
Supplement: Matrix Completion with Quantified
Uncertainty through Low Rank Gaussian Copula

Yuxuan Zhao
Cornell University

yz2295@cornell.edu

Madeleine Udell
Cornell University

udell@cornell.edu

1 Proofs

Setup Suppose a p-dimensional vector x ∼ LRGC(W, σ2,g) is observed at locations O ⊂ [p]
and missing at M = [p]/O. Then according to the definition of LRGC, for t ∼ N (0, Ik), ε ∼
N (0, σ2Ip), and z = Wt + ε, we know x = g(z) and z ∼ N (0,Σ) with Σ = WWᵀ + σ2Ip.
Here we say two random vectors are equal if they have the same CDF.

A key fact we use is that conditional on known zO, zM has a normal distribution:

zM|zO ∼ N (ΣM,OΣ−1
O,OzO,ΣM,M −ΣM,OΣ−1

O,OΣO,M). (1)

Here we use ΣI,J to denote the submatrix of Σ with rows in I and columns in J . Plugging in
Σ = WWᵀ + σ2Ip, we obtain

E[zM|zO] = WMWᵀ
O(WOWᵀ

O + σ2I)−1zO

= WM(σ2I + Wᵀ
OWO)−1Wᵀ

OzO. (2)

In last equation, we use the Woodbury matrix identity. Similarly, we obtain:

Cov[zM|zO] = σ2I + σ2WM(σ2I + Wᵀ
OWO)−1Wᵀ

M. (3)

1.1 Proof for Lemma 1

Using the law of total expectation,

E[zM|xO] = E
[
E[zM|zO]

∣∣xO]
= E[WM(σ2I + Wᵀ

OWO)−1Wᵀ
OzO|xO]

= WM(σ2I + Wᵀ
OWO)−1Wᵀ

OE[zO|xO].

For the first equality, we use Eq. (2).

Similarly we can compute the second moments,

E[zMzᵀM|xO] = E
[
E[zMzᵀM|zO]

∣∣xO]
= E [E[zM|zO]E[zM|zO]ᵀ + Cov[zM|zO]|xO]

= E [E[zM|zO]E[zM|zO]ᵀ|xO] + E [Cov[zM|zO]|xO]

= E [E[zM|zO]E[zM|zO]ᵀ|xO] + Cov[zM|zO]. (4)

From the last equation, we use the fact that Cov[zM|xO] is fully determined by W and σ2 and thus
does not depend on xM.

Plug Eq. (2) and Eq. (3) into Eq. (4) to obtain

E [E[zM|zO]E[zM|zO]ᵀ|xO] =

WM(σ2I + Wᵀ
OWO)−1Wᵀ

OE[zOzᵀO|xO]WO(σ2I + Wᵀ
OWO)−1Wᵀ

M.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Then using Cov[zM|xO] = E[zMzᵀM|xO]− E[zM|xO]E[zᵀM|xO], we have

Cov[zM|xO] = σ2I|M| + σ2WM(σ2I + Wᵀ
OWO)−1Wᵀ

M+

WM(σ2I + Wᵀ
OWO)−1Wᵀ

OCov[zO|xO]WO(σ2I + Wᵀ
OWO)−1Wᵀ

M.

1.2 Proof of Theorem 1

Proof. Theorem 1 is an immediate consequence of the normality of zM conditional on zO =
g−1
O (xO) (see Eq. (1)) and the elementwise strictly monotone g.

1.3 Proof of Theorem 2

Suppose x = (x1, . . . , xp) where xj is ordinal with kj(≥ 2) ordinal levels encoded as {1, . . . , kj}
for j ∈ [p]. For ordinal data, the conditional distribution of zM|zO ∈ g−1

O (xO) is intractable.
Consequently, we cannot establish distribution-based confidence intervals for zM.

Instead, for each marginal j, we can lower bound the probability of event |x̂j−xj | ≤ d for the LRGC
imputation x̂j and d ∈ Z. Since Pr(|x̂j − xj | ≤ kj − 1) = 1, it suffices to consider d < kj − 1. In
practice, the result is more useful for small d, such as d = 0. Let us first state a generalization of our
Theorem 2.
Theorem 4. Suppose x ∼ LRGC(W, σ2,g) with observations xO and missing entries xM. Also
for each marginal j ∈ [p], xj takes values from {1, . . . , kj} and thus the gj is a step function with
cut points Sj = {s1, . . . , skj−1}:

gj(z) = 1 +

kj−1∑
k=1

1(z > sk), where −∞ =: s0 < s1 < . . . < skj−1 < skj :=∞.

For a missing entry xj , j ∈ M, the set of values for zj that would yield the same imputed value
x̂j = gj(E[zj |xO]) is g−1

j (x̂j) = (sx̂j−1, sx̂j
]. Then the following holds:

Pr(|x̂j − xj | ≤ d) ≥ 1− Var[zj |xO]

d2
j

,

with
dj = min(|E[zj |xO]− smax(x̂j−1−d,0)|, |E[zj |xO]− smin(x̂j+d,kj)|),

where E[zj |xO],Var[zj |xO] are given in Lemma 1 withM replaced by j.

Proof. The proof applies to each missing dimension j ∈M. Let us further define sk = −∞ for any
negative integer k and sk = ∞ for any integer k > kj for convenience. Then sk = smax(k,0) for
negative integer k and sk = smin(k,kj) for integer k larger than kj .

First notice |x̂j − xj | ≤ d if and only if zj ∈ (sx̂j−1−d, sx̂j+d] for the latent normal zj satisfying
xj = gj(zj). Specifically, when d = 0, x̂j = xj if and only if zj ∈ (sx̂j−1, sx̂j

], i.e. g−1
j (xj) =

(sx̂j−1, sx̂j
] = g−1

j (x̂j). Notice we have,

E[zj |xO] ∈ (sx̂j−1, sx̂j] ⊂ (sx̂j−1−d, sx̂j+d].

Thus a sufficient condition for zj ∈ (sx̂j−1−d, sx̂j+d] is that zj is sufficiently close to its conditional
mean E[zj |xO]. More precisely,

|E[zj |xO]− zj | ≤ min(|E[zj |xO]− sx̂j−1−d|, |E[zj |xO]− sx̂j+d|)→ |x̂j − xj | ≤ d.

Define dj := min(|E[zj |xO]− sx̂j−1−d|, |E[zj |xO]− sx̂j+d|). Notice when d = 0,

dj = min(|E[zj |xO]− sx̂j−1|, |E[zj |xO]− sx̂j
|) = min

s∈S
|E[zj |xO]− s|.

Use the Markov inequality together with the conditional distribution of zj given xO to bound

Pr(|E[zj |xO]− zj | > dj) ≤
Var[zj |xO]

d2
j

,

which completes our proof.

2

1.4 Proof of Theorem 3

To prove Theorem 3, we introduce a lemma which provides a concentration inequality on quadratic
forms of sub-Gaussian vectors. For a detailed treatment of sub-Gaussian random distributions, see
[10]. A random variable x ∈ R is called sub-Gaussian if (E[|x|p])1/p ≤ K

√
p for all p ≥ 1 with

some K > 0. The sub-Gaussian norm of x is defined as ||x||ψ2 = supp≥1 p
−1/2(E[|x|p])1/p.

Denote the inner product of vectors x1 and x2 as 〈x1,x2〉. A random vector x ∈ Rp is called
sub-Gaussian if the one-dimensional marginals 〈x,a〉 are all sub-Gaussian random variables for any
constant vector a ∈ Rp. The sub-Gaussian norm of x is defined as ||x||ψ2

= supa∈Sp−1 ||〈x,a〉||ψ2
.

A Gaussian random vector is also sub-Gaussian.

Lemma 2. Let Σ ∈ Rp×p be a positive semidefinite matrix. Let x = (x1, . . . , xp) be a sub-Gaussian
random vector with mean zero and covariance matrix Ip. For all t > 0,

Pr
[
xᵀΣx > (

√
tr(Σ) +

√
2λ1(Σ)t)2

]
≤ e−t.

Our Lemma 2 is Lemma 17 in [1], which is also a simplified version of Theorem 1 in [4].

Proof. Since g is elementwise Lipschitz with constant L,

MSE(x̂) =
||gM(zM)− gM(ẑM)||22

||M||
≤ L2 ||zM − ẑM||22

||M||
. (5)

Denote the covariance matrix of zM conditional on zO as Σ(M). Apply the above inequality with
Σ = Σ(M) and x = Σ

−1/2
(M) zM, we obtain:

Pr

(
||zM − ẑM||22 >

(√
tr(Σ(M)) +

√
2λ1(Σ(M))t

)2
)
≤ e−t. (6)

Notice

tr(Σ(M)) = tr
(
σ2I + σ2WM(σ2I + Wᵀ

OWO)−1Wᵀ
M
)

= σ2|M|+ σ2tr
(
(σ2I + Wᵀ

OWO)−1Wᵀ
MWM

)
≤ σ2|M|+ σ2λ1(σ2I + Wᵀ

OWO)−1)tr (Wᵀ
MWM)

= σ2|M|+ σ2 1

σ2 + λ2
k(WO)

(1− σ2)|M|.

In the inequality, we use the fact tr(AB) ≤ λ1(A)tr(B) for any real symmetric positive semidefinite
matrices A and B. In the last equation, we use the unit diagonal constraints of WWᵀ + σ2Ip such
that tr(Wᵀ

MWM) = tr(WMWᵀ
M) = |M|(1− σ2).

Also notice

λ1(Σ(M)) = λ1(σ2I + σ2WM(σ2I + Wᵀ
OWO)−1Wᵀ

M)

≤ σ2 + σ2λ1(WM(σ2I + Wᵀ
OWO)−1Wᵀ

M)

≤ σ2 + σ2λ2
1(WM)λ1((σ2I + Wᵀ

OWO)−1)

= σ2 + σ2 λ2
1(WM)

σ2 + λ2
k(WO)

.

Thus,

||zM − ẑM||22 ≤ σ2|M| ·

(√
1 +

1− σ2

σ2 + λ2
k(WO)

+

√(
1 +

λ2
1(WM)

σ2 + λ2
k(WO)

)
2t

|M|

)2

. (7)

Combining Eq. (5), Eq. (6) and Eq. (7), we finish the proof.

3

1.5 Proof of Corollary 1

We first introduce a result from [10, Theorem 5.39] characterizing the singular values of long random
matrices with independent sub-Gaussian rows.

Lemma 3. Let A ∈ Rp×k be a matrix whose rows aj are independent sub-Gaussian random vectors
in Rk whose covariance matrix is Σ. Then for every t > 0, with probability as least 1− 2 exp(−ct2)
one has

λ1

(
1

p
AᵀA−Σ

)
≤ max(δ, δ2)λ1(Σ), where δ = C

√
k

p
+

t
√
p
.

Here c, C > 0 depend only on the subgaussian norm K = maxj ||Σ−1/2aj ||ψ2
.

Proof. Apply Lemma 3 to submatrix WO and WM respectively with covariance matrix Σ =
1−σ2

k Ik, we obtain with probability at least 1− 2 exp(−ct21)− 2 exp(−ct22),∣∣∣∣ 1

|O|
λ2
k(WO)− 1− σ2

k

∣∣∣∣ ≤ 1− σ2

k
ε1 and

∣∣∣∣ 1

|M|
λ2

1(WM)− 1− σ2

k

∣∣∣∣ ≤ (1− σ2)ε2
k

,

where ε1 = max(δ1, δ
2
1) with δ1 = C

√
k+t1√
|O|

and ε2 = max(δ2, δ
2
2) with δ2 = C

√
k+t2√
|M|

. Constants

c, C > 0 only depend on the subgaussian norm maxj ||
√

k
1−σ2 wj ||ψ2

.

For any 0 < ε < 1, let t1 =
ε
√
|O|
2 and t2 =

ε
√
|O|

2
√
c2

. Suppose the sufficiently large constant c1

satisfies c1 >
4C2 max(1,c2)

ε2 . Then we have

ε1 = δ1 =
C√
|O|/k

+
t√
|O|

<
C
√
c1

+
ε

2
<

C√
4C2/ε2

+
ε

2
= ε,

and

ε2 = δ2 =
C√
|M|/k

+
t√
|M|

<
C√
|O|/c2k

+
ε

2
<

C√
4C2/ε2

+
ε

2
= ε.

Thus we have with probability at least 1− 2 exp(−cε2|O|/4)− 2 exp(−cε2|O|/4c2),

λ2
k(WO) > (1− σ2)(1− ε) |O|

k
and λ2

1(WM) ≤ (1− σ2)(1 + ε)
|M|
k
. (8)

Combining Eq. (7) and Eq. (8), then with probability at least 1− exp(−t)− 2 exp(−cε2|O|/4)−
2 exp(−cε2|O|/4c2),

||zM − ẑM||22
|M|

≤ σ2

(√
1 +

1
σ2

1−σ2 + (1− ε)|O|/k
+

√
2t

|M|
+

2(1 + ε)t
kσ2

1−σ2 + (1− ε)|O|

)2

≤ σ2

(√
1 +

1
σ2

1−σ2 + (1− ε)|O|/k
+

√
2c2t

|O|
+

2(1 + ε)t
kσ2

1−σ2 + (1− ε)|O|

)2

. (9)

Now take t = log |O|, with fixed k and σ2, the right hand side is 1 +O
(√

log |O|
|O|

)
.

Notice |O| > c1k ≥ c1. Then there exists some constant c3 > 0 such that |O| satisfies:

log |O| < c3
cε2|O|

4 max(1, c2)

thus Eq. (9) holds with probability at least 1− 1+2c3
|O| . Combing the result with Eq. (5) completes the

proof.

4

2 Algorithm detail

2.1 E-step details

We provide details on E-step computation here. The key fact we use is that conditional on known zO,
t is normally distributed:

t|zO ∼ N (M−1
O Wᵀ

OzO, σ
2M−1
O), (10)

where MO = σ2Ik + Wᵀ
OWO. This result follows by applying the Bayes formula with zO|t ∼

N (WOt, σ2Ip), t ∼ N (0, Ik) and zO ∼ N (0,WOWᵀ
O + σ2Ip).

First we express the Q-function Q(Q(W, σ2; W̃, σ̃2)):

Q(W, σ2; W̃, σ̃2) = c−
∑n
i=1 |Oi| log(σ2)

2

−
∑n
i=1

(
E[(ziOi

)ᵀziOi
]− 2tr(WOiE[ti(ziOi

)ᵀ]) + tr(Wᵀ
Oi

WOiE[ti(ti)ᵀ])
)

2σ2
, (11)

where c is an absolute constant in terms the model parameters W and σ2.

Thus to evaluate the Q function, we only need (1)E[(ziOi
)ᵀziOi

], (2)E[ti(ziOi
)ᵀ] and (3)E[ti(ti)ᵀ].

computing (1) only needs E[ziOi
|xiOi

] and Cov[ziOi
|xiOi

]. To compute (2) and (3), we use the law of
total expectation similar as in Section 1.1 by first treating ziOi

as known.

Since E[ti|ziOi
] = M−1

Oi
Wᵀ
Oi

ziOi
and Cov[ti|ziOi

] = σ2M−1
Oi

, we have

E[ti|xiOi
] = E[E[ti|ziOi

]|xiOi
]

= E[M−1
Oi

Wᵀ
Oi

ziOi
|xiOi

]

= M−1
Oi

Wᵀ
Oi

E[ziOi
|xiOi

].

Then

E[ti(ziOi
)ᵀ|xiOi

] = E[E[ti(ziOi
)ᵀ|ziOi

]|xiOi
]

= E[E[ti|ziOi
](ziOi

)ᵀ|xiOi
]

= M−1
Oi

Wᵀ
Oi

E[ziOi
(ziOi

)ᵀ|xiOi
]

= M−1
Oi

Wᵀ
Oi

(
Cov[ziOi

|xiOi
] + E[ziOi

|xiOi
]E[(ziOi

)ᵀ|xiOi
]
)

= M−1
Oi

Wᵀ
Oi

Cov[ziOi
|xiOi

] + E[ti|xiOi
]E[(ziOi

)ᵀ|xiOi
].

and

E[ti(ti)ᵀ|xiOi
] = E[E[ti(ti)ᵀ|ziOi

]|xiOi
]

=E[M−1
Oi

Wᵀ
Oi

ziOi
(ziOi

)ᵀWOi
M−1
Oi
|xiOi

] + E[Cov[ti|ziOi
]|xiOi

]

=M−1
Oi

Wᵀ
Oi

E[ziOi
(ziOi

)ᵀ|xiOi
]WOiM

−1
Oi

+ E[σ2M−1
Oi
|xiOi

]

=M−1
Oi

Wᵀ
Oi

(
Cov[ziOi

|xiOi
] + E[ziOi

|xiOi
]E[(ziOi

)ᵀ|xiOi
]
)
WOi

M−1
Oi

+ σ2M−1
Oi

=M−1
Oi

Wᵀ
Oi

Cov[ziOi
|xiOi

]WOi
M−1
Oi

+ E[ti|xiOi
]E[(ti)ᵀ|xiOi

] + σ2M−1
Oi
.

2.2 M-step details

Take the derivative of the Q-function in Eq. (11) with respect to row wᵀ
j and σ2:

∂Q

∂wᵀ
j

=
−1

|Ωj |σ2

∑
i∈Ωj

(−eᵀ
jE[ziOi

tᵀi] + wᵀ
jE[tit

ᵀ
i]),

∂Q

∂σ2
=

1

2σ4

n∑
i=1

(
E[(ziOi

)ᵀziOi
]− 2tr(WOi

E[ti(z
i
Oi

)ᵀ]) + tr(Wᵀ
Oi

WOi
E[tit

ᵀ
i])
)
−
∑n
i=1 |Oi|
2σ2

.

5

Set both to zero to obtain the update for M-step:

ŵᵀ
j =

eᵀ
j

∑
i∈Ωj

E[ziOi
tᵀi]

∑
i∈Ωj

E[tit
ᵀ
i]

−1

,

σ̂2 =
1∑n

i=1 |Oi|

n∑
i=1

(
E[(ziOi

)ᵀziOi
]− 2tr(ŴOiE[ti(z

i
Oi

)ᵀ]) + tr(Ŵᵀ
Oi

ŴOi
E[tit

ᵀ
i])
)
.

2.3 Approximation of the truncated normal moments

The region g−1
j (xij) is an interval: g−1

j (xij) = (aij , bij). We may consider three cases: (1) aij , bij ∈
R; (2) aij ∈ R, bij =∞; (3) aij = −∞, bij ∈ R. The computation for all cases are similar. We take
the first case as an example. First we introduce a lemma for a univariate truncated normal.
Lemma 4. Consider a univariate random variable z ∼ N (µ, σ2). For constants a < b, let α =
(a− µ)/σ and β = (b− µ)/σ. Then the mean and variance of z truncated to the interval (a, b) are:

E(z|a < z ≤ b) = µ+
φ(α)− φ(β)

Φ(β)− Φ(α)
· σ,

Var(z|a < z ≤ b) =

(
1 +

αφ(α)− βφ(β)

Φ(β)− Φ(α)
−
(
φ(α)− φ(β)

Φ(β)− Φ(α)

)2
)
σ2 := h(α, β, σ2).

Notice conditional on known ziOi/{j}, z
i
j is normal with mean µij and variance σ2

ij as

µij = wᵀ
j (σ2Ik + Wᵀ

Oi/{j}WOi/{j})
−1WOi/{j}z

i
Oi/{j}, (12)

σ2
ij = σ2 + σ2(σ2Ik + Wᵀ

Oi/{j}WOi/{j})
−1wᵀ

jwj . (13)

Now define αij =
aij−µij

σij
and βij =

bij−µij

σij
as in Lemma 4.

We first discuss how to estiamte E[ziOi
|xiOi

]. Again using the law of total expectation for each j ∈ Oi
by treating ziOi/{j} as known:

E[zij |xiOi
] = E[E[zij |xij , ziOi/{j}]|x

i
Oi

] = E

[
µij −

φ(αij)− φ(βij)

Φ(βij)− Φ(αij)
σij |xiOi

]
=wᵀ

j (σ2I + Wᵀ
Oi/{j}WOi/{j})

−1WOi/{j}E[ziOi/{j}|x
i
Oi

]− E

[
φ(αij)− φ(βij)

Φ(βij)− Φ(αij)
|xiOi

]
σij .

(14)

Notice E
[
φ(αij)−φ(βij)
Φ(βij)−Φ(αij) |x

i
Oi

]
is the expectation of a nonlinear function of ziOi/{j} with respect to

the conditional distribution ziOi/{j}|x
i
Oi

. Such expectation is intractable, thus we resort to an linear
approximation:

E

[
φ(αij)− φ(βij)

Φ(βij)− Φ(αij)
|xiOi

]
≈
φ(E[αij |xiOi

])− φ(E[βij |xiOi
])

Φ(E[βij |xiOi
])− Φ(E[αij |xiOi

])
. (15)

where E[αij |xiOi
] and E[βij |xiOi

] are linear functions of E[ziOi/{j}|x
i
Oi

].

Combining Eq. (14) and Eq. (15), we approximately express the j-th element of E[ziOi
|xiOi

] as a
nonlinear function (including a linear part) of all other elements of E[ziOi

|xiOi
]. Such relationship

holds for all j ∈ Oi, thus we have a system with |Oi| equations satisfied by the vector E[ziOi
|xiOi

].

We choose to iteratively solve this system. Concretely, to estimate E[ziOi
|xiOi

,W(t+1), (σ2)(t+1)] at
the t+ 1-th EM iteration, we conduct one Jacobi iteration with E[ziOi

|xiOi
,W(t), (σ2)(t)] as initial

value. Surprisingly, one Jacobi iteration works well and more iterations do not bring significant
improvement.

6

Table 1: Imputation error (NRMSE) on synthetic continuous data over 20 repetitions.

Setting LRGC LRGC-Oracle

Low Rank 0.347(.004)) .330(.004)
High Rank 0.517(.011) .433(.007)

The values of µij and σ2
ij in Eq. (12) and Eq. (13) for all j ∈ Oi can be obtained through computing

the diagonals of (σ2I|Oi|+ WOiW
ᵀ
Oi

)−1 and (σ2I|Oi|+ WOiW
ᵀ
Oi

)−1E[ziOi
|xiOi

,W(t), (σ2)(t)],
which makes the computation no more than O(k2|Oi|) for each data point at each EM iteration.

As for diagonals of Cov[ziOi
|xiOi

], denoted as Var[ziOi
|xiOi

] ∈ R|Oi|, using the law of total variance,

Var[zij |xiOi
] = E[Var[zij |ziOi/{j}, x

i
j]|xiOi

]] + Var[E[zij |ziOi/{j}, x
i
j]|xiOi

]. (16)

In the right hand side of Eq. (16), we similarly approximate the first term, an intractable non-linear
integral, as a linear term:

E[Var[zij |ziOi/{j}, x
i
j]|xiOi

] ≈ h(E[αij |xiOi
],E[βij |xiOi

], σ2
ij). (17)

The second term in the right hand side of Eq. (16) is also an intractable nonlinear integral. We
approximate it as 0 and find it works well then linearly approximating it in practice.

Combining Eq. (16) and Eq. (17) for all j ∈ Oi, we express Var[ziOi
|xiOi

] by nonlinear functions
of E[ziOi

|xiOi
]. Thus at the t+ 1-th EM iteration, we first estimate E[ziOi

|xiOi
,W(t+1), (σ2)(t+1)],

then estimate Var[ziOi
|xiOi

] based on that.

2.4 Stopping criteria

We use the relative change of the parameter W as the stopping criterion. Concretely, with W1 from
last iteration and W2 from current iteration, the algorithm stops if ||W1−W2||2F

||W1||2F
is smaller than the

tolerance level.

3 Additional experiments

3.1 LRGC imputation under correct model

For LRGC imputation, we show the random variation of the error (due to error in the estimate of zM)
dominates the estimation error (due to errors in the estimates of the parameters W and σ). To do
so, we compare the imputation error of LRGC imputation with estimated model parameters (LRGC)
and true model parameters (LRGC-Oracle). For ordinal data, imputation requires approximating
truncated normal moments, which may blur the improvement of using true model parameters. Thus
we conduct the comparison on the same continuous synthetic dataset described in Section 4. The
results are reported in Table 1.

Compared to LRGC, LRGC-Oracle only improves slightly (1%) over low rank data. Thus the model
estimation error is dominated by the random variation of the imputation error. For high rank data,
the improvement (8%) is still small compared to the gap between LRGC imputation and LRMC
algorithms (≥ 18%). Also notice the marginal transformation gj(z) = z3 for high rank data is not
Lipschitz, so the theory presented in this paper does not bound the LRGC imputation error.

The result here indicates there is still room to improve LRGC imputation when the marginals are not
Lipschitz. We leave that important work for the future.

3.2 Imputation error versus reliability shape with varying number of ordinal levels

We show in this section the imputation error versus reliability curve shape on ordinal data with many
ordinal levels will match that on continuous data. The results here indicate the prediction power of
LRGC reliability depends on the imputation task. The prediction power is larger for easier imputation

7

Figure 1: Imputation error on the subset of m% most reliable entries, reported over 5 repetitions.

task. In the synthetic experiments, imputing continuous data is harder than imputing ordinal data,
and imputing 1-5 ordinal data is harder than imputing binary data.

We follow the synthetic experiments setting used in Section 4, but vary the number of ordinal levels
to {5, 8, 10}. We adopt high SNR setting for ordinal data and low rank setting for continuous data.
To make the imputation error comparable between continuous data and ordinal data, we measure
the ratio of the imputation error over the m% entries to the imputation error over all missing entries.
Shown in Fig. 1, the curve shape for low rank continuous data is similar to that for ordinal data with
5–8 levels. Also notice, NRMSE for continuous data involves the observed data values while MAE
does not, which may cause small difference in the curve shape.

4 Experimental detail

Our codes are for all experiments are publictly available. 1

Implementation details softImpute is implemented using the R package [3]. GLRM, generalized
low rank model is implemented using the Julia package [9] with quadratic regularization in both
factors. The implementation of GLRM is equivalent to maximum margin matrix factorization (MMMF)
[6] for certain loss functions. MMC is implemented using the Matlab codes provided by the second
author [2]. PPCA is implemented using the R package [7]. MI-PCA is implemented using the R
package [5].

4.1 Synthetic data

To select the best value of the key tuning parameter for each method, we first run some initial
experiments to determine a proper range such that the best value lies strictly inside that range.

For LRGC and PPCA, the only tuning parameter is rank. We find that a range of 6− 14 for continuous
data (both low and high rank), and 3− 11 for ordinal data with 5 levels and binary data (high SNR
and low SNR), suffices to ensure the best value is strictly inside the range. Notice this range is still
quite small, so it is rather easy to search over.

For softImpute, the only tuning parameter is the penalization parameter. As suggested by the
vignette of the R package [3], we first center the rows and columns of the observations using the
function biScale() and then compute λ0 as an upper bound on the penalization parameter using
the function lambda0(). The penalization parameter range is set as the exponentially decaying path
between λ0 and λ0/100 with nine points for all cases:

exp(seq(from=log(lam0),to=log(lam0/100),length=9)).

1https://github.com/yuxuanzhao2295/Matrix-Completion-with-Quantified-Uncertainty-through-Low-Rank-
Gaussian-Copula

8

0.00

0.25

0.50

0.75

1.00

6 7 8 9 10 11 12 13 14
rank

N
R

M
S

E

LRGC

0.00

0.25

0.50

0.75

1.00

6 7 8 9 10 11 12 13 14
rank

N
R

M
S

E

PPCA

0.00

0.25

0.50

0.75

1.00

0−0.6−1.2−1.7−2.3−2.9−3.5−4−4.6
penalization

N
R

M
S

E

softImpute

0.00

0.25

0.50

0.75

1.00

−1.4−1.8−2.2−2.6−3−3.4−3.8−4.2−4.6
penalization

N
R

M
S

E

GLRM−l2

0.00

0.25

0.50

0.75

1.00

3 5 7 9 11 13 15 17 19
stepsize

N
R

M
S

E

MMC

Setting LowRank HighRank

0.00

0.25

0.50

0.75

1.00

3 4 5 6 7 8 9 10 11
rank

M
A

E

LRGC

0.00

0.25

0.50

0.75

1.00

3 4 5 6 7 8 9 10 11
rank

M
A

E

PPCA

0.00

0.25

0.50

0.75

1.00

0−0.6−1.2−1.7−2.3−2.9−3.5−4−4.6
penalization

M
A

E

softImpute

0.00

0.25

0.50

0.75

1.00

−1.4−1.8−2.2−2.6−3−3.4−3.8−4.2−4.6
penalization

M
A

E

GLRM−BvS

0.00

0.25

0.50

0.75

1.00

−1.4−1.8−2.2−2.6−3−3.4−3.8−4.2−4.6
penalization

M
A

E

GLRM−l1

0.0

0.1

0.2

0.3

3 4 5 6 7 8 9 10 11
rank

M
A

E

LRGC

0.0

0.1

0.2

0.3

3 4 5 6 7 8 9 10 11
rank

M
A

E

PPCA

0.0

0.1

0.2

0.3

0−0.6−1.2−1.7−2.3−2.9−3.5−4−4.6
penalization

M
A

E

softImpute

0.0

0.1

0.2

0.3

0−0.6−1.2−1.7−2.3−2.9−3.5−4−4.6
penalization

M
A

E

GLRM−logistic

0.0

0.1

0.2

0.3

0−0.6−1.2−1.7−2.3−2.9−3.5−4−4.6
penalization

M
A

E

GLRM−hinge

Setting HighSNR LowSNR

Figure 2: Imputation error over a key tuning parameter reported over 20 repetitions. The error bars ara
invisible. The penalization parameter λ is plotted over the log-ratios log(α) which satisfies λ = αλ0.

We found increasing the path length from 9 to 20 only slightly improves the performance (up to .01
across all cases) on best performance on test set.

For GLRM, there are two tuning parameters: the rank and the penalization parameter. We set the
rank to be allowed maximum rank 199. We set the range of penalization parameter as we do for
softImpute, with left and right endpoints that depend on the data. For GLRM-`2 on continuous data,
GLRM-BvS and GLRM-`1 on ordinal data, we use λ0/4 as start point and λ0/100 as end point. For all
other GLRM methods, we use λ0 as start point and λ0/100 as end point.

For MMC, following the authors’ suggestions regarding the code, we use the following settings: (1) the
number of gradient steps used to update the Z matrix is 1; (2) the tolerance parameter is set as 0.01;
In addition, we set the initial rank as 50, the increased rank at each step as 5, the maximum rank as
199, the maximum number of iterations as 80 and the Lipshitz constant as 10. Finally, the key tuning
parameter we search over is the constant step size as suggested by the authors of [2]. The range is set
as {3, 5, 7, . . . , 17, 19}.
The complete results are plotted in Fig. 2. Clearly, LRGC and PPCA does not overfit even for high
ranks, across all settings. We also provide the runtime for each method at the best tuning parameter
in Table 2. Notice our current implementation is written entirely in R, and thus further acceleration is
possible.

4.2 MovieLens 1M

The dataset can be found at https://grouplens.org/datasets/movielens/1m/. Similar to the
synthetic experiments, we choose the tuning parameter for each method on a proper range determined
through some initial experiments. For LRGC, we choose the rank from {8, 10, 12, 14} to be 10. With
λ0 calculated as for the synthetic data, for softImpute, we select the penalization parameter from
{λ0

2 ,
λ0

4 ,
λ0

6 ,
λ0

8 } to be λ0

4 ; for GLRM-BvS, we set the rank as 200 and select the penalization parameter
from {λ0

10 ,
λ0

12 ,
λ0

14 ,
λ0

16 ,
λ0

18 } to be λ0

14 .

We report detailed results in Table 3. We see that all the models perform quite similarly on this large
dataset. In other words, the gain from carefully modeling the marginal distributions (using a LRGC)
is insignificant. This phenomenon is perhaps unsurprising given that sufficiently large data matrices
from a large class of generative models are approximately low rank [8].

9

Table 2: Run time (in seconds) for synthetic data at the best tuning parameter; mean (variance)
reported over 20 repetitions.

Continuous LRGC PPCA softImpute GLRM-`2 MMC

Low Rank 5.7(0.2) 2.9(0.4) 0.7(0.0) 3.3(1.0) 457.9(10.4)
High Rank 6.5(0.3) 0.3(0.1) 1.1(0.2) 7.6(2.0) 554.4(32.0)

1-5 ordinal LRGC PPCA softImpute GLRM-BvS GLRM-`1
High SNR 27.2(0.7) 1.0(0.2) 1.2(0.1) 19.2(1.5) 17.4(1.2)
Low SNR 19.8(0.8) 0.3(0.1) 1.3(0.0) 17.4(1.5) 17.0(1.4)

Binary LRGC PPCA softImpute GLRM-hinge GLRM-logistic

High SNR 66.7(3.0) 0.9(0.5) 1.4(0.3) 3.8(0.3) 4.4(0.6)
Low SNR 52.0(4.4) 0.3(0.1) 1.5(0.2) 3.4(0.4) 3.3(0.4)

Table 3: Imputation error for MovieLens 1M over 5 repetition. Run time is measures in minutes.

Algorithm MAE RMSE Run time

LRGC 0.619(.002) 0.910(.003) 38(1)
softImpute 0.629(.003) 0.905(.003) 93(2)
GLRM-BvS 0.633(.002) 0.921(.002) 25(1)

References
[1] Xin Bing, Yang Ning, and Yaosheng Xu. Adaptive estimation of multivariate regression with

hidden variables. arXiv preprint arXiv:2003.13844, 2020.

[2] Ravi Sastry Ganti, Laura Balzano, and Rebecca Willett. Matrix completion under monotonic
single index models. In Advances in Neural Information Processing Systems, pages 1873–1881,
2015.

[3] T Hastie and R Mazumder. softimpute: Matrix completion via iterative soft-thresholded svd. R
package version, 1, 2015.

[4] Daniel Hsu, Sham Kakade, Tong Zhang, et al. A tail inequality for quadratic forms of subgaus-
sian random vectors. Electronic Communications in Probability, 17, 2012.

[5] Julie Josse, François Husson, et al. missmda: a package for handling missing values in
multivariate data analysis. Journal of Statistical Software, 70(1):1–31, 2016.

[6] Nathan Srebro, Jason Rennie, and Tommi S Jaakkola. Maximum-margin matrix factorization.
In Advances in Neural Information Processing Systems, pages 1329–1336, 2005.

[7] Wolfram Stacklies, Henning Redestig, Matthias Scholz, Dirk Walther, and Joachim Selbig.
pcamethods—a bioconductor package providing pca methods for incomplete data. Bioinformat-
ics, 23(9):1164–1167, 2007.

[8] Madeleine Udell and Alex Townsend. Why are big data matrices approximately low rank?
SIAM Journal on Mathematics of Data Science (SIMODS), 1(1):144–160, 2019.

[9] Madeleine Udell, Corinne Horn, Reza Zadeh, Stephen Boyd, et al. Generalized low rank models.
Foundations and Trends R© in Machine Learning, 9(1):1–118, 2016.

[10] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.

10

