Reviewer 1

- > "The results (Table 2) show similar accuracies for all attention models."
- Note that the VQA results in Table 2 with continuous attention use fewer basis functions than discrete regions. Although
- 4 the accuracies are similar, the unimodal attention suggests better interpretability (as noted by R2 and R3).
- 5 > "It would help to have a short algorithm describing how to implement the forward and backward passes efficiently."
- 6 Good idea, we will add this to the camera-ready version.
- 7 > "Line 134: "a condition (...) is q being strongly convex". Is this a necessary or a sufficient condition?"
- 8 Sufficient; we will clarify and follow the suggestions (move the beta-escort definition to the main text and fix typos).

9 Reviewer 2

- Thanks for the positive comments and for pointing out the work of Cordonnier et al. (2020). We will add a citation.
- '' > "Have you experimented with other ways such as linear interpolation (1D) or bilinear (2D)?"
- 12 We chose ridge regression as it enables a closed-form solution expressed linearly in terms of the basis functions (Eq. 15)
- and matrix G can be precomputed, leading to a fast implementation. Note that the proximity of tokens/pixels is taken
- into account (the basis vectors $\psi(t_\ell)$ forming F are located at each token/pixel). We haven't tried linear interpolation,
- but this is an interesting suggestion (although it might make attention computation more challenging).
- > "Does it remove the need for additive positional encoding?"
- 17 Very good point; this is indeed one advantage of our approach by converting the input to a function on a predefined
- continuous space, it encodes "positions" implicitly in a natural way, not requiring explicit positional encoding.

19 Reviewer 3

- 20 > "The proposed method's application on VQA is limited to grid feature."
- 21 Actually, our method can handle BUTD features too: it suffices to let the t_{ℓ} coordinates in the multivariate regression
- 22 (Eq. 15) be placed on these regions instead of on a grid. However, we opted not to rely on an external object detector,
- in order to check if continuous attention has the ability to detect relevant objects on its own (see ellipses in Fig. 3).
- 24 However, for a high-level vision system, combining our method with BUTD is an interesting idea.
- 25 > "Why model text as continuous inputs? Text are naturally discrete tokens."
- 26 We agree text is fundamentally a discrete sequence of symbols. However, when processing long documents or attending
- to snippets, modelling it as a continuous signal may be advantageous, due to smoothness and independence of length.
- 28 > "The proposed method assumes attention probability is single mode. Is this a reasonable assumption?"
- 29 Good point. Unimodal attention is useful to focus on a single object or text segment of varying size, avoiding
- 30 "fragmenting" attention probability; however, in some applications, multimodal attention may be preferable. Our method
- can be extended to multiple modes via a suitable choice of $\phi(t)$ (e.g., a mixture of Gaussians), but this will require
- numeric integration for attention computation. A simpler strategy (see lines 258-260) is to use multi-head or sequential
- 33 attention.
- > "Can it be applied to deep transformer models with multi-head attention?"
- 35 Great question. We have ongoing work applying this to transformer models (but out of scope for this paper). Briefly,
- the computation cost is O(N) for each attention head (against O(L) in the discrete case) where $N \ll L$ is the number
- of basis functions, plus an extra O(NL) cost in the first layer to perform the multivariate regression on L tokens.
- 38 > "Is there any intuition (...) how the continuous attention can improve the accuracy of downstream tasks?"
- 39 In general, continuous attention can make it easier to attend to large spaces with different resolution levels, with a fixed
- 40 number of Gaussian RBFs with several variances. It can also lead to more focused attention (the VQA experiments
- 41 suggest this) and better control of time steps with continuous data streams (e.g., irregularly sampled time series). We
- 42 haven't explored all these directions, but we believe these are promising areas of future research.

Reviewer 4

44 Please check our answers to R1 and R3 above (the answer is yes to positional encodings).