
General response. Reviewers give great feedback on improving the structure of this paper under space constraints, and1

we plan to reorganize our paper: (1) Move non-critical theorems and optimization techniques to appendix and leave2

space for discussions and proof sketches. (2) Include a small running example (as in Appendix A) of SA-MDP. (3)3

Rephrase any claims that seem too strong, add additional reference and discuss more connections to previous works.4

Table A: Training time
Method/Model vanilla SA (PGD/SGLD) SA (Conv)
DDPG (Reacher) 5.21h 7.10h 6.75h
DDPG (Ant) 6.08h 8.16h 7.70h
PPO (Hopper) 0.57h 1.17h 1.38h
PPO (Walker) 0.61h 1.56h 1.80h
PPO (Humanoid) 4.63h 11.0h 20.3h
DQN (RoadRunner) 15.2h 38.6h 46.5h
DQN (Freeway) 14.9h 44.7h 57.7h

(4) Use more plots (like Fig. 11 and 12) (5) Fix typos, format and refine notations.5

R1. Paper too long We will reorganize our paper (see general response). Std.6

across training runs In Fig. 11 and 12 (appendix), the rewards are collected from7

30 and 11 training runs for PPO and DDPG, respectively. In Table B, we train8

DQN and SA-DQN >5 times. The red lines in bars represent median rewards.9

We improve reward under attacks consistently across runs. Adversary bounds We use the `∞ norm based adversary10

bounds as in many works on attacking Deep RL [20,24,29,42,69]. We vary ε bounds in Fig. 9. Critic/Random attacks11

improve performance The small “improvement” in random attack is just by chance (Fig. 9 is more clear; yellow lines12

fluctuate). Critic attack sometimes improves PPO performance (green lines of Fig. 9). It is not a bug. In PPO, the critic13

is a value function V (s) rather than Q(s, a), thus critic attack is applied differently (appendix L676-681): the “attack”14

searchers a state with the worst value in B(s), and the agent takes the action for the worst case. It is a more conservative15

action which sometimes prevents the agent from failing and improves performance. Weak adversaries implemented16

Our proposed robust Sarsa (RS) and MAD adversaries are not weak. From Table 1 and 7, our two new attacks are17

considerably stronger than the commonly used critic attack. 2nd-order optimization expensive We avoid 2nd order18

optimization (L180-181). SGLD (L188-196) is a first order method and only requires gradients. The convex relaxation19

method (L197-207) first produces a relaxed counterpart of the underlying neural network, then uses gradient descent to20

optimize it. Assumption 2 strange We need this assumption otherwise the adversary can arbitrarily change state and21

make the problem trivial. Practically it is a norm constraint as in [20,24,29,42,69]. Explain Thm 5 and 6 Following22

Thm 4 we cannot find an Markovian optimal policy for SA-MDP. Instead, Thm 5 upper bounds the performance loss by23

regularizing total variation (TV) distance. Thm 6 gives TV distance for DDPG. Thm 3 proof See appendix L616-620.24

Vanilla DQN performs comparably Vanilla DQN performs comparably only under clean evaluation; it performs poorly25

under attacks. For Pong, the reward is the lowest possible reward (-21). Table 2 structure and more results Full results26

for each attack are in appendix Table 7 to save space. Runtime assessment See Table A. Ablation study for perturbation27

budget In Fig. 9, we analyze the agent performance over different perturbation budgets ε. Limitations See reply to R2.28

R2. We will reorganize our paper as suggested, detailed in our general response. Limitations It is possible to construct29

an MDP that every nearby state requires a vastly different action, so a typical robustness prior does not hold. In the30

classification setting, a similar situation is to learn a parity function f(x) = x1 ⊕ x2 · · · ⊕ xn (⊕ is XOR) where31

robustness is impossible. For most realistic problems it’s reasonable to assume that a robustness/smoothness prior is32

valid and helpful. Sum instead of max max represents the strongest adversary; sum or expectation over B(s) is similar33

to adding random noise with certain distribution. This is a weaker adversary (like random attack in Table 1 and 7).34

R3. Related attacks We will enhance the related work section as suggested. Existing attacks rely on the critic learned35

with the policy. Our MAD and RS attacks do not depend on this critic as using it can be suboptimal (L241-246).36

Why RS attack better than MAD MAD is myopic and maximizes one step difference without reducing cumulative37

rewards. RS attack learns a robust action-value function, where by definition gives a worst action to reduce cumulative38

rewards. Safeness specifications We conduct additional experiments on Ant and Humanoid and define the safe rate as39

the percentage that agent does not fall over 50 episodes. Vanilla DDPG (PPO) achieves 56% (2%) safe rate without40

attacks and 0% (0%) under attack, while SA-DDPG (SA-PPO) achieves 100% (68%) safe rate without attacks and 100%41

(34%) under attack for Ant (Humanoid, respectively). Partial observability In PO-MDPs, the observation is statistically42

related to groundtruth state. In SA-MDPs, the observation is an adversarially perturbed state: the adversary is assumed43

to know the weakness of the policy and can supply the worst-case state, which cannot be directly characterized as44

conditional observation probabilities in PO-MDP. SAC and TD3 We conduct experiments and find SAC policies are45

also not robust. SA-SAC significantly improves robustness (Table C). We leave model based methods as future work.46

R4. Related work We will discuss the connection to smoothing in supervised learning and zero-sum game. We already47

cited Zhang et al. as [75] and will cite Miyato et al. For RL, not all techniques from supervised learning can be applied48

directly (line 32-36), so our theory is still valuable. Tighten constant Thank you for pointing this out. One 1/(1− γ)49

factor in our bound is to cancel out a (1− γ) in the definition of dπs0 in (20) in the appendix. Another 1/(1− γ) factor50

is from the sum of a geometric sequence. We cannot see an obvious way to tighten it but will keep thinking about it.51
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Table B: Box plot to show DQN performance with and without attacks across
training runs. We train each setting at least 5 times (DQN training is expensive).

Env. ε Method Natural
Reward

Best Attack
Reward

SAC 3494 ± 3 808 ± 42Hopper .075 SA-SAC 3553 ± 7 1478 ± 220
SAC 4371 ± 39 1725 ± 1551Walker .05 SA-SAC 4126± 80 3854 ± 109
SAC 5236 ± 628 -212 ± 348Ant .2 SA-SAC 4728 ± 603 1940 ± 1612

Table C: The median model perfor-
mance of 11 training runs for SAC


