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Abstract

Reinforcement learning algorithms are highly sensitive to the choice of hyperpa-
rameters, typically requiring significant manual effort to identify hyperparameters
that perform well on a new domain. In this paper, we take a step towards addressing
this issue by using metagradients to automatically adapt hyperparameters online by
meta-gradient descent (Xu et al., 2018). We apply our algorithm, Self-Tuning Actor-
Critic (STAC), to self-tune all the differentiable hyperparameters of an actor-critic
loss function, to discover auxiliary tasks, and to improve off-policy learning using
a novel leaky V-trace operator. STAC is simple to use, sample efficient and does
not require a significant increase in compute. Ablative studies show that the overall
performance of STAC improved as we adapt more hyperparameters. When applied
to the Arcade Learning Environment (Bellemare et al. 2012), STAC improved
the median human normalized score in 200M steps from 243% to 364%. When
applied to the DM Control suite (Tassa et al., 2018), STAC improved the mean
score in 30M steps from 217 to 389 when learning with features, from 108 to 202
when learning from pixels, and from 195 to 295 in the Real-World Reinforcement
Learning Challenge (Dulac-Arnold et al., 2020).

1 Introduction

Deep Reinforcement Learning (RL) algorithms often have many modules and loss functions with
many hyperparameters. When applied to a new domain, these hyperparameters are searched via
cross-validation, random search (Bergstra & Bengio, 2012), or population-based training (Jaderberg
et al., 2017), which requires extensive computing resources. Meta-learning approaches in RL (e.g.,
MAML, Finn et al. (2017)) focus on learning good initialization via multi-task learning and transfer.
However, many of the hyperparameters must be adapted during the agent’s lifetime to achieve good
performance (learning rate scheduling, exploration annealing, etc.). This motivates a significant body
of work on specific solutions to tune specific hyperparameters, within a single agent lifetime (Schaul
et al., 2019; Mann et al., 2016; White & White, 2016; Rowland et al., 2019; Sutton, 1992).

Metagradients, on the other hand, provide a general and compute-efficient approach for self-tuning
in a single lifetime. The general concept is to represent the training loss as a function of both
the agent parameters and the hyperparameters. The agent optimizes the parameters to minimize
this loss function, w.r.t the current hyperparameters. The hyperparameters are then self-tuned via
backpropagation to minimize a fixed loss function. This approach has been used to learn the discount
factor or the λ coefficient (Xu et al., 2018), to discover intrinsic rewards (Zheng et al., 2018) and
auxiliary tasks (Veeriah et al., 2019). Finally, we note that there also exist derivative-free approaches
for self-tuning hyper parameters (Paul et al., 2019; Tang & Choromanski, 2020).

This paper makes the following contributions. First, we introduce two novel ideas that extend
IMPALA (Espeholt et al., 2018) with additional components. (1) The first agent, referred to as a
Self-Tuning Actor-Critic (STAC), self-tunes all the differentiable hyperparameters in the IMPALA
loss function. In addition, STAC introduces a leaky V-trace operator that mixes importance sampling
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(IS) weights with truncated IS weights. The mixing coefficient in leaky V-trace is differentiable
(unlike the original V-trace) but similarly balances the variance-contraction trade-off in off-policy
learning. (2) The second agent, STACX (STAC with auXiliary tasks), adds auxiliary parametric
actor-critic loss functions to the loss function and self-tunes their metaparameters. STACX self-tunes
the discount factors of these auxiliary losses to different values than those of the main task, helping it
to reason about multiple horizons.

Second, we demonstrate empirically that self-tuning consistently improves performance. When
applied to the Arcade Learning Environment (Bellemare et al., 2013, ALE), STAC improved the
median human normalized score in 200M steps from 243% to 364%. When applied to the DM
Control suite (Tassa et al., 2018), STAC improved the mean score in 30M steps from 217 to 389
when learning with features, from 108 to 202 when learning from pixels, and from 195 to 295 in the
Real-World Reinforcement Learning Challenge (Dulac-Arnold et al., 2020).

We conduct extensive ablation studies, showing that the performance of STACX consistently improves
as it self-tunes more hyperparameters; and that STACX improves the baseline when self-tuning differ-
ent subsets of the metaparameters. STACX performs considerably better than previous metagradient
algorithms (Xu et al., 2018; Veeriah et al., 2019) and across a broader range of environments.

Finally, we investigate the properties of STACX via a set of experiments. (1) We show that STACX
is more robust to its hyperparameters than the IMPALA baseline. (2) We visualize the self-tuned
metaparameters through training and identify trends. (3) We demonstrate a tenfold scale up in
the number of self-tuned hyperparameters – 21 compared to two in (Xu et al., 2018). This is the
most significant number of hyperparameters tuned by meta-learning at scale and does not require a
significant increase in compute (see Table 4 in the supplementary and the discussion that follows it).

2 Background

We begin with a brief introduction to actor-critic algorithms and IMPALA (Espeholt et al., 2018).
Actor-critic agents maintain a policy πθ(a|x) and a value function Vθ(x) that are parameterized
with parameters θ. These policy and the value function are trained via an actor-critic update rule,
with a policy gradient loss and a value prediction loss. In IMPALA, we additionally add an entropy
regularization loss. The update is represented as the gradient of the following pseudo-loss function

LValue(θ) =
∑

s∈T
(vs − Vθ(xs))2

LPolicy(θ) = −
∑

s∈T
ρs log πθ(as|xs)(rs + γvs+1 − Vθ(xs))

LEntropy(θ) = −
∑

s∈T

∑
a
πθ(a|xs) log πθ(a|xs)

L(θ) = gvLValue(θ) + gpLPolicy(θ) + geLEntropy(θ). (1)

In each iteration t, the gradients of these losses are computed on data T that is composed from a mini
batch of m trajectories, each of size n (see the the supplementary material for more details). We refer
to the policy that generates this data as the behaviour policy µ(as|xs), where the superscript s will
refer to the time index within a trajectory. In the on policy case, µ(as|xs) = π(as|xs), ρs = 1 , and
we have that vs is the n-steps bootstrapped return vs =

∑s+n−1
j=s γj−srj + γnV (xs+n).

IMPALA uses a distributed actor critic architecture, that assigns copies of the policy parameters to
multiple actors in different machines to achieve higher sample throughput. As a result, the target
policy π on the learner machine can be several updates ahead of the actor’s policy µ that generated
the data used in an update. Such off policy discrepancy can lead to biased updates, requiring us to
multiply the updates with importance sampling (IS) weights for stable learning. Specifically, IMPALA
(Espeholt et al., 2018) uses truncated IS weights to balance the variance-contraction trade-off on
these off-policy updates. This corresponds to instantiating Eq. (1) with

vs = V (xs) +
∑s+n−1

j=s
γj−s

(
Πj−1
i=s ci

)
δjV, δjV = ρj(rj + γV (xj+1)− V (xj))

ρj = min

(
ρ̄,
π(aj |xj)
µ(aj |xj)

)
, ci = λmin

(
c̄,
π(ai|xi)
µ(ai|xi)

)
. (2)
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Metagradients. In the following, we consider three types of parameters: θ – the agent parameters;
ζ – the hyperparameters; η ⊂ ζ – the metaparameters. θ denotes the parameters of the agent
and parameterizes, for example, the value function and the policy; these parameters are randomly
initialized at the beginning of an agent’s lifetime and updated using backpropagation on a suitable
inner loss function. ζ denotes the hyperparameters, including, for example, the parameters of the
optimizer (e.g., the learning rate) or the parameters of the loss function (e.g., the discount factor);
these may be tuned throughout many lifetimes (for instance, via random search) to optimize an
outer (validation) loss function. Typical deep RL algorithms consider only these first two types of
parameters. In metagradient algorithms a third set of parameters is specified: the metaparameters,
denoted η, which are a subset of the differentiable parameters in ζ. Starting from some initial value
(itself a hyperparameter), they are then self-tuned during training within a single lifetime.

Metagradients are a general framework for adapting, online, within a single lifetime, the differentiable
hyperparameters η. Consider an inner loss that is a function of both the parameters θ and the
metaparameters η: Linner(θ; η). On each step of an inner loop, θ can be optimized with a fixed η
to minimize the inner loss Linner(θ; η), by updating θ with the following gradient θ̃(ηt)

.
= θt+1 =

θt −∇θLinner(θt; ηt).

In an outer loop, η can then be optimized to minimize the outer loss by taking a metagradient step.
As θ̃(η) is a function of η this corresponds to updating the η parameters by differentiating the outer
loss w.r.t η, such that ηt+1 = ηt −∇ηLouter(θ̃(ηt)). The algorithm is general and can be applied, in
principle, to any differentiable meta-parameter η used by the inner loss. Explicit instantiations of the
metagradient RL framework require the specification of the inner and outer loss functions.

3 Self-Tuning actor-critic agents

We now describe the inner and outer loss of our agent. The general idea is to self-tune all the
differentiable hyperparameters. The outer loss is the original IMPALA loss (Eq. (1)) with an
additional Kullback–Leibler (KL) term, which regularizes the η-update not to change the policy:

Louter(θ̃(η)) = gouter
v LValue(θ) + gouter

p LPolicy(θ) + gouter
e LEntropy(θ) + gouter

kl KL(πθ̃(η), πθ). (3)

The inner loss function, is parametrized by the metaparameters η = {γ, λ, gv, gp, ge}:

L(θ; η) = gvLValue(θ) + gpLPolicy(θ) + geLEntropy(θ), (4)

Notice that γ and λ affect the inner loss through the definition of vs in Eq. (2). The loss coefficients
gv, gp, ge allow for loss specific learning rates and support dynamically balancing exploration with
exploitation by adapting the entropy loss weight. We apply a sigmoid activation on all the metaparam-
eters, which ensures that they remain bounded. We also multiply the loss coefficients (gv, ge, gp) by
the respective coefficient in the outer loss to guarantee that they are initialized from the same values.
For example, γ = σ(γ), gv = σ(gv)g

outer
v . The exact details can be found in the supplementary

(Algorithm 2, line 11).

IMPALA STAC
θ Vθ, πθ Vθ, πθ

ζ {γ, λ, gv, gp, ge}
{γouter, λouter, gouter

v , gouter
p , gouter

e }
Initialisations
Meta optimizer parameters, gouter

kl
η – {γ, λ, gv, gp, ge}

Table 1: Parameters in IMPALA and STAC.

Table 1 summarizes all the hyperparameters
that are required for STAC. STAC has new hy-
perparameters (compared to IMPALA), but we
found that using simple “rules of thumb” is suf-
ficient to tune them. These include the initial-
izations of the metaparameters, the hyperparam-
eters of the outer loss, and meta optimizer pa-
rameters. The exact values can be found in the
supplementary (see Table 3. For the outer loss
hyperparameters, we use exactly the same hy-
perparameters that were used in the IMPALA paper for all of our agents (gouter

v = 0.25, gouter
p =

1, gouter
v = 1, λouter = 1), with one exception: we use γ = 0.995 as it was found in (Xu et al., 2018)

to improve in Atari the performance of IMPALA and the metagradient agent in Atari, and γ = 0.99
in DM control suite.
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For the initializations of the metaparameters we use the corresponding parameters in the outer loss,
i.e., for any metaparameter ηi, we set ηInit

i = 4.6 such that σ(ηInit
i ) = 0.99. This guarantees that

the inner loss is initialized to be (almost) the same as the outer loss. The exact value was chosen
arbitrarily, and we later show in Fig. 4(c) that the algorithm is not sensitive to it. For the meta
optimizer, we use ADAM with default settings (e.g., learning rate is set to 10−3), and for the the KL
coefficient, we use gouter

kl = 1).

3.1 STAC and leaky V-trace

The hyperparameters that we considered for self-tuning so far, η = {γ, λ, gv, gp, ge}, parametrized
the loss function in a differentiable manner. The truncation levels in the V-trace operator, on the other
hand, are nondifferentiable. We now introduce the Self-Tuning Actor-Critic (STAC) agent. STAC
self-tunes a variant of the V-trace operator that we call leaky V-trace (in addition to the previous five
meta parameters), motivated by the study of nonlinear activations in Deep Learning (Xu et al., 2015).
Leaky V-trace uses a leaky rectifier (Maas et al., 2013) to truncate the importance sampling weights,
where a differentiable parameter controls the leakiness. Moreover, it provides smoother gradients and
prevents the unit from getting saturated.

Before we introduce Leaky V-trace, let us first recall how the off-policy trade-offs are represented in
V-trace using the coefficients ρ̄, c̄. The weight ρt = min(ρ̄, π(at|xt)

µ(at|xt) ) appears in the definition of the
temporal difference δtV and defines the fixed point of this update rule. The fixed point of this update
is the value function V πρ̄ of the policy πρ̄ that is somewhere between the behavior policy µ and the
target policy π controlled by the hyperparameter ρ̄,

πρ̄ =
min (ρ̄µ(a|x), π(a|x))∑
b min (ρ̄µ(b|x), π(b|x))

.

The product of the weights cs, ..., ct−1 in Eq. (2) measures how much a temporal difference δtV
observed at time t impacts the update of the value function. The truncation level c̄ is used to control
the speed of convergence by trading off the update variance for a larger contraction rate. The variance
associated with the update rule is reduced relative to importance-weighted returns by clipping the
importance weights. On the other hand, the clipping of the importance weights effectively cuts the
traces in the update, resulting in the update placing less weight on later TD errors and worsening
the contraction rate of the corresponding operator. Following this interpretation of the off policy
coefficients, we propose a variation of V-trace which we call leaky V-trace with parameters αρ ≥ αc,

ISt =
π(at|xt)
µ(at|xt)

, ρt = αρ min
(
ρ̄, ISt

)
+ (1− αρ)ISt, ci = λ

(
αc min

(
c̄, ISt

)
+ (1− αc)ISt

)
,

vs = V (xs) +
∑s+n−1

t=s
γt−s

(
Πt−1
i=sci

)
δtV, δtV = ρt(rt + γV (xt+1)− V (xt)). (5)

We highlight that for αρ = 1, αc = 1, Leaky V-trace is exactly equivalent to V-trace, while for
αρ = 0, αc = 0, it is equivalent to canonical importance sampling. For other values, we get a mixture
of the truncated and not-truncated importance sampling weights.

Theorem 1 below suggests that Leaky V-trace is a contraction mapping and that the value function
that it will converge to is given by V πρ̄,αρ , where

πρ̄,αρ =
αρ min (ρ̄µ(a|x), π(a|x)) + (1− αρ)π(a|x)

αρ
∑
b min (ρ̄µ(b|x), π(b|x)) + 1− αρ

,

is a policy that mixes (and then re-normalizes) the target policy with the V-trace policy. We provide a
formal statement of Theorem 1, and detailed proof in the supplementary material (Section 10).

Theorem 1. The leaky V-trace operator defined by Eq. (5) is a contraction operator, and it converges
to the value function of the policy defined above.

Similar to ρ̄, the new parameter αρ controls the fixed point of the update rule and defines a value
function that interpolates between the value function of the target policy π and the behavior policy µ.
Specifically, the parameter αc allows the importance weights to "leak back" creating the opposite
effect to clipping. Since Theorem 1 requires us to have αρ ≥ αc, our main STAC implementation
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parametrises the loss with a single parameter α = αρ = αc. In addition, we also experimented
with a version of STAC that learns both αρ and αc. This variation of STAC learns the rule αρ ≥ αc
on its own (see Fig. 5(b)). Note that low values of αc lead to importance sampling, which is high
contraction but high variance. On the other hand, high values of αc lead to V-trace, which is lower
contraction and lower variance than importance sampling. Thus exposing αc to meta-learning enables
STAC to control the contraction/variance trade-off directly.

In summary, the metaparameters for STAC are {γ, λ, gv, gp, ge, α}. To keep things simple, when
using Leaky V-trace we make two simplifications w.r.t the hyperparameters. First, we use V-trace
to initialise Leaky V-trace, i.e., we initialise α = 1. Second, we fix the outer loss to be V-trace, i.e.
we set αouter = 1.

3.2 STAC with auxiliary tasks (STACX)

Next, we introduce a new agent, that extends STAC with auxiliary policies, value functions, and
corresponding auxiliary loss functions. Auxiliary tasks have proven to be an effective solution to
learning useful representations from limited amounts of data. We observe that each set of meta-
parameters induces a separate inner loss function, which can be thought of as an auxiliary loss. To
meta-learn auxiliary tasks, STACX self-tunes additional sets of meta-parameters, independently of
the main head, but via the same meta-gradient mechanism. The novelty here comes from STACX’s
ability to discover the auxiliary tasks most useful to it. E.g., the discount factors of these auxiliary
losses allow STACX to reason about multiple horizons.

STACX’s architecture has a shared representation layer θshared, from which it splits into n different
heads (Section 3.2). For the shared representation layer we use the deep residual net from (Espeholt
et al., 2018). Each head has a policy and a corresponding value function that are represented using
a 2 layered MLP with parameters {θi}ni=1. Each one of these heads is trained in the inner loop to
minimize a loss function L(θi; ηi), parametrized by its own set of metaparameters ηi.

The STACX agent policy is defined as the policy of a specific head (i = 1). We considered two more
variations that allow the other heads to act. Both did not work well, and we provide more details
in the supplementary (Section 9.3). The hyperparameters {ηi}ni=1 are trained in the outer loop to
improve the performance of this single head. Thus, the role of the auxiliary heads is to act as auxiliary
tasks (Jaderberg et al., 2016) and improve the shared representation θshared. Finally, notice that each
head has its own policy πi, but the behavior policy is fixed to be π1. Thus, to optimize the auxiliary
heads, we use (Leaky) V-trace for off-policy corrections.

Deep 
Residual 

Block

MLP

Observation

MLPMLP

STAC STACX

Figure 1: Block diagrams of STAC and STACX.

The metaparameters for STACX are
{γi, λi, giv, gip, gie, αi}3i=1. Since the outer
loss is defined only w.r.t head 1, introducing
the auxiliary tasks into STACX does not require
new hyperparameters for the outer loss. In
addition, we use the same initialization values
for all the auxiliary tasks. Thus, STACX has the
same hyperparameters as STAC.

Summary. In this Section, we showed how em-
bracing self-tuning via metagradients enables us
to introduce novel ideas into our agent. We aug-
mented our agent with a parameterized Leaky V-
trace operator and with self-tuned auxiliary loss
functions. We did not have to tune these new
hyperparameters because we relied on metagra-
dients to self-tune them. We emphasize here that
STACX is not a fully parameter-free algorithm.
Nevertheless, we argue that STACX requires
the same hyperparameter tuning as IMPALA,
since we use default values for the new hyper-
parameters. We further evaluated these design
principles in Fig. 4.
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4 Experiments

4.1 Atari Experiments.

We begin the empirical evaluation of our algorithm in the Arcade Learning Environment (Bellemare
et al., 2013, ALE). To be consistent with prior work, we use the same ALE setup that was used in
(Espeholt et al., 2018; Xu et al., 2018); in particular, the frames are down-scaled and grayscaled.

Fig. 2(a) presents the normalized median scores during training, computed in the following manner:
for each Atari game, we compute the human normalized score after 200M frames of training and
average this over three seeds. We then report the overall median score over the 57 Atari domains
for four variations of our algorithm STACX (blue, solid), STAC (green, solid), IMPALA with fixed
auxiliary tasks (blue, dashed), and IMPALA (green, dashed). Inspecting Fig. 2(a) we observe two
trends: using self-tuning improves the performance with/out auxiliary tasks (solid vs. dashed lines),
and using auxiliary tasks improves the performance with/out self-tuning (blue vs. green lines). In the
supplementary (Section 12), we report the relative improvement over IMPALA in individual games.

STACX outperforms all other agents in this experiment, achieving a median score of 364%, a new
state of the art result in the ALE benchmark for training online model-free agents for 200M frames.
In fact, there are only two agents that reported better performance after 200M frames: LASER
(Schmitt et al., 2019) achieved a normalized median score of 431% and MuZero (Schrittwieser et al.,
2019) achieved 731%. These papers propose algorithmic modifications that are orthogonal to our
approach and can be combined in future work; LASER combines IMPALA with a uniform large-scale
experience replay; MuZero uses replay and a tree-based search with a learned model.

In Fig. 2(b), we perform an ablative study of our approach by training different variations of STAC
(green) and STACX (blue). For each bar, we report the subset of metaparameters that are being
self-tuned in this ablative study. The bottom bar for each color with {} corresponds to not using
self-tuning at all (IMPALA w/o auxiliary tasks), and the topmost color corresponds to self-tuning all
the metaparameters (as reported in Fig. 2(a)). In between, we report results for tuning only subsets of
the metaparameters. For example, η = {γ} corresponds to self-tuning a single loss function where
only γ is self-tuned. When we do not self-tune a hyperparameter, its value is fixed to its corresponding
value in the outer loss. For example, in all the ablative studies besides the two topmost bars, we do
not self-tune α, which means that we use V-trace instead (fix α = 1). Finally, in red, we report results
from different baselines as a point of reference (in this case, IMPALA is using γ = 0.99), and our
variation of IMPALA (green, bottom) with γ = 0.995 indeed achieves higher score as was reported
in (Xu et al., 2018). We also note that the metagradient agent of Xu et al. (2018) achieved higher
performance than our variation of STAC that is only learning η = {γ, λ} . We further discuss this in
the supplementary (Section 9.5).

Inspecting Fig. 2(b) we observe that the performance of STAC and STACX consistently improves as
they self-tune more metaparameters. These metaparameters control different trade-offs in reinforce-
ment learning: discount factor controls the effective horizon, loss coefficients affect learning rates,
the Leaky V-trace coefficient controls the variance-contraction-bias trade-off in off-policy RL.
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Figure 2: Median normalized scores in 57 Atari games. Average over three seeds, 200M frames.

6



4.2 DM control suite

To further examine the generality of STACX we conducted a set of experiments in the DM control
suite (Tassa et al., 2018). We considered three setups: (a) learning from feature observations, (b)
learning from pixel observations, and (c) the real-world RL challenge (Dulac-Arnold et al., 2020,
RWRL). The latter introduces a set of challenges (inspired by real-world scenarios) on top of existing
control domains: delayed actions, observations and rewards, action repetition, added noise to the
actions, stuck/dropped sensors, perturbations, and increased state dimensions. These challenges
are combined in 3 difficulty levels (easy, medium, and hard) for humanoid, walker, quadruped, and
cartpole. Scores are normalized to [0, 1000] by the environment (Tassa et al., 2018).

We use the same algorithm and similar hyperparameters to the ones we use in the Atari experiments.
For most of the hyperparameters (and in particular, those that are relevant to STACX) we use the
same values as we used in the Atari experiments (e.g., gv, gp, ge); others, like learning rate and
discount factor, were re-tuned for the control domains (but remain fixed across all three setups). The
exact details can be found in the supplementary (Section 9.3). For continuous actions, our network
outputs two variables per action dimension that correspond to the mean and the standard deviation of
a squashed Gaussian distribution (Haarnoja et al., 2018). The squashing refers to applying a tanh
activation on the samples of the Gaussian, resulting in bounded actions. In addition, instead of using
entropy regularization, we use a KL to standard Gaussian.

We emphasize here that while online actor-critic algorithms (IMPALA, A3C) do not achieve SOTA
results in DM control, the results we present for IMPALA in Fig. 3(a) are consistent with the A3C
results in (Tassa et al., 2018). The goal of these experiments is to measure the relative improvement
from self-tuning. In Fig. 3, we average the results across suite domains and across three seeds.
Standard deviation error bars w.r.t the seeds are reported in shaded areas. In the supplementary
(Section 11) we provide domain-specific learning curves.

Inspecting Fig. 3 we observe two trends. First, using self-tuning improves performance (solid vs.
dashed lines) in all three suites, w/o using the auxiliary tasks. Second, the auxiliary tasks improve
performance when learning from pixels (Fig. 3(b)), which is consistent with the results in Atari.
When learning from features (Fig. 3(a), Fig. 3(c)), we observe that IMPALA performs better without
auxiliary tasks. This is reasonable, as there is less need for strong representation learning in this case.
Nevertheless, STACX performs better than IMPALA as it can self-tune the loss coefficients of the
auxiliary tasks to low values. Since this takes time, STACX performs worse than STAC.

Similar to the A3C baseline (using features), all of our agents were not able to solve the more
challenging control domains (e.g., humanoid). Nevertheless, by using self-tuning, STAC, and
STACX significantly outperformed the IMPALA baselines in many of the control domains. In the
RWRL challenge, they even outperform strong baselines like D4PG and DMPO in the average
score. Moreover, STAC was able to solve (to achieve an almost perfect score) two RWRL domains
(quadruped.easy, cartpole.easy), making a new SOTA in these domains.
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(a) Feature observations
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(b) Pixel observations
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Figure 3: Aggregated results in DM Control of STACX, STAC and IMPALA with/out Auxiliary tasks.
In dashed lines, we report the aggregated results of baselines at the end of training; A3C as reported
in (Tassa et al., 2018), DMPO and D4PG as reported in (Dulac-Arnold et al., 2020).

4.3 Analysis

To better understand the behavior of the proposed method, we chose one domain, Atari, and per-
formed some additional experiments. We begin by investigating the robustness of STACX to its
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hyperparameters. First, we consider the hyperparameters of the outer loss, and compare the robust-
ness of STACX with that of IMPALA. For each hyperparameter (γ, gv) we select 5 perturbations. For
STACX we perturb the hyperparameter in the outer loss (γouter, gouter

v ) and for IMPALA we perturb
the corresponding hyperparameter (γ, gv). We randomly selected 5 Atari games and presented the
mean and standard deviation across 3 random seeds after 200M frames.

Fig. 4(a) and Fig. 4(b) present the results for the discount factor γ and for gv respectively. We can
see that overall, STACX performs better than IMPALA (in 72% and 80% of the setups, respectively).
This is perhaps not surprising because we have already seen that STACX outperforms IMPALA
in Atari, but now we observe this over a wider range of hyperparameters. In addition, we can see
that in specific games, there are specific hyperparameter values that result in lower performance.
In particular, in James Bond and Chopper Command (the two topmost rows), we observe lower
performance when decreasing the discount factor γ and when decreasing gv . While the performance
of both STACX and IMPALA deteriorates in these experiments, the effect on STACX is less severe.

In Fig. 4(c) we investigate the robustness of STACX to the initialization of the metaparameters.
Since IMPALA does not have this hyperparameter, we only investigate its effect on STACX. We
selected five different initialization values (all close to 1,, so the inner loss is close to the outer loss)
and fixed all the other hyperparameters (e.g., the outer loss). Inspecting Fig. 4(c), we can see that the
performance of STACX does not change too much when we change the value of the initializations,
both in the case where we perturb the initializations of all the meta parameters (top), and only the
discount (bottom). These observations confirm that our design choice to arbitrary initializing all the
meta parameters to 0.99 is sufficient, and there is no need to tune this new hyperparameter.
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(c) Metaparameters initialisation.

Figure 4: Robustness results in Atari. Mean and confidence intervals (over 3 seeds), after 200M
frames of training. Fig. 4(a) and Fig. 4(b): blue bars correspond to STACX and red bars to
IMPALA. Rows correspond to specific Atari games, and columns to the value of the hyper pa-
rameter in the outer loss (γ, gv). We observe that STACX is better than IMPALA in 72% of
the runs (Fig. 4(a)) and in 80% of the runs in Fig. 4(b). Fig. 4(c): Robustness to the initial-
isation of the metaparameters. Columns correspond to different games. Bottom: perturbing
γinit ∈ {0.99, 0.992, 0.995, 0.997, 0.999}. Top: perturbing all the meta parameter initialisations.
I.e., setting all the hyperparamters {γinit, λinit, ginit

v , ginit
e , ginit

p , αinit}3i=1 to a single fixed value in
{0.99, 0.992, 0.995, 0.997, 0.999}.

Adaptivity. In Fig. 5(a) we visualize the metaparameters of STACX during training. The metapa-
rameters associated with the policy head (head number 1) are in blue, and the auxiliary heads (2
and 3) are in orange and magenta. We present the values of the metaparameters used in the inner
loss, i.e., after we apply a sigmoid activation. But to have a single scale for all the metaparameters
(η ∈ [0, 1]), we present the loss coefficients ge, gv, gp without scaling them by the respective value in
the outer loss. For example, the value of the entropy weight ge that is presented in Fig. 5(a) is further
multiplied by gouter

e = 0.01 when used in the inner loss. As there are many metaparameters, seeds,
and games, we only present results on a single seed (chosen arbitrarily to 1) and a single game (James
Bond). In the supplementary we provide examples for all the games (Section 13).

Inspecting Fig. 5(a), one can notice that the metaparameters are being adapted in a none monotonic
manner that could not have been designed by hand. We highlight a few trends which are visible in
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Fig. 5(a) and we found to repeat across games (Section 13). The metaparameters of the auxiliary
heads are self-tuned to have relatively similar values but different than those of the main head. For
example, the main head discount factor converges to the value in the outer loss (0.995). In contrast,
the auxiliary heads’ discount factors often change during training and get to lower values. Another
observation is that the leaky V-trace parameter α remains close to 1 at the beginning of training, so it
is quite similar to V-trace. Towards the end of the training, it self-tunes to lower values (closer to
importance sampling), consistently across games. We emphasize that these observations imply that
adaptivity happens in self-tuning agents. It does not imply that this adaptivity is directly helpful. We
can only deduce this connection implicitly, i.e., we observe that self-tuning agents achieve higher
performance and adapt their metaparameters through training.

In Fig. 5(b), we experimented with a variation of STACX that self-tunes both αρ and αc without
imposing αρ ≥ αc (as Theorem 1 requires to guarantee contraction). Inspecting Fig. 5(b), we can
see that STACX self-tunes αρ ≥ αc in James Bond. In addition, we measured that across the 57
games αρ ≥ αc in 91.2% of the time (averaged over time, seeds, and games), and that αρ ≥ 0.99αc
in 99.2% of the time. In terms of performance, the median score (353%) was slightly worse than
STACX. A possible explanation is that while this variation allows more flexibility, it may also be less
stable as the contraction is not guaranteed.

In another variation we self-tuned α together with a single truncation parameter ρ̄ = c̄. This variation
performed worse, achieving a median score of 301%, which may be explained by ρ̄ not being
differentiable, suffering from nonsmooth (sub) gradients and possibly saturated IS truncation levels.
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(a) Adaptivity in james Bond.
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(b) Discovery of αρ ≥ αc.

5 Summary

In this work, we demonstrated that it is feasible to self-tune all the differentiable hyperparameters
in an actor-critic loss function. We presented STAC and STACX, actor-critic algorithms that self-
tune a large number of hyperparameters of different nature (controlling important trade-offs in
a reinforcement learning agent) online, within a single lifetime. We showed that these agents’
performance improves as they self-tune more hyperparameters. In addition, the algorithms are
computationally efficient and robust to their hyperparameters. Despite being an online algorithm,
STACX achieved very high results in the ALE and the RWRL domains.

We plan to extend STACX with Experience Replay to make it more data-efficient in future work. By
embracing self-tuning via metagradients, we were able to introduce these novel ideas into our agent,
without having to tune their new hyperparameters. However, we emphasize that STACX is not a fully
parameter-free algorithm; we hope to investigate further how to make STACX less dependent on the
hyperparameters of the outer loss in future work.
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6 Broader Impact

The last decade has seen significant improvements in Deep Reinforcement Learning algorithms. To
make these algorithms more general, it became a common practice in the DRL community to measure
the performance of a single DRL algorithm by evaluating it in a diverse set of environments, where at
the same time, it must use a single set of hyperparameters. That way, it is less likely to overfit the
agent’s hyperparameters to specific domains, and more general properties can be discovered. These
principles are reflected in popular DRL benchmarks like the ALE and the DM control suite.

In this paper, we focus on exactly that goal and design a self-tuning RL agent that performs well
across a diverse set of environments. Our agent starts with a global loss function that is shared
across the environments in each benchmark. But then, it has the flexibility to self-tune this loss
function, separately in each domain. Moreover, it can adapt its loss function within a single lifetime
to account for inherent non-stationarities in RL algorithms - exploration vs. exploitation, changing
data distribution, and degree of off-policy.

While using meta-learning to tune hyperparameters is not new, we believe that we have made
significant progress that will convince many people in the DRL community to use metagradients.
We demonstrated that our agent performs significantly better than the baseline algorithm in four
benchmarks. The relative improvement is much more significant than in previous metagradient papers
and is demonstrated across a wider range of environments. While each of these benchmarks is diverse
on its own, together, they give even more significant evidence to our approach’s generality.

Furthermore, we show that it’s possible to self-tune tenfold more metaparameters from different
types. We also showed that we gain improvement from self-tuning various subsets of the meta
parameters, and that performance kept improving as we self-tuned more metaparameters. Finally, we
have demonstrated how embracing self-tuning can help to introduce new concepts (leaky V-trace and
parameterized auxiliary tasks) to RL algorithms without needing tuning.
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