Canonical 3D Deformer Maps:
Unifying parametric and non-parametric methods for
dense weakly-supervised category reconstruction

Supplementary material

David Novotny* Roman Shapovalov* Andrea Vedaldi
Facebook AI Research
{dnovotny, romansh, vedaldi}@fb.com
http://wuw.robots.ox.ac.uk/ david/c3dm/

A Architecture details

Figure [I| shows the backbone of our architecture, together with the basis and texture predictors B
and C. The trunk of C3DM consists of a Feature Pyramid Network pre-trained on ImageNet. In more
detail, Conv-Upsample blocks are attached to the outputs of each of the Res1, Res2, Res3 and Res4
layers of a ResNet50. Each Conv-Upsample outputs a tensor with the spatial resolution of the first
auxiliary branch that takes Res1 as an input. The four tensors are then summed and ¢2-normalized in
order to produce the canonical embedding tensor k.

The insets of Figure[[| show the architecture of the basis and texture networks B(x) and C (, 3(1)).
The networks follow the C3DPO [10] architecture. Each of them consists of a fully connected (FC)
layer, followed by three fully connected residual blocks (shown in detail in the lower-right inset) and
another fully connected layer adapting the output dimensionality. The LayerNorm layers [1] used in
these networks only perform ¢2 normalization across channels, without using trainable parameters.
The basis network takes as input the map of 2D canonical embeddings «, while the texture network
concatenates them with the same texture descriptor 3 to get the 130-dimensional vector for each
pixel. The basis network outputs the 30-dimensional vector for each pixel (10 3-dimensional basis
vectors), while the texture network outputs 3D per-pixel colors.

Figure [[I|extends the diagram with the computations specific to the training time. For supervision, the
training also runs C3DPO on 2D keypoints and uses the predictions and bases to define the NR-SFM
prior loss (4) in the maon paper. The diagram also shows the reprojection consistency loss (5) in
the main paper, cross-image perceptual loss (7) in the main paper, which requires the viewpoint and
shape predictions for other images in the batch, camera-embedding alignment loss (8) in the main
paper, and the texture model loss (3).

Batch sampling. In each training epoch, we sample 3000 batches of 10 random images (adding a
constraint on Freiburg Cars that they don’t come from the same sequence). We optimize the network
using SGD with momentum, starting with learning rate 0.001 and decreasing 10x whenever the
objective plateaus. We stop training after 50 epochs.

Since most datasets are biased in terms of the viewpoints, e.g. birds are less likely to be photographed
from the front or back than from the side, we apply inverse propensity correction on the distribution
of 1D rotations to ensure uniform coverage. We correct the distribution of rotations in the horizontal
plane only, assuming that the pitch varies less than the azimuth, which is true for most object-
centric datasets. In particular, we first find the upward direction as an eigenvector of the rotation
axes extracted from the camera orientations extracted by NR-SFM from the training set: { R} }.

* Authors contributed equally.
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Figure I: The detailed architecture of prediction-time C3DM flow. All networks share the com-
mon ResNet50 backbone. Camera orientation, shape and texture parameters are regressed from the
final residual layer. The embedding prediction network ® processes outputs of the four residual
blocks with the Conv-Upsample subnetwork shown in the left inset, then sums and normalises their
outputs to obtain the map of spherical embeddings . They are passed through basis and texture
networks that share the architecture, which is shown in the middle and right insets. Finally, the
predicted basis vectors are multiplied by shape parameters « to obtain 3D reconstruction of the
visible points.

Then we compute the azimuth a(R};) as the rotation component around the estimated upward axis.

The sampling weight for an image I,, is thus found as (p(a(R;)))fl, where the distribution p is
approximated by a histogram of 16 bins. Note that we only need to do this at training time when
NR-SFM viewpoint predictions are available; at test time, the networks can take a single image.

To compute the min-k cross-image perceptual loss (7) in the main paper, we treat the first image 1
in the batch as a target and warp the rest of the images using their estimated camera and shape
parameters R(I"),t(I"), a(I"). For each pixel, we average the distances to k = 6 closest feature
maps as per eq. (7).

Implementation. We implemented C3DM using Pytorch framework. We run training on a single
NVidia Tesla V100 GPU with 16 Gb of memory. Training for full 50 epochs takes around 48 hours.

Runtime analysis On a single gpu, the feedforward pass of our network takes one average 0.111
sec per image.

B Details of the photometric and perceptual losses

To enforce photometric consistency, we can use the following loss:

Lonoo(I'52,1) =Y 1I'(y) = I(y)]l.. (1)

yeQ
Here I and I’ are two images, €2 is the region of image I that contains the object (i.e.the object mask).

To capture higher-level consistency between images, in particular in the cross-image consistency
loss (6) in the main paper between the target image and warped reference image, we use perceptual
loss Lpercep that compares the activations of a pre-trained neural network [17]. Specifically, we
compute pseudo-Huber loss between the activations of a VGG network, averaged over several layers.
The perceptual loss uses the pretrained VGG-19 network [12]). Let ¥;(I) be the layer [ activations of
VGG-19 fed by the image I. We then define the perceptual loss as

Lo I52.1) = 3" > |upsample (W) — (1)) [y

y€Q1€{0,5,10,15}
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Figure II: The training time C3DM flow, where the backbones showed in Figureare collapsed
to the boxes with ellipses. We supervise the predicted basis map with C3DPO bases at keypoint
locations. At training time, we also run C3DPO on 2D keypoints to supervise shape parameters and
camera orientation. Embedding alignment loss acts on the estimated camera orientation and average
spherical embeddings. We project the 3D reconstruction using the estimated camera parameters to
define the reprojection consistency loss. To define the cross-image perceptual consistency loss, we
run our network on another image (in practice, the other images in the batch are used) and use its
shape and camera parameters to project the estimated basis vectors and compare with that image.
Finally, we supervise the output of the texture model with the original image.

where upsample() interpolates the feature map to the match the resolution of the network input.

We can now formally define the optimisation problem for the texture model described in Section
3.1. Given the input image I and 2D embeddings for all its pixels k, it re-produces the image I’
using I'(y) = C(k(y); B(I)). The weights of neural networks implementing C and 3 are found by
minimising

Llex(I/;QaI) = Wphoto o (I/§Q7I) + wpercep‘ctex (I,;Q;I)- 3)

photo percep

Please note again that the gradients of L« are not propagated beyond & to preserve its sole dependence
on geometry.

C Camera models and ray-projection loss

Camera models. We have to define a camera model 7 : R? — R? mapping 3D points in the
coordinate frame of the camera to 2D image points in order to compute reprojection and photometric
losses. If the camera calibration is unknown (as in CelebA, Florence Face, CUB, Pascal 3D+ datasets),
we use an orthographic camera w(X) = [r1, 2] where X = [x1, 72, 23] . In this case, we also
set t = 0 as translation can be removed by centering the 2D data [10] in pre-processing.

If the camera calibration is known (in Freiburg Cars), we can also use a more accurate perspective
camera model instead:

r(X) = L M : )

where f is the focal length.

Further to Section 3.1, here, we describe additional implementation details that were important for
the success of the perspective projection model on the Freiburg Cars dataset.

Ray-projection loss For perspective model, we have also found an improvement that significantly
stabilizes the C3DPO algorithm that we use to constrain C3DM. The idea is to modify reprojection
loss to measure, instead of the distance between 2D projections y and ¥, the distance of the 3D point



X (y) to the line passing through y and the camera center. The advantage is removing the division
embedded in the perspective projection equation (d).

In order to minimize the reprojection error (5) in the main paper under the perspective projection
model, a naive implementation would minimize the following perspective re-projection loss:

L (@0, 1) =Y |lmro(Xee(y) — .. (5)
yeEQ

where X ¢(y) = RX(y) + t is the 3D point extracted from pixel y and expressed in the coordinate

frame of the camera of the image [,,. Unfortunately, we found that the division in the perspective
projection formula 779 = x—’; [1 2] T leads to unstable training. This is due to exploding gradient
magnitudes caused by 3D points X predicted to lie too close to the camera projection plane. While
this could be extenuated by clamping the points to lie in a safe distance from the camera plane, due to

the non-linearity of the projection gradient, the re-projection loss (3)) still would not converge stably.

In order to remove the gradient non-linearity, we alter the re-projection loss to the ray-projection loss:

L (@00 = 3 [ Xnay) = 1) Xaa)]r(y)
yeQ

; (6)

€

where r(y) stands for the direction vector of the projection ray passing through the pixel y in the
image I:
_ Ky )T

K=y y2 1T
where K is the instrinsic camera calibration matrix. Intuitively, eq. (6) minimizes the orthogonal
distance between the the estimated point X ¢(y) and its projection on the ground truth projection
ray r(y). We notice that eq. @ is linear in Xp ¢ on infinity and quadratic in the compact region
around the optimum, hence the magnitude of the gradient is bounded from above. We found this
addition important for convergence of C3DM.

r(y)

Perspective projection for C3DPO In order to optimize eq. (6), a C3DPO model [10] trained
using the perspective projection model is required. Since the original C3DPO codebase only admits
orthographic cameras, we will describe additions to the pipeline that enable training a perspective
model on Freiburg Cars.

C3DPO optimizes a combination of canonicalization and reprojection losses. To this end, we replace
the original C3DPO reprojection loss (eq. (4) in [10]) with the ray-projection loss (6). Additionally,
unlike in the orthographic case, one has to determine the full 3DoF position of the camera w.r.t. the
object coordinate frame. While it is possible to let C3DPO predict translation as an additional output
of the network, we avoid over-parametrization of the problem by estimating camera translation as a
solution to a simple least-squares problem.

In more detail, we exploit the locally quadratic form of the ray-projection loss and formulate the
translation estimation problem that allows for a closed-form solution. Assuming that C3DPO, given
a list of input 2D landmarks y, ..., y -, predicts a camera rotation matrix R, the translation can be
obtained as a solution to the following problem:

K

t* = argming Y |[Xpe(ys) — r(v) Xee(yr)riye)|
=1

After a few mathematical manipulations, we arrive at the following closed-form expression for t*:

K -1p K
t* = [Z(I - Fk):| [Z(Fk - I)XR,O], @)
k=1 k=1
where Ty, = r(y,)r(y;) " is an outer product of r(y,) with itself. Using eq. , we can estimate
the camera translation online during the SGD iterations of the C3DPO optimization. Note that the
matrix inverse in eq. is not an issue because of the small size of the matrix being inverted (3 x3)
and the possibility to backpropagate through matrix inversion using modern automatic differentiation
frameworks (PyTorch).



D Rotation loss

We use the distance between rotation matrices d. (R, R*) as part of the loss (4) in the main paper. We
aim to penalise large angular distance, while avoiding the exploding gradients of inverse trigonometric
functions. First, we note that the relative rotation can be computed as RTR*. Next, converting it to the
axis-angle representation lets us compute the angular component as § = arccos (3 (Tr(R" R*) —1)).
Using the fact that arccos is monotonically decreasing, we strip it and apply an affine transform to
make sure the loss achieves the minimum at 0O:

_ T p*
de(R,R*) =1—cosf = % (8)

E Datasets

Freiburg Cars (FrC). In order to test our algorithm in a low-noise setting, we consider the Freiburg
cars dataset [|1 lfﬂcontaining walkaround videos of 52 cars. While this dataset contains videos of the
cars, in order to test the ability of the photometric loss (7) in the main paper to reconstruct objects
even if the views are independent, we pair each pivot image I with a selection of other images Py
extracted from different video sequences.

Following Novotny et al. [9, 18], we set out 5 sequences for validation (indexed 22, 34, 36, 37, 42).
The training set contains 11,162 training frames and 1,427 validation frames. For evaluation, we also
use their ground-truth 3D point clouds, but we only retain the 3D points that, after being projected
into each image of a given test sequence, fall within the corresponding segmentation mask. Each
point cloud is further normalized to zero-mean and unit variance along the 3 coordinate axes. Please
refer to [9] for details.

As an input to our method, we use the pre-trained Mask R-CNN of [4] to extract the segmentation
masks and the HRNet [6] trained on PASCAL 3D+ [16] to extract the 2D keypoints. Hence, all inputs
to our method are extracted automatically. We excluded the frames where a car was detected with a
confidence below a threshold.

We report the Chamfer distance dp between the ground truth and the predicted point clouds after
rigid alignment via ICP [3]]. The point cloud predictions are obtained as explained in the Benchmarks
section of the main text, with |B| = 30k. Furthermore, we evaluate the quality of our depth predictions
by measuring the average depth distance dgepn between the point cloud formed by un-projecting the
predicted depth map and the visible part of the ground truth point cloud.

CelebA and Florence faces (FF). The FrC dataset contains deformation between object instances,
but each object itself is rigid. In order to compare the ability of our method to handle instance-level
non-rigid deformations with the CMR’s, we also run the method on images of human faces; in
particular, we train our algorithm on the training set of CelebA dataset [7ﬂ containing 161,934
face images and test it on the Florence 2D/3D Face dataset [2If'} The latter contains videos of
53 people and their ground truth 3D meshes, which we can use to assess the quality of our 3D
reconstructions. Following a standard practice, we crop each 3D mesh to retain points that lie within
100mm distance from the nose tip. We extract 98 semantic keypoints for each training and test face
using the pre-trained HRNet detector of [[13].

For evaluation on FF, five frames are uniformly sampled from each test sequence. We then use our
network to reconstruct each test face in 3D and evaluate d, after ICP alignment. Since the extent
of the predicted face differs from the ground truth, we first pre-align the prediction by registering a
3D crop that covers the convex hull of the 98 semantic keypoints. The 100mm nose-tip crop is then
extracted from the pre-aligned mesh and is aligned for the second time. dgepim i not reported for FF
since the dataset does not contain ground truth per-frame depth.

“https://github.com/lmb-freiburg/unsup-car-dataset

*http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

*http://www.micc.unifi.it/masi/research/ffd/|©Copyright 2011-2019 MICC — Media Integra-
tion and Communication Center, University of Florence. The Florence 2D/3D Face Dataset.
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CUB-200-2011 Birds. We evaluate our method qualitatively on the CUB Birds dataset [l4ﬂ which
consists of 11,788 still images of birds belonging to 200 species. Each image is annotated with 15
semantic keypoints. As done in [10], for evaluation we use detections of a pre-trained HRNet. The
dataset is challenging mainly due to significant shape variations across bird species, in addition to
instance-level articulation. Since there is no 3D ground truth for that dataset, we qualitatively compare
the quality of 3D reconstruction to the ones of CMR [5]. We also use the same training/validation
split as CMR.

Pascal3D+. We provide additional comparison to CMR on four categories of Pascal3D+ [ISE}
aeroplane, consisting of 1194 training and 1135 test images, bus (674 training / 657 test), car (2765
training / 2713 test), and chair (650 training / 666 test). It has been manually annotated by rigidly
aligning one of category-specific CAD models, so the annotation has noisy and biased shape and pose.
Since the original CMR codebase contains models for only two classes, we trained CMR models on
all considered classes ourselves (using their codebase) and test on the corresponding validation sets.
We report only d,, since the depth maps obtained by projecting with noisy cameras are unreliable.

F Hyperparameters used in experiments

To sum up, during training, we optimize the following weighted sum of loss functions:
L(®,B,a, R, t, [;Q, 1, Pr, A) = wyelp(®, B, o, R 1Y, A") +
wrepro['repro(q)a B,a, R, Q’ I)"’
WhereapLpereep (®, By v, R, 492, 1, Pr)+
wemb—align‘cemb—align ((I)a R;Q, I)"’
wmaskﬁmask(Ba a, R, t; Q)"’

Lix(I;Q,1).

9

We set most weights such that the corresponding term has a magnitude of about 1 in the beginning of
training. We set wyy = 1, Wo = 1, Wrepro = 1 for the perspective camera model and wrepr, = 0.01
for the orthographic one, where the error is measured in pixels rather than world units. For the

components of texture loss, we set w;‘}l’;w = 1, and wigy, = 0.1. Likewise, we set the weight for

the geometry perceptual loss wgggg; = 0.1. We ran grid search for the camera-related parameters

within the following ranges: wr € {1,10}, and Wemp-aign € {1,10}. We enable L, for CUB
Birds, Faces, and Pascal3D+ aeroplanes and chairs with weight wp, = 1.

G Additional qualitative results

Figures [[TT] and [TV] contain additional single-view reconstruction results. We can see that C3DM is
robust to occlusions and instance segmentation failures: the 3D shape is reasonably completed in
those cases. Furthermore, Figures[V]and [VI| have been populated with supplemental texture transfer
results. Note that all images are taken from the test set, and images from the same FrC sequence do
not co-occur in training and test sets. We also invite the readers to watch the attached videos of the
rendered reconstructions to better evaluate 3D reconstruction quality.

Shttp://www.vision.caltech.edu/visipedia/CUB-200-2011.html
Shttps://cvgl.stanford.edu/projects/pascaldd.html
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Figure I1I: Additional single-view reconstruction results on images from the test sequences of
CUB Birds. Columns: input image; canonical mapping; 3D reconstruction with the reconstructed
texture from two viewpoints.



Figure IV: Additional single-view reconstruction results on images from the test sequences of
Freiburg Cars. Columns: input image; canonical mapping; 3D reconstruction with the reconstructed
texture from two viewpoints.
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Figure V: Canonical mapping and texture transfer for CUB. Given a target image I (1 row),
C3DM extracts the canonical embeddings k = ®(y; Ig) (2" row). Then, given the appearance
descriptor 3(14) of a texture image 14 (4" row), the texture network C transfers its style to get a

styled image Ic(y) = C(®y(Ip); B(14)) (3™ row), which preserves the geometry of the target
image Ip.
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Figure VI: Canonical mapping and texture transfer for Freiburg cars. Given a target image
I (1% row), C3DM extracts the canonical embeddings k = ®(y; I5) (2™ row). Then, given the
appearance descriptor 3(14) of a texture image I 4 (4" row), the texture network C transfers its style
to get a styled image I (y) = C(®y(I5); B(14)) (3™ row), which preserves the geometry of the
target image Ip.
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