deformation
and viewpoint networks (1) and R(I), as well as the continuous deformation network B(x). This
is necessary so that at test time C3DM can reconstruct the object in a dense manner given only the
image I, not the keypoints, as input. At training time, we supervise the deformation and viewpoint
networks from the C3DPO output via the loss:

1
V¥

Lon(®, B, B; 1Y, A”) = D I1B(@(yi: 1)) =Billetwalle]) —a* | +wrde(R(I); R"),

kev*

4
where ||z||¢ is the pseudo-Huber loss [14]] with soft threshold e and d. is a distance between rotations

Projection self-consistency loss. ~As noted in Section 2] the composition of egs. (I)) and (2)) must
yield the identity function. This is captured by the reprojection consistency loss

Logol®. B, B, 1) = min 3 [§(6) =y, 9(6) ==(R() B(@(y: 1) (1) +t). (5)
yeQ

It causes the 3D reconstruction of an image pixel y, which is obtained in a viewpoint-free space, to
line up with y once the viewpoint is accounted for. We found optimizing over translation t in eq. (3
to obtain t(I, 2, ®, B, a, R) based on the predicted shape to be more accurate than regressing it
directly. Refer to ?? in sup. mat. for optimization algorithm. We use the obtained value as the
translation prediction t(7), in particular, in eq. (@), only implying the dependency on the predictors to
simplify the notation. We backpropagate gradients from all losses through this minimization though.

Apperance loss. Given two views I and I’ of an object, we can use the predicted geometry and
viewpoint to establish dense correspondences between them. Namely, given a pixel y € € in the first
image, we can find the corresponding pixel ¥ in the second image as:

y' == (R(I") B@(y: 1) aI') +4(1)). ©

This equation is similar to eq. (5), in particular, the canonical map is still computed in the image /
to identify the landmark, however the shape « and viewpoint (R, t) are computed from another

2“Independent” means that views contain different object deformations or even different object instances.

|zl = e(+/1+ (]|2]]/€)2 — 1); it behaves as a quadratic function of | z|| in the vicinity of 0 and a linear
one when ||z|| — oo, which makes it both smooth and robust to outliers. See sup. mat. for definition of d..



image I’. Assuming that color constancy holds, we could then simply enforce I(y) ~ I'(3"), but
this constraint is violated for non-Lambertian objects or images of different object instances. We thus
relax this constraint by using a perceptual loss Lpercep, Which is based on comparing the activations
of a pre-trained neural network instead [72]]. Please refer to ?? in the sup. mat. for details.

Due to the robustness of the perceptual loss, most images I can be successfully matched to a fairly
large set Py = {I'} of other images, even if they contain a different instance. To further increase
robustness to occlusions and illumination differences caused by change of viewpoint, we follow Khot
et al. [33]]: given a batch of training images P, we compare each pixel in I only to k& < |Py| its
counterparts in the batch that match the pixel best. This bring us to the following formulation:

Lrink (9, B, o, R, t;Q,1,Pr) = - Z QCP; o D" Locreep(®, B, Rotsy, I1I'). (7
I'e@

Learning the texture model. The texture model (C, 3) can be learned in a similar manner, by
minimizing the combination of the photometric and perceptual (7)) losses between the generated and
original image. Please refer to the supplementary material for specific loss formulations. We do not
back-propagate their gradients beyond the appearance model as it deteriorates the geometry.

Camera-embedding alignment. We use another constraint that ties the spherical embedding space
and camera orientation. It forces the model to use the whole embedding space and avoid re-using
its parts for the regions of similar appearance, such as left and right sides of a car. We achieve it by
aligning the direction of the mean embedding vector x with the camera direction, minimizing

E

where 7 = — Z O(y; I). (8)

Eemb-align((DaR;QaI):[O 0 1]R(I) PL||7 ‘Q|
yEQ

Mask reprojection loss. We observed that on some datasets like CUB Birds, the reconstructed
surface tends to be noisy due to some parts of the embedding space overfitting to specific images. To
prevent it interfering with other images, we additionally minimize the following simple loss function:

Lanask(B, o, R, ;) :/ |[7T(R B(x) a+t) ¢ Qﬂ dr, )
SQ

where we approximate the integration by taking a uniform sample of 1000 points x on a sphere.

4 Experiments

We evaluate the proposed method on several datasets using 3D reconstruction metrics. It is difficult
to quantitatively evaluate canonical maps, as discussed in Section[d.T] Since reconstruction relies on
having a good model for canonical mapping, we use that application to demonstrate the quality of
produced maps. For visual evaluation, we use another application, texture transfer, in Figure 3]

Implementation details. We build on the open-source implementation of C3DPO for pre-
processing| and set & € R'®, B € R'?®. The canonical map network ® uses the Hypercolumns
architecture [23]] on top of ResNet-50 [24], while basis and texture networks B and C' are MLPs. See
???? in sup. mat. for description of the architecture, hyperparameters and optimization.

Benchmarks. We evaluate the method on a range of challenging datasets. We use C3DM to gener-
ate from each test image: (1) a full 360° shape reconstruction as a point cloud { B(x)a(I) : k € K},
where /C consists of 30k sampled embeddings from random training set images, and (2) a depth map
from the estimated image viewpoint obtained for each pixel y € Q as the coordinate z of RX (y; I).
We compare the full reconstructions against ground-truth point clouds using symmetric Chamfer
distance dp (after ICP alignment [9]]) and, whenever the dataset has depth maps or calibrations
to project the ground-truth meshes, predicted depth maps against ground-truth depth maps as the
average per-pixel depth error dyepn. In particular, to compute the symmetric Chamfer distance

between the predicted and ground-truth point clouds dpcl(é’ , ('), we first correct the scale ambuiguity
by normalising the variance of the predicted point cloud to match ground truth. Then, we align them

*https://github.com/facebookresearch/c3dpo_nrsfm
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Figure 3: Canonical mapping and texture transfer for CUB and Freiburg Cars. Given a target
image I (1 row), C3DM extracts the canonical embeddings k = ®(y; Ig) (2" row). Then, given
the appearance descriptor 3(14) of a texture image I 4 (4 row), the texture network C' transfers its
style to get a styled image I (y) = C(®y(I5); B(I4)) (3" row), which preserves the geometry of
the target image /. Note that we model the texture directly rather than warp the source image, so
even the parts occluded in the source image 14 can be styled (5" and 6™ columns).

with ICP to obtain the C' = sRC +t rigidly aligned with C. We define Chamfer distance as the
mean /2 distance from each point in C to its nearest neighbour in C and make it symmetric:

dpa(C,C) = %(dCh(O, O)+den(C, C)), where dcp,(C,C) |C| > min IX—X|. (10)
xecX

To compute the average per-pixel error between the predicted and ground-truth depth maps

ddepth(f?, D), we first normalize the predicted depth to have the same mean and variance as ground

truth within the object mask €2 in order to deal with the scale ambuiguity of 3D reconstruction under

perspective projection. Then, we compute the mean absolute difference between the the resulting

depth maps within Q as dgepn(D, D) = ﬁ Syeq Dy — Dyl

We evaluate on Freiburg Cars [52] dataset, containing videos of cars with ground truth STIM/MV'S
point clouds and depth maps reporting dpc; and dgepn. In order to prove that C3DM can learn from
independent views of an object category, we construct training batches so that the appearance loss (6)
compares only images of different car instances. We further compare our model to the previously
published results on a non-rigid category of human faces, training it on CelebA [40] and testing it
on Florence 2D/3D Face [8]. The latter comes with ground-truth point clouds but no depth maps,
so we report dp for the central portion of the face. As viewpoints don’t vary much in the face data,
we also consider CUB-200-2011 Birds [64], annotated with 15 semantic 2D keypoints. It lacks 3D
annotations, so we adopt the evaluation protocol of CMR [31] and compare against them qualitatively.
We compare to CMR using dj on 4 categories from Pascal3D+ [68]], which come with approximate
ground-truth shapes obtained by manual CAD model alignment. We trained and ran HRNet [54] to
produce input keypoints for evaluation, and also for training where there exists a different dataset to
train the detector, i.e. for cars and faces. See ?? for details.

Baseline. Our best direct competitor is CMR [31]]. For CUB, we use the pre-trained CMR models
made available by the authors, and for the other datasets we use their source code to train new models,
making sure to use the same train/test splits. For depth evaluation, we convert the mesh output of
CMR into a depth map using the camera parameters estimated by CMR, and for shape evaluation, we
convert the mesh into a point cloud by uniformly sampling 30k points on the mesh.

4.1 Evaluating the canonical map

First, we evaluate the learned canonical map ®,,(/) qualitatively by demonstrating that it captures
stable object correspondences. In row 2 of Figure 3] we overlay image pixels with color-coded 3D
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canonical embedding vectors k = ®(I). The figure shows that the embeddings are invariant to
viewpoint, appearance and deformation. Next, we make use of the texture model to perform
texture transfer. Specifically, given a pair of images (I4,Ip), we generate an image Io(y) =
C(®y,(Ip); B(14)) that combines the geometry of image I and texture of image I4. Row 3 of
Figure [3shows texture transfer results for several pairs of images from our benchmark data.

Previous work used keypoint detection error to evaluate the quality of canonical mapping and shape
reconstruction. We argue that it is a biased measure that is easy to satisfy even with degenerate 3D
reconstruction or poor canonical mapping outside the keypoints. We evaluated the percentage of
correct keypoints (PCK@0.1) as 85%, much higher than CSM [35] (48%) or CMR [31] (47%). This
reflects the fact that C3DM is non-parametric and is supervised with keypoint locations through the
basis (@) and reprojection (3] losses, so it can easily learn a good keypoint detector. As we see in
row 2 of Figure [3|though, canonical maps are not discontinuous, thus not overfit to keypoint locations.

4.2 Evaluating 3D reconstructions

Ablation study. In Section we vary the size of the shape descriptor o and, consequently, the
number of blendshapes in B. The left-most point corresponds to rigid reconstruction. This sanity
check shows that the method can model shape variation rather than predicting generic shape.

In Table[T} we evaluate the quality of 3D reconstruction by C3DM trained with different combinations
of loss functions. It shows that each model components improves performance across all metrics
and datasets. The contribution of the appearance loss (7)) is higher for cars, where the keypoints are
sparse; for faces, on the other hand, the network can get far by interpolating between the embeddings
of the 98 landmarks even without appearance cues. The camera-embedding alignment loss (8)) is also
more important for cars because of the higher viewpoint diversity.

The last row in Table[T|evaluates the baseline where we replace our representation with a mesh of a
fixed topology, regressing basis vectors at mesh vertices and rasterising their values for image pixels,
keeping the same loss functions. CSM [35] uses a similar procedure to define the cycle consistency

Active Losses £ | Fl.Face | Frei. Cars Dataset | CMR [31] C3DM
o basis  poresy  ohen | Gpa | daeptn  dpa Flo.Face | 13.09 5.57

v v v 6.582 | 0.548 0.247 Frei. Cars \0.20/0.50 0.12/0.31

v v v | 7406 | 0550 0462  p3D Plane | 0.022 0.019
o V.| 5647 10361 0141 p3p Chair | 0.049 0.043
S vV 5592 | 0498 0.186  p3p Car 0.028 0.028
v v v V| 5574 | 0311 0123  p3ppus 0.037 0.036

interpolation thru mesh | 13.721 | 0.596 0.182  Typle 2: dpa on Freiburg Cars, Flo-
Table 1: 3D reconstruction accuracy for C3DM va- rence Face, and Pascal 3D+ comparing
tiants on cars and faces. We evaluate disabling our method to CMR [31]]. For Frei. Cars,
losses (3), (7), (8), and the first term in (@), one by one.  daepu is also reported after slash.




Source Ours, Ours, CMR [31, CMR [31l, Source Ours, Ours, CMR [31, CMR [31l,
image view #1 view #2 view #1 view #2 image view #1 view #2 view #1 view #2

Figure 6: Visual comparison of the results on Freiburg Cars (top two rows), human faces (left
column), and CUB Birds (right column). For each dataset, we show the source image (1% column),
C3DM and CMR reconstructions from the original viewpoint (view #1, 2" and 4" columns, respec-
tively) and from an alternative viewpoint (view #2, 3" and 5™ columns).

loss, with the difference that we rasterise basis vectors B(k) rather than 3D coordinates X. It allows
us to compute the basis matching loss in eq. (@), which is defined on keypoints that do not have to
correspond to mesh vertices. On our data, training does not converge to a reasonable shape, probably
because the added layer of indirection through mesh makes backpropagation more difficult.

Comparison with the state-of-the-art. Table El compares the Chamfer distance d,. and depth
error dgepmn (Where applicable) of C3DM against CMR [31]]. On Freiburg Cars and Florence Face, our
method attains significantly better results than CMR. C3DM produces reasonble reconstructions and
generally outperforms CMR on four categories from Pascal3D+ with big lead on chairs. Section 4.1
shows that C3DM attains uniformly higher F-score (as defined by Tatarchenko et al. [56]) than CMR
on Frei. Cars. The visualisations in Figure[6| confirm that C3DM is better at modelling fine details.

On Freiburg Cars, our method can handle perspective distortions better and is less dependent on
instance segmentation failures since it does not have to satisfy the silhouette reprojection loss. On
CelebA, CMR, which relies on this silhouette reprojection loss, produces overly smooth meshes that
lack important details like protruding noses. Conversely, C3DM leverages the keypoints lifted by
C3DPO to accurately reconstruct noses and chins. On CUB Birds, it is again apparent that C3DM
can reconstruct fine details like beaks. See ?? and videos for more visual results.

5 Conclusions

We have presented C3DM, a method that learns under weak 2D supervision to densely reconstruct
categories of non-rigid objects from single views, establishing dense correspondences between them
in the process. We showed that the model can be trained to reconstruct diverse categories such as cars,
birds and human faces, obtaining better results than existing reconstruction methods that work under
the same assumptions. We also demonstrated the quality of dense correspondences by applying them
to transfer textures. The method is still limited by the availability of some 2D supervision (silhouettes
and sparse keypoints) at training time. We aim to remove this dependency in future work.



Potential broader impact

Our work achieves better image-based 3D reconstruction than the existing technology, which is
already available to the wider public. While we outperform existing methods on benchmarks,
however, the capabilities of our algorithm are not sufficiently different to be likely to open new
possibilities for misuse.

Our method interprets images and reconstructs objects in 3D. This is conceivably useful in many
applications, from autonomy to virtual and augmented reality. Likewise, it is possible that this
technology, as any other, could be misused. However, we do not believe that our method is more
prone to misuse than most contributions to machine learning.

As for any research output, there is an area of uncertainty on how our contributions could be
incorporated in future research work and the consequent impact of that. We believe that our advances
are methodologically significant, and thus we hope to have a positive impact in the community,
leading to further developments down the line. However, it is very difficult to predict the nature of all
such possible developments.
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