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Abstract

This document provides (A) a supplementary background on Riemannian manifolds,
(B) a proof that the distance between two points on a nested hypersphere manifold
is independent w.r.t. the parameters {rD, . . . rd+1}, (C) an approximation of the
SPD distance for the mGP kernel, (D) the algorithm for trust region on Riemannian
manifolds used for optimizing acquisition functions in HD-GaBO, (E) the equations
of the benchmark functions used in the experiments of the main paper, and (F)
supplementary results.

Appendices

A Supplementary Background on Riemannian Manifolds

Optimization algorithms on Riemannian manifolds used in this paper to optimize the acquisition
function in a geometry-aware manner, have been developed by taking advantage of the Euclidean
tangent space TxM linked to each point x on the manifoldM. To utilize the Euclidean tangent
spaces, we need mappings back and forth between TxM andM, which are known as exponential
and logarithmic maps. The exponential map Expx : TxM→M maps a point u in the tangent space
of x to a point y on the manifold, so that it lies on the geodesic starting at x in the direction u and
such that the geodesic distance dM between x and y is equal to norm of u. The inverse operation is
called the logarithmic map Logx :M→ TxM. Notice that these different operations are determined
based on the Riemannian metric with which the manifold is endowed.

The exponential and logarithmic maps related to hypersphere manifolds can be found, e.g., in [2].
In the case of the SPD manifold, several Riemannian metrics have been proposed in the literature,
notably the affine-invariant [10] and Log-Euclidean [3] metrics, which both set matrices with null or
negative eigenvalues at an infinite distance of any SPD matrix. The exponential and logarithmic maps
based on the two aforementioned metrics can be found in the corresponding publications. Detailed
explanations on several SPD metrics can also be found in [11]. While the affine-invariant metric
provides excellent theoretical properties, it is computationally expensive in practice, therefore leading
to a need for simpler metrics. In this context, the Log-Euclidean metric has been shown to perform
well in a variety of applications.
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B Distances between Points on Nested Spheres

The geometry-aware mGP used in HD-GaBO involves the computation of kernel functions based on
distances between data projected onto nested Riemannian manifolds with the projection mapping
m : SD → Sd. We compute here the distance between projected data on nested spheres and show
that this distance is invariant to the parameters {rD, . . . rd+1}.
To do so, we first compute the distance dSD−1(mD(xi),mD(xj)) between two points xi,xj ∈ SD
projected onto SD−1. Given an axis vD ∈ SD and a distance rD ∈ ]0, π/2], the projection mapping
mD : SD → SD−1 is computed as Eq.2 of the main paper

z = mD(x) =
1

sin(rD)︸ ︷︷ ︸
scaling

ItruncR︸ ︷︷ ︸
dim. red. + rot.

(
sin(rD)x+ sin

(
dSD (vD,x)− rD

)
vD

sin
(
dSD (vD,x)

) )
︸ ︷︷ ︸

projection ontoAD−1

, (1)

where Itrunc is the D − 1×D truncated identity matrix. By exploiting the identity

sin(α− β) = sin(α) cos(β)− cos(α) sin(β), (2)

and the distance formula dSD (vD,x) = arccos(vTDx), we can further rewrite (1) as

z = mD(x) =
1

sin(rD)︸ ︷︷ ︸
scaling

ItruncR︸ ︷︷ ︸
dim. red. + rot.

(
sin(rD)

sin
(
dSD (vD,x)

) (x+ vTDxvD) + cos(rD)vD

)
︸ ︷︷ ︸

projection ontoAD−1

. (3)

The distance dSD−1

(
mD(xi),mD(xj)

)
is given by

dSD−1

(
mD(xi),mD(xj)

)
= dSD−1(zi, zj) = arccos(zTi zj). (4)

By defining the projection onto AD−1 as the function z = p(x), we can compute

zTi zj =
1

sin2(rD)
p(xi)

TRTITtruncItruncR p(xj), (5)

=
1

sin2(rD)

(
p(xi)

TRTR p(xj)− cos2(rD)
)
, (6)

=
1

sin2(rD)

(
p(xi)

Tp(xj)− cos2(rD)
)
, (7)

=
1

sin2(rD)

(
sin2(rD)

(
xi − vTDxivD

)T(
xj − vTDxjvD

)
sin
(
dSD (vD,xi)

)
sin
(
dSD (vD,xj)

) + cos2(rD)vTDvD − cos2(rD)

)
,

(8)

=

(
xi − vTDxivD

)T(
xj − vTDxjvD

)
sin
(
dSD (vD,xi)

)
sin
(
dSD (vD,xj)

) , (9)

so that zTi zj , and thus the distance (4), are invariant w.r.t. rD. Note that (6) was obtained by using
the fact that the last coordinate of the projectionsR p(xi) andR p(xj) is equal to cos(rD) from the
nested sphere mapping definition. We then used the rotation matrix propertyRTR = I to obtain (7)
and the unit-norm property of vD, so that vTDvD = 1 to obtain (9).

As the distance (4) is invariant w.r.t. rD for any dimension D and as the mapping m is a composition
of successive mappingsmD, we can straightforwardly conclude that the distance dSd

(
m(xi),m(xj)

)
with xi,xj ∈ SD and d ≤ D is invariant w.r.t. the parameters {rD, . . . rd+1}.
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C Approximation of the SPD distance for the mGP kernel

In [7], the SE kernel based on the affine-invariant SPD distance

dSd
++

(X,Y ) = ‖ log(X−
1
2Y X−

1
2 )‖F,

was used for GaBO on the SPD manifold. During the GP parameters optimization in GaBO, the
distances between each pair of SPD data only depend on the data and are solely computed at the
beginning of the optimization process. In contrast, in HD-GaBO, the distances between the projected
SPD data vary as a function ofW and therefore must be computed at each optimization step. This
results in a computationally expensive optimization of the mGP parameters. In order to alleviate this
computational burden, we propose to use the SE kernel based on the Log-Euclidean SPD distance [3]

dSd
++

(Xi,Xj) = ‖ log(Xi)− log(Xj)‖F.

Moreover, as shown in [6], we can approximate log(W TXW ) 'W T log(X)W , so that

dSd
++

(W TXiW ,W TXjW ) ' ‖W T (log(Xi)− log(Xj))W ‖F. (10)

Therefore, the difference between the logarithm of SPD matrices is fixed throughout the optimization
process. This allows us to optimize the mGP parameters at a lower computational cost without
affecting consequently the performance of HD-GaBO. Note that the Log-Euclidean based SE kernel
is positive definite for all the values of the parameter β [8].

D Optimization of Acquisition Functions: Trust Region on Riemannian
Manifolds

In this paper, we exploit trust-region (TR) methods on Riemannian manifolds, as introduced in [1],
to optimizing the acquisition function γn in the latent space at each iteration n of HD-GaBO. The
recursive process of the TR methods on Riemannian manifolds, described in Algorithm 1, involves
the same steps as its Euclidean equivalence, namely: (i) the optimization of a quadratic subproblem
mk trusted locally, i.e., in a region around the iterate (step 3); (ii) the update of the trust-region
parameters — typically the trust-region radius ∆k — (steps 5-11); (iii) the iterate update, where
a candidate is accepted or rejected in function of the quality of the model mk (steps 12-16). The
differences with the Euclidean version are:

1. The trust-region subproblem given by

argmin
η∈Tzk

M
mk(η) s.t. ‖η‖zk ≤ ∆k, (11)

with mk(η) = φn(zk) + 〈−∇φn(zk),η〉zk +
1

2
〈Hk,η〉zk , (12)

is defined and solved in the tangent space TzkM, with ∇φn(zk) ∈ TzkM and Hk some
symmetric operator on TzkM. Therefore, its solution ηk corresponds to the projection of
the next candidate in the tangent space of the iterate zk. A truncated CG algorithm to solve
the subproblem is provided in Algorithm 2.

2. As a consequence of the previous point, the candidate is obtained by computing Expzk(ηk).

The symmetric operator Hk on the tangent space TzkM typically approximates the Riemannian
Hessian Hessφn(zk) [η], which may be expensive to compute. For example, one may use the
approximation of the Hessian with finite difference approximation introduced in [4], that has been
shown to retain global convergence of the Riemannian TR algorithm. Also notice that the steps 4
and 11 of Algorithm 2 correspond to solving the second-order equation

〈νj ,νj〉zk + 2τ∆〈νj , δj〉zk + τ2
∆〈δj , δj〉zk = ∆2

k, (13)

for τ∆, which was obtained from ‖νj + τ∆δj‖zk = ∆k by using the relationship between the norm
and the inner product and the properties of inner products.
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Algorithm 1: Optimization of acquisition function with trust region on Riemannian manifolds
Input: Acquisition function γn, initial iterate z0 ∈M, maximal trust radius ∆max > 0, initial

trust radius ∆0 < ∆max, acceptance threshold ρ
Output: Next parameter point xn+1

1 Set φn = −γn as the function to minimize ;
2 for k = 0, 1 . . . ,K do
3 Compute the candidate Expzk(ηk) by solving the subproblem

ηk = argmin
η∈Tzk

M
mk(η) s.t. ‖η‖zk ≤ ∆k,

with mk(η) = φn(zk) + 〈−∇φn(zk),η〉zk + 1
2 〈Hk,η〉zk (Algo. 2);

4 Evaluate the accuracy of the model by computing ρk =
φn(zk)−φn(Expzk

(ηk))
mk(0)−mk(ηk) ;

5 if ρk < 1
4 then

6 Reduce the trust radius ∆k+1 = 1
4∆k ;

7 else if ρk > 3
4 and ‖ηk‖zk = ∆k then

8 Expand the trust radius ∆k+1 = min(2∆k,∆max);
9 else

10 ∆k+1 = ∆k ;
11 end
12 if ρk > ρ then
13 Accept the candidate and set zk+1 = Expzk(ηk) ;
14 else
15 Reject the candidate and set zk+1 = zk ;
16 end
17 if a convergence criterion is reached then
18 break
19 end
20 end
21 Set xn+1 = zk+1

For the cases where the domain of HD-GaBO needs to be restricted to a subspace of the manifold,
we propose to extend the TR algorithm to cope with linear constraints. Similarly to the Euclidean
case [5, 12], the trust-region subproblem can be augmented as

argmin
η∈Tzk

M
mk(η) s.t. ‖η‖zk ≤ ∆2

k and ‖(ck +∇cTkη)−‖zk ≤ ξk, (14)

where ck is a vector of linearized constraints ck = (c1(zk) . . . cM (zk))
T,∇ck is the corresponding

gradient, (x)− = x for equality constraints cm(zk) = 0 and (x)− = min(0, x) for inequality
constraints cm(zk) ≥ 0. The subproblem (14) can be solved with the augmented Lagrangian or the
exact penalty methods on Riemannian manifolds presented in [9].

In the context of Bayesian optimization, a common assumption is that the optimum should not lie
in the border of the search space. Therefore, the acquisition function does not need to be exactly
maximized close to the border of the search space. However, it is important to stay in the search space
to cope with physical limits or safety constraints of the system. By exploiting these two considerations,
we propose to optimize the subproblem (14) in a simplified way, by adapting Algorithm 2 to cope with
the constraints. At each iteration, we verify that the iterate νj+1 = νj +αjδj satisfies the constraints.
If the constraints are not satisfied, the value of the step size αj is adjusted and the algorithm is
terminated. This process is described in Algorithm 3 and is used to augment the steps 5, 12 and 14 of
Algorithm 2. Note that the proposed approach ensures that the constraints are satisfied, but is not
guaranteed to converge to optima lying on a constraint border. However, we did not observe any
significant difference in the performance of HD-GaBO by using this approach compared to more
sophisticated methods.
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Algorithm 2: Truncated conjugate gradient for solving the trust-region subproblem (step 3 of
Algorithm 1)
Input: Trust-region subproblem 11 to minimize, given φn(zk),Hk

Output: Update vector ηk
1 Set the initial iterate ν0 = 0, residual r0 = ∇φn(zk) and search direction δ0 = −r0;
2 for j = 0, 1 . . . , J do
3 if 〈δj ,Hkδj〉zk ≤ 0 then
4 Compute τ∆ ≥ 0 s.t. ‖νj + τ∆δj‖zk = ∆k ;
5 Set νj+1 = νj + τ∆δj ;
6 break
7 end
8 Compute the step size αj =

〈rj ,rj〉zk

〈δj ,Hkδj〉zk
;

9 Set νj+1 = νj + αjδj ;
10 if ‖νj+1‖zk ≥ ∆k then
11 Compute τ∆ ≥ 0 s.t. ‖νj + τ∆δj‖zk = ∆k ;
12 Set νj+1 = νj + τ∆δj ;
13 break
14 end
15 Set rj+1 = rj + αjHkδj ;

16 Set δj+1 = −rj+1 +
〈rj+1,rj+1〉zk

〈rj ,rj〉zk
δj ;

17 if a convergence criterion is reached then
18 break
19 end
20 end
21 Set ηk = νj+1

Algorithm 3: Addition to steps 5, 12 and 14 of Algorithm 2 to solve the trust-region subprob-
lem (14).
Set ck = c(zk) ;
if ‖(ck +∇cTkνj+1)−‖zk ≥ 0 then

Compute τc ≥ 0 s.t. ‖
(
ck +∇cTk (νj + τcδj)

)− ‖zk = 0;
Set νj+1 = νj + τcδj ;
break

end

E Benchmark Test Functions

This appendix gives the equations of the benchmark test functions considered in the experiment
section of the main paper. Namely, we minimize the Ackley, Rosenbrock, Styblinski-Tang and
product-of-sines functions defined as

fAckley(x) = −20 exp

−0.2

√√√√1

d

d∑
i=1

x2
i

− exp

(
1

d

d∑
i=1

cos(2πxi)

)
+ 20 + exp(1),

fRosenbrock(x) =

d−1∑
i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

)
,

fStyblinski-Tang(x) =
1

2

d∑
i=1

(
(5xi)

4 − 16(5xi)
2 + 5(5xi)

)
,

fproduct-of-sines(x) = 100 sin(x1)

d∏
i=1

sin(xi).

5



(a) Rosenbrock, S5 embedded in S70

(b) Ackley, S5 embedded in S70

(c) Product of sines, S5 embedded in S70

(d) Rosenbrock, S3
++ embedded in S12

++

(e) Styblinski-Tang, S3
++ embedded in S12

++

(f) Product of sines, S3
++ embedded in S12

++

Figure 1: Logarithm of the simple regret for benchmark test functions over 30 trials. The left graphs show the
evolution of the median for the BO approaches and the random search baseline. The right graphs display the
distribution of the logarithm of the simple regret of the BO recommendation xN after 300 iterations. The boxes
extend from the first to the third quartiles and the median is represented by a horizontal line.

F Supplementary Results

The aim of this appendix is to complement the results presented in the main paper. The experiments
presented in this section were carried out in the same conditions as in the main paper. For the
sphere manifold SD, we minimize the Rosenbrock, Ackley, and product-of-sines functions defined
on the low-dimensional manifold S5 embedded in S70. Fig. 1a- 1c display the median of the
logarithm of the simple regret along 300 BO iterations and the distribution of the logarithm of the
BO recommendation xN for the three functions. Regarding the SPD manifold SD++, we minimize
the Rosenbrock, Styblinski-Tang, and product-of-sines functions defined on the low-dimensional
manifold S3

++ embedded in S12
++. The corresponding results are displayed in Fig. 1d-1f (in logarithm

scale). The results presented in this appendix support the analysis drawn in the experiment section of
the main paper and validate the use of HD-GaBO for original manifolds of higher dimensionality.
Namely, we observe that HD-GaBO consistently converges fast and provides good optimizers for all
the test cases. Moreover, it outperforms all the other approaches for the product-of-sines function on
the sphere manifold and for the Styblinski-Tang function on the SPD manifold. Also, some methods
are still competitive with respect to HD-GaBO for some of the test functions but perform poorly in
other cases.
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