
We would like to thank the reviewers for their comments. Reading the reviews, we got the impression that the reviewers1

enjoyed certain parts in our paper but had concerns about other parts. We hope that our rebuttal addresses these concerns2

and would like to encourage the reviewers to consider changing their scores if this is the case.3

Novelty. RL research suffers fundamentally from a major practical research bottleneck - the ability to set hyper-4

parameters to reasonable values. As RL researchers explore more complex architectures with more pieces, they5

introduce more hyperparameters. Tuning them often becomes a practical barrier to find signals of improvement over6

SOTA, perhaps limiting such research to groups with large computational budgets. Practically speaking therefore, the7

efficient auto-tuning of hyperparameters may be among the biggest step changes we can make to our algorithms. If the8

reviewers believe that self-tuning has the potential to be transformative to the practice of RL research, progress in that9

direction is worthy of publication.10

The most significant contribution of this paper is a demonstration that self-tuning leads to big gains in performance11

for both STAC and STACX. We believe that achieving SOTA results in established and challenging benchmarks is12

one important way to make progress in ML research. It is easier to improve an under performing agent in a small13

environment than to improve a SOTA algorithm on an established benchmark. Our paper demonstrates significant14

empirical gains from using meta gradients in all benchmarks – the most significant gains that had been reported from15

using meta gradients so far. We believe that these findings would be of interest to the NeurIPS community.16

We are aware that only pushing for SOTA results may lead to over fitting to certain domains and result in shallow17

understanding. To address these issues, we performed two types of experiments. 1. We demonstrated that the self-tuning18

ideas transfer from the ALE domain to control environments; we measured relative improvement from self-tuning in all19

the benchmarks. 2. We performed extensive ablative studies, robustness studies and visualizations of adaptivity. These20

experiments suggest self-tuning as many differentiable hyperparameters as possible, that self-tuning is quite robust, and21

that it can even discover theoretically sensible properties (contraction in V-trace).22

Auxiliary tasks and self tuning (R3 & R4). R4 suggested that these are orthogonal ideas, and R3 had questions23

regarding the ablative study. Auxiliary tasks are a good example of the above-mentioned increasing complexity of RL24

architectures that introduces many new hyperparameters but end up being beneficial by improving the representation25

power of DRL agents. This is where self-tuning comes into the picture. In Section 3 we explain that by using26

self-tuning, we can instead introduce auxiliary tasks while only adding a single new hyper parameter (the number of27

tasks). We show that without self-tuning, these auxiliary tasks achieve similar performance to other auxiliary tasks28

(246, similar to the unreal agent with 252). But, with self-tuning, there is only one hyperparameter and we achieve29

much higher performance. The ablative analysis in Figure 3 (b) shows what happens when we tune different subsets of30

the meta parameters in with auxiliary tasks (STACX, blue bars). Specifically, to answer Q2 by R3, self-tuning all the31

meta-parameters compared to only the discounts resulted in improving the median from 262 to 364.32

Leaky V-trace (R3 & R4). R3 mentioned that the leaky V-trace solution seems a bit adhoc and R4 was not sure why33

we chose to use it over other off policy evaluation mechanism. Leaky V-trace was a contribution to making the trade-offs34

among bias, variance and contraction in a differentiable (and thus self-tunable) and interpretable form as we discuss35

in Section 3 and as quantified in the proof. We demonstrated that in most of the games, the Leaky V-trace parameter36

self-tunes from V-trace to importance sampling as training progresses and the policy changes less rapidly (the adaptivity37

curves). In addition, the ablative analysis confirms that trying to differentiate the thresholds directly does not perform38

well. More broadly, many theoretically grounded loss functions often satisfy different trade-offs and self-tuning can39

help to mix and adapt them. Leaky V-trace provides a simple but important evidence that its possible to do that.40

R3. We did not address non differential hyper parameters in the paper, but a recent paper “Online Hyper-parameter41

Tuning in Off-policy Learning via Evolutionary Strategies” by Tang et al does.42

R4. Random seeds. As a design principle we believe that given a fixed budget of compute it is more meaningful to43

test an algorithm across a wider range of environments than across a wider range of random seeds. The reasoning44

behind this is that averaging across environments has more variability than averaging across seeds, but still averages45

across the randomness of the algorithm. In particular in the ALE benchmark, variability across seeds is minimal, thus46

3 seeds of 57 environments is a reasonable compromise that has been adapted by the community. Prior work. We47

did cite a few works on hyper parameter tuning and specifically for adapting the trace decay rate. We will do better48

in a revision and would be grateful if the reviewer points us to prior work they are aware of. Evaluation in small49

environments. Unfortunately, many ideas that work well in small environments do not scale to DRL benchmarks. In50

this work, wefocused on training a single agent across a diverse set of large environments. Self-tuning fits this setup51

since it allows the agent to adapt differently across environments and time.52

R6. Fig 3. As we did for our ATARI experiments, the hyperparameters for IMPALA in Control are the same ones53

that were used previously in A3C. We use these values for a fair comparison. The hyperparameters that are related54

to STACX were kept fixed in Atari and Control. It’s possible that there are slightly better hyper parameters, but we55

did not find the algorithm to be too sensitive to them. Run time. We would like to refer the reviewer to Table 4 in the56

supplementary where we discuss this in more detail. In short, the differences in run time are almost negligible since we57

are not fully utilizing our hardware. Other than that, in many cases the measure of interest is the sample complexity and58

not the computational complexity, thus, using more compute to gain better performance with under the same sample59

budget is justified. In other setups, this might not be the case.60


