
Appendix
• Readers who are interested in SA-MDP can find an example of SA-MDP in Section A and complete
proofs in Section B.

• Readers who are interested in adversarial attacks can find more details about our new attacks and
existing attacks in Section D. Especially, we discussed how a robust critic can help in attacking RL,
and show experiments on the improvements gained by the robustness objective during attack.

• Readers who want to know more details of optimization techniques to solve our state-adversarial
robust regularizers can refer to Section C, including more background on convex relaxations of neural
networks in Section C.1.

• We provide detailed algorithm and hyperparameters for SA-PPO in Section F. We provide details
for SA-DDPG in Section G. We provide details for SA-DQN in Section H.

• We provide more empirical results in Section I. To demonstrate the convergence of our algorithm,
we repeat each experiment at least 15 times and plot the convergence of rewards during multiple
runs. We found that for some environments (like Humanoid) we can consistently improve baseline
performance. We also evaluate some settings under multiple perturbation strength ε.

A An example of SA-MDP

We first show a simple environment and solve it under different settings of MDP and SA-MDP.
The environment has three states S = {S1, S2, S3} and 2 actions A = {A1, A2}. The transition
probabilities and rewards are defined as below (unmentioned probabilities and rewards are 0):

Pr(s′ = S1|s = S1, a = A1) = 1.0

Pr(s′ = S2|s = S1, a = A2) = 1.0

Pr(s′ = S2|s = S2, a = A2) = 1.0

Pr(s′ = S3|s = S2, a = A1) = 1.0

Pr(s′ = S1|s = S3, a = A2) = 1.0

Pr(s′ = S2|s = S3, a = A1) = 1.0

R(s = S1, a = A2, s
′ = S2) = 1.0

R(s = S2, a = A1, s
′ = S2) = 1.0

R(s = S3, a = A1, s
′ = S3) = 1.0

The environment is illustrated in Figure 5. For the power of adversary, we allow ν to perturb one

S1

S2S3

S1 action 1
Reward 0

S1 action 2
Reward 1

S2 action 1
Reward 1

S2 action 2
Reward 0

S3 action 1
Reward 1

S3 action 2
Reward 0

Figure 5: A simple 3-state toy environment.

state to any other two neighbouring states:

Bν(S1) = Bν(S2) = Bν(S3) = {S1, S2, S3}

15

Now we evaluate various policies for MDP and SA-MDP for this environment. We use γ = 0.99 as
the discount factor. A stationary and Markovian policy in this environment can be described by 3
parameters p11, p21, p31 where pij ∈ [0, 1] denotes the probability Pr(a = Aj |s = Si). We denote
the value function as V for MDP and Ṽ for SA-MDP.

• Optimal Policy for MDP. For a regular MDP, the optimal solution is p11 = 0, p21 = 1,
p31 = 1. We take A2 to receive reward and leave S1, and then keep doing A1 in S2 and S3.
The values for each state are V (S1) = V (S2) = V (S3) = 1

1−γ = 100, which is optimal.
However, this policy obtains Ṽ (S1) = Ṽ (S2) = Ṽ (S3) = 0 for SA-MDP, because we can
set ν(S1) = S2, ν(S2) = S1, ν(S3) = S1 and consequentially we always take the wrong
action receiving 0 reward.

• A Stochastic Policy for MDP and SA-MDP. We consider a stochastic policy where p11 =
p21 = p31 = 0.5. Under this policy, we randomly stay or move in each state, and has a
50% probability of receiving a reward. The adversary ν has no power because π is the same
for all states. In this situation, V (S1) = Ṽ (S1) = V (S2) = Ṽ (S2) = V (S3) = Ṽ (S3) =

0.5
1−0.99 = 50 for both MDP and SA-MDP. This can also be seen as an extreme case of
Theorem 5, where the policy does not change under adversary in all states, so there is no
performance loss in SA-MDP.

• Deterministic Policies for SA-MDP. Now we consider all 23 = 8 possible deterministic
policies for SA-MDP. Note that if for any state Si we have pi1 = 0 and another state Sj we
have pj1 = 1, we always have Ṽ (S1) = Ṽ (S2) = Ṽ (S3) = 0. This is because we can set
ν(S1) = Sj , ν(S2) = Si and ν(S3) = Si and always receive a 0 reward. Thus the only two
possible other policies are p11 = p21 = p31 = 0 and p11 = p21 = p31 = 1, respectively.
For p11 = p21 = p31 = 1 we have Ṽ (S1) = 0, Ṽ (S2) = Ṽ (S3) = 100 as we always take
A1 and never transit to other states; for p11 = p21 = p31 = 0, we circulate through all
three states and only receive a reward when we leave A1. We have Ṽ (S1) = 1

1−γ3 ≈ 33.67,

Ṽ (S2) = γ2

1−γ3 ≈ 33.00 and Ṽ (S3) = γ
1−γ3 ≈ 33.33.

Figure 6, 7, 8 give the graphs of Ṽ (S1), Ṽ (S2) and Ṽ (S3) under three different settings of p11. The
figures are generated using Algorithm 1.

0.0 0.5 1.0
p21

0.0

0.2

0.4

0.6

0.8

1.0

p 3
1

V(S1)

0.0 0.5 1.0
p21

0.0

0.2

0.4

0.6

0.8

1.0

p 3
1

V(S2)

0.0 0.5 1.0
p21

0.0

0.2

0.4

0.6

0.8

1.0

p 3
1

V(S3)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Figure 6: Value functions for SA-MDP when p11 = 0, with p21 ∈ [0, 1], p31 ∈ [0, 1]

0.0 0.5 1.0
p21

0.0

0.2

0.4

0.6

0.8

1.0

p 3
1

V(S1)

0.0 0.5 1.0
p21

0.0

0.2

0.4

0.6

0.8

1.0

p 3
1

V(S2)

0.0 0.5 1.0
p21

0.0

0.2

0.4

0.6

0.8

1.0

p 3
1

V(S3)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Figure 7: Value functions for SA-MDP when p11 = 0.5, with p21 ∈ [0, 1], p31 ∈ [0, 1]

16

0.0 0.5 1.0
p21

0.0

0.2

0.4

0.6

0.8

1.0

p 3
1

V(S1)

0.0 0.5 1.0
p21

0.0

0.2

0.4

0.6

0.8

1.0

p 3
1

V(S2)

0.0 0.5 1.0
p21

0.0

0.2

0.4

0.6

0.8

1.0

p 3
1

V(S3)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Figure 8: Value functions for SA-MDP when p11 = 1.0, with p21 ∈ [0, 1], p31 ∈ [0, 1]

B Proofs for State-Adversarial Markov Decision Process

Theorem 1 (Bellman equations for fixed π and ν). Given π : S → P(A) and ν : S → S , we have

Ṽπ◦ν(s) =
∑
a∈A

π(a|ν(s))
∑
s′∈S

p(s′|s, a)
[
R(s, a, s′) + γṼπ◦ν(s′)

]
Q̃π◦ν(s, a) =

∑
s′∈S

p(s′|s, a)

[
R(s, a, s′) + γ

∑
a′∈A

π(a′|ν(s′))Q̃π◦ν(s′, a′)

]
.

Proof. Based on the definition of Ṽπ◦ν(s):

Ṽπ◦ν(s) = Eπ◦ν

[∞∑
k=0

γkrt+k+1|st = s

]

= Eπ◦ν

[
rt+1 + γ

∞∑
k=0

γkrt+k+2|st = s

]

=
∑
a∈A

π(a|ν(s))
∑
s′∈S

p(s′|s, a)

[
rt+1 + γEπ◦ν

[∞∑
k=0

γkrt+k+2|st+1 = s′

]]
=
∑
a∈A

π(a|ν(s))
∑
s′∈S

p(s′|s, a)
[
R(s, a, s′) + γṼπ◦ν(s′)

]
(10)

The recursion for Q̃π◦ν(s, a) can be derived similarly. Additionally, we note the following useful
relationship between Ṽπ◦ν(s) and Q̃π◦ν(s, a):

Ṽπ◦ν(s) =
∑
a∈A

π(a|ν(s))Q̃π◦ν(s, a) (11)

Before starting to prove Theorem 2, first we show that finding the optimal adversary ν∗ given a fixed
π for a SA-MDP can be cast into the problem of finding an optimal policy in a regular MDP.
Lemma 1 (Equivalence of finding optimal adversary in SA-MDP and finding optimal policy in
MDP). Given an SA-MDP M = (S,A, B,R, p, γ) and a fixed policy π, there exists a MDP
M̂ = (S, Â, R̂, p̂, γ) such that the optimal policy of M̂ is the optimal adversary ν for SA-MDP given
the fixed π.

Proof. For an SA-MDP M = (S,A, B,R, p, γ) and a fixed policy π, we define a regular MDP
M̂ = (S, Â, R̂, p̂, γ) such that Â = S, and ν is the policy for M̂ . To prove this lemma, we use a
slight extension of a stochastic adversary, where ν : S → P(Â). At each state s, our policy ν gives a
probability distribution ν(·|s) indicating that we perturb a state s to ŝ with probability ν(ŝ|s) in the
SA-MDP M .

For M̂ , the reward function is defined as:

R̂(s, â, s′) =

{
−

∑
a∈A π(a|â)p(s′|s,a)R(s,a,s′)∑

a∈A π(a|â)p(s′|s,a) for s, s′ ∈ S and â ∈ B(s) ⊂ Â = S,
C for s, s′ ∈ S and â /∈ B(s).

(12)

17

The transition probability p̂ is defined as

p̂(s′|s, â) =
∑
a∈A

π(a|â)p(s′|s, a) for s, s′ ∈ S and â ∈ Â = S.

For the case of â ∈ B(s), the above reward function definition is based on the intuition that when the
agent receives a reward r at a time step given s, a, s′, the adversary’s reward is r̂ = −r. Note that
we consider r as a random variable given s, a, s′. To give the distribution of rewards for adversary
p(r̂|s, â, s′), we follow the conditional probability which marginalizes π:

p(r̂|s, â, s′) =
p(r̂, s′|s, â)

p(s′|s, â)

=

∑
a p(r̂, s

′|a, s, â)π(a|s, â)∑
a p(s

′|a, s, â)π(a|s, â)

=

∑
a p(r̂, s

′|a, s)π(a|â)∑
a p(s

′|a, s)π(a|â)

=

∑
a p(r̂|s′, a, s)p(s′|a, s)π(a|â)∑

a p(s
′|a, s)π(a|â)

(13)

Considering that R(s, a, s′) := E[r|s′, a, s] = −E[r̂|s′, a, s], and taking an expectation in Eq. (13)
over r̂ yield the first case in (12):

R̂(s, â, s′) := E[r̂|s, â, s′]

=
∑
r̂

r̂

∑
a p(r̂|s′, a, s)p(s′|a, s)π(a|â)∑

a p(s
′|a, s)π(a|â)

=

∑
a [
∑
r̂ r̂p(r̂|s′, a, s)] p(s′|a, s)π(a|â)∑

a p(s
′|a, s)π(a|â)

=

∑
a E[r̂|s′, a, s]p(s′|a, s)π(a|â)∑

a p(s
′|a, s)π(a|â)

= −
∑
aR(s, a, s′)p(s′|a, s)π(a|â)∑

a p(s
′|a, s)π(a|â)

(14)

The reward for adversary’s actions outside B(s) is a constant C such that

C < min
{
−M,

γ

(1− γ)
M − 1

(1− γ)
M
}
,

where M := mins,a,s′ R(s, a, s′) and M := maxs,a,s′ R(s, a, s′). We have for ∀(s, â, s′),

C < R̂(s, â, s′) ≤ −M,

and for ∀â ∈ B(s), according to Eq. (14),

−M ≤ R̂(s, â, s′) ≤ −M.

According basic properties of MDP [53, 68], we know that the M̂ has an optimal policy ν∗, which
satisfies V̂π◦ν∗(s) ≥ V̂π◦ν(s) for ∀s, ∀ν. We also know that this ν∗ is deterministic and assigns a
unit mass probability for the optimal action of each s.

18

We define N := {ν : ∀s, ∃â ∈ B(s), ν(â|s) = 1} which restricts the adversary from taking an
action not in B(s), and claim that ν∗ ∈ N. If this is not true for a state s0, we have

V̂π◦ν∗(s
0) = Ep̂,ν∗

[∞∑
k=0

γkr̂t+k+1|st = s0
]

= C + Ep̂,ν∗
[∞∑
k=1

γkr̂t+k+1|st = s0

]
≤ C − γ

1− γ
M

< − 1

1− γ
M

≤ Ep̂,ν′
[∞∑
k=0

γkr̂t+k+1|st = s0
]

= V̂π◦ν′(s
0),

where the second equality holds because ν∗ is deterministic, and the last inequality holds for any
ν′ ∈ N. This contradicts the assumption that ν∗ is optimal. So from now on in this proof we only
study policies in N.

For any policy ν ∈ N :

V̂π◦ν(s) = Ep̂,ν
[∞∑
k=0

γkr̂t+k+1|st = s
]

= Ep̂,ν

[
r̂t+1 + γ

∞∑
k=0

γkr̂t+k+2|st = s

]

=
∑
â∈S

ν(â|s)
∑
s′∈S

p̂(s′|s, â)

[
R̂(s, â, s′) + γEp̂,ν

[∞∑
k=0

γkr̂t+k+2|st+1 = s′

]]
=
∑
â∈S

ν(â|s)
∑
s′∈S

p̂(s′|s, â)
[
R̂(s, â, s′) + γV̂π◦ν(s′)

]
(15)

Note that all policies in N are deterministic and this class of policies consists ν∗. Also, N is consistent
with the class of policies studied in Theorem 1. We denote the deterministic action â chosen by a
ν ∈ N at s as ν(s). Then for ∀ν ∈ N, we have

V̂π◦ν(s) =
∑
s′∈S

p̂(s′|s, ν(s))
[
R̂(s, â, s′) + γV̂π◦ν(s′)

]
=
∑
s′∈S

∑
a∈A

π(a|â)p(s′|s, a)

[
−
∑
a∈A π(a|â)p(s′|s, a)R(s, a, s′)∑

a∈A π(a|â)p(s′|s, a)
+ γV̂π◦ν(s′)

]
=
∑
a∈A

π(a|ν(s))
∑
s′∈S

p(s′|s, a)
[
−R(s, a, s′) + γV̂π◦ν(s′)

]
, (16)

or

−V̂π◦ν(s) =
∑
a∈A

π(a|ν(s))
∑
s′∈S

p(s′|s, a)
[
R(s, a, s′) + γ(−V̂π◦ν(s′))

]
. (17)

Comparing (17) and (10), we know that −V̂π◦ν = Ṽπ◦ν for any ν ∈ N. The optimal value function
V̂π◦ν∗ satisfies:

V̂π◦ν∗(s) = max
â∈B(s)

∑
s′∈S

p̂(s′|s, â)
[
R̂(s, â, s′) + γV̂π◦ν(s′)

]
= max
sν∈B(s)

∑
a∈A

π(a|sν)
∑
s′∈S

p(s′|s, a)
[
−R(s, a, s′) + γV̂π◦ν∗(s

′)
]
, (18)

19

where we denote the action â taken at s as sν . So for ν∗, since −V̂π◦ν∗ = Ṽπ◦ν∗ , we have

Ṽπ◦ν∗(s) = min
â∈B(s)

∑
a∈A

π(a|â)
∑
s′∈S

p(s′|s, a)
[
R(s, a, s′) + γṼπ◦ν∗(s

′)
]
, (19)

and Ṽπ◦ν∗(s) ≤ Ṽπ◦ν(s) for ∀s, ∀ν ∈ N. Hence ν∗ is also the optimal ν for Ṽπ◦ν .

Lemma 1 gives many good properties for the optimal adversary. First, an optimal adversary always
exists under the regularity conditions where an optimal policy exists for a MDP. Second, we do not
need to consider stochastic adversaries as there always exists an optimal deterministic adversary.
Additionally, showing Bellman contraction for finding the optimal adversary can be done similarly as
in obtaining the optimal policy in a regular MDP, as shown in the proof of Theorem 2.

Theorem 2 (Bellman contraction for optimal adversary). Define Bellman operator L : R|S| → R|S|,

(LṼ)(s) = min
sν∈B(s)

∑
a∈A

π(a|sν)
∑
s′∈S

p(s′|s, a)
[
R(s, a, s′) + γṼ (s′)

]
. (20)

The Bellman equation for optimal adversary ν∗ can then be written as: Ṽπ◦ν∗ = LṼπ◦ν∗ . Addition-
ally, L is a contraction that converges to Ṽπ◦ν∗ .

Proof. Based on Lemma 1, this proof is technically similar to the proof of “optimal Bellman equation”
in regular MDPs, where max over π is replaced by min over ν. By the definition of Ṽπ◦ν∗(s),

Ṽπ◦ν∗(s) = min
ν
Ṽπ◦ν(s)

= min
ν

Eπ◦ν

[∞∑
k=0

γkrt+k+1|st = s

]

= min
ν

Eπ◦ν

[
rt+1 + γ

∞∑
k=0

γkrt+k+2|st = s

]

= min
ν

∑
a∈A

π(a|ν(s))
∑
s′∈S

p(s′|s, a)

[
rt+1 + γEπ◦ν

[∞∑
k=0

γkrt+k+2|st+1 = s′

]]

= min
sν∈Bν(s)

∑
a∈A

π(a|sν)
∑
s′∈S

p(s′|s, a)

[
rt+1 + γmin

ν
Eπ◦ν

[∞∑
k=0

γkrt+k+2|st+1 = s′

]]
= min
sν∈Bν(s)

∑
a∈A

π(a|sν)
∑
s′∈S

p(s′|s, a)
[
rt+1 + γṼπ◦ν∗(s

′)
]

This is the Bellman equation for the optimal adversary ν∗; ν∗ is a fixed point of the Bellman operator
L .

Now we show the Bellman operator is a contraction. We have, if L Ṽπ◦ν1(s) ≥ L Ṽπ◦ν2(s),

L Ṽπ◦ν1(s)−L Ṽπ◦ν2(s)

≤ max
sν∈Bν(s)

{∑
a∈A

π(a|sν)
∑
s′∈S

p(s′|s, a)
[
R(s, a, s′) + γṼπ◦ν1(s′)

]
−
∑
a∈A

π(a|sν)
∑
s′∈S

p(s′|s, a)
[
R(s, a, s′) + γṼπ◦ν2(s′)

]}
= γ max

sν∈Bν(s)

∑
a∈A

π(a|sν)
∑
s′∈S

p(s′|s, a)[Ṽπ◦ν1(s′)− Ṽπ◦ν2(s′)]

≤ γ max
sν∈Bν(s)

∑
a∈A

π(a|sν)
∑
s′∈S

p(s′|s, a)‖Ṽπ◦ν1 − Ṽπ◦ν2‖∞

= γ‖Ṽπ◦ν1 − Ṽπ◦ν2‖∞
The first inequality comes from the fact that

min
x1

f(x1)−min
x2

g(x2) ≤ f(x∗2)− g(x∗2) ≤ max
x

(f(x)− g(x)),

20

where x∗2 = arg minx2
g(x2). Similarly, we can prove L Ṽπ◦ν2(s) − L Ṽπ◦ν1(s) ≤ ‖Ṽπ◦ν1 −

Ṽπ◦ν2‖∞ if L Ṽπ◦ν2(s) > L Ṽπ◦ν1(s). Hence

‖L Ṽπ◦ν1(s)−L Ṽπ◦ν2(s)‖∞ = max
s
|L Ṽπ◦ν1(s)−L Ṽπ◦ν2(s)| ≤ γ‖Ṽπ◦ν1 − Ṽπ◦ν2‖∞.

Then according to the Banach fixed-point theorem, since 0 < γ < 1, Ṽπ◦ν converges to a unique
fixed point, and this fixed point is Ṽπ◦ν∗ .

Algorithm 1 Policy Evaluation for an SA-MDP (S,A, B,R, p, γ)

Input: Policy π, convergence threshold ε
Output: Values for policy π, detnoted as Ṽπ◦ν∗(s)

Initialize array V (s)← 0 for all s ∈ S
repeat

∆← 0
for all s ∈ S do
v ←∞, v0 ← V (s)
for all sν ∈ B(s) do
v′ ←

∑
a∈A π(a|sν)

∑
s′∈S p(s

′|s, a) · [R(s, a, s′) + γV (s′)]
v ← min(v, v′)

end for
V (s)← v
∆← max(∆, |v0 − V (s)|)

end for
until ∆ < ε
Ṽπ◦ν∗(s)← V (s)

A direct consequence of Theorem 2 is the policy evaluation algorithm (Algorithm 1) for SA-MDP,
which obtains the values for each state under optimal adversary for a fixed policy π. For both Lemma 1
and Theorem 2, we only consider a fixed policy π, and in this setting finding an optimal adversary is
not difficult. However, finding an optimal π under the optimal adversary is more challenging, as we
can see in Section A, given the white-box attack setting where the adversary knows π and can choose
optimal perturbations accordingly, an optimal policy for MDP can only receive zero rewards under
optimal adversary. We now show two intriguing properties for optimal policies in SA-MDP:

Theorem 3. There exists an SA-MDP and some stochastic policy π ∈ ΠMR such that we cannot find
a better deterministic policy π′ ∈ ΠMD satisfying Ṽπ′◦ν∗(π′)(s) ≥ Ṽπ◦ν∗(π)(s) for all s ∈ S.

Proof. Proof by giving a counter example that no deterministic policy can be better than a random
policy. The SA-MDP example in section A provided such a counter example: all 8 possible
deterministic policies are no better than the stochastic policy p11 = p21 = p31 = 0.5.

Theorem 4. Under the optimal ν∗, an optimal policy π∗ ∈ ΠMR does not always exist for SA-MDP.

Proof. We will show that the SA-MDP example in section A does not have an optimal policy. First, for
π1 where p11 = p21 = p31 = 1 we have Ṽπ1◦ν∗(π1)(S1) = 0, Ṽπ1◦ν∗(π1)(S2) = Ṽπ1◦ν∗(π1)(S3) =
100. This policy is not an optimal policy since we have π2 where p11 = p21 = p31 = 0.5 that
can achieve Ṽπ2◦ν∗(π2)(S1) = Ṽπ2◦ν∗(π2)(S2) = Ṽπ2◦ν∗(π2)(S3) = 50 and Ṽπ2◦ν∗(π2)(S1) >

Ṽπ1◦ν∗(π1)(S1).

An optimal policy π, if exists, must be better than π1 and have Ṽπ◦ν∗(π)(S1) > 0, Vπ◦ν∗(π)(S2) =
Vπ◦ν∗(π)(S3) = 100. In order to achieve Vπ◦ν∗(π)(S2) = Vπ◦ν∗(π)(S3) = 100, we must set
p21 = p31 = 1 since it is the only possible way to start from S2 and S3 and receive +1 reward for
every step. We can still change p11 to probabilities other than 1, however if p11 < 1 the adversary can
set ν(S2) = ν(S3) = S1 and reduce Vπ◦ν∗(π)(S2) and Vπ◦ν∗(π)(S3). Thus, no policy better than π1

exists, and since π1 is not an optimal policy, no optimal policy exists.

21

Theorem 3 and Theorem 4 show that the classic definition of optimality is probably not suitable
for SA-MDP. Further works can study how to obtain optimal policies for SA-MDP under some
alternative definition of optimality, or using a more complex policy class (e.g., history dependent
policies).
Theorem 5. Given a policy π for a non-adversarial MDP and its value function is Vπ(s). Under the
optimal adversary ν in SA-MDP, for all s ∈ S we have

max
s∈S

{
Vπ(s)− Ṽπ◦ν∗(π)(s)

}
≤ αmax

s∈S
max
ŝ∈B(s)

DTV(π(·|s), π(·|ŝ)) (21)

where DTV(π(·|s), π(·|ŝ)) is the total variation distance between π(·|s) and π(·|ŝ), and α :=
2[1 + γ

(1−γ)2] max(s,a,s′)∈S×A×S |R(s, a, s′)| is a constant that does not depend on π.

Proof. Our proof is based on Theorem 1 in Achiam et al. [1]. In fact, many works in the literature
have proved similar results under different scenarios [30, 52]. For an arbitrary starting state s0 and two
arbitrary policies π and π′, Theorem 1 in Achiam et al. [1] gives an upper bound of Vπ(s0)−Vπ′(s0).
The bound is given by

Vπ(s0)− Vπ′(s0) ≤ −E s∼dπs0
a∼π(·|s)
s′∼p(·|a,s)

[(π′(a|s)
π(a|s)

− 1
)
R(s, a, s′)

]

+
2γ

(1− γ)2
max
s

{
E a∼π′(·|s)
s′∼p(·|a,s)

[
R(s, a, s′)

]}
Es∼dπs0

[
DTV (π(·|s), π′(·|s))

]
,

(22)

where dπs0 is the discounted future state distribution from s0, defined as

dπs0(s) := (1− γ)

∞∑
t=0

γtPr(st = s|π, s0). (23)

Note that in Theorem 1 of Achiam et al. [1], the author proved a general form with an arbitrary
function f and we assume f ≡ 0 in our proof. We also assume the starting state is deterministic, so
Jπ in Achiam et al. [1] is replaced by V π(s0). Then we simply need to bound both terms on the right
hand side of (22).

For the first term we know that

−E s∼dπs0
a∼π(·|s)
s′∼p(·|a,s)

[(π′(a|s)
π(a|s)

− 1
)
R(s, a, s′)

]
=
∑
s

dπs0(s)
∑
a

[
π(a|s)− π′(a|s)

]∑
s′

p(s′|s, a)R(s, a, s′)

≤
∑
s

dπs0(s)
∑
a

∣∣π(a|s)− π′(a|s)
∣∣∣∣∑

s′

p(s′|s, a)R(s, a, s′)
∣∣

≤ max
s,a,s′

|R(s, a, s′)|max
s

{∑
a

∣∣π(a|s)− π′(a|s)
∣∣}

= 2 max
s,a,s′

|R(s, a, s′)|max
s

DTV (π(·|s), π′(·|s))

(24)

The second term is bounded by
2γ

(1− γ)2
max
s

{
E a∼π′(·|s)
s′∼p(·|a,s)

[
R(s, a, s′)

]}
Es∼dπs0

[
DTV (π(·|s), π′(·|s))

]
≤ 2γ

(1− γ)2
max
s,a,s′

|R(s, a, s′)|max
s

DTV (π(·|s), π′(·|s))
(25)

Therefore, the RHS of (22) is bounded by αmaxs DTV (π(·|s), π′(·|s)), where

α = 2[1 +
γ

(1− γ)2
] max
s,a,s′

|R(s, a, s′)| (26)

Finally, we simply let π′(·|s) := π(·|ν∗(s)) and the proof is complete.

22

Before proving Theorem 6 we first give a technical lemma about the total variation distance between
two multi-variate Gaussian distributions with the same variance.

Lemma 2. Given two multi-variate Gaussian distributions X1 ∼ N (µ1, σ
2In) and X2 ∼

N (µ2, σ
2In), µ1, µ2 ∈ Rn, define d = ‖µ2 − µ1‖2. We have DTV (X1, X2) =

√
2
π
d
σ +O(d3).

Proof. Denote probability density of X1 and X2 as f1 and f2, and denote a = µ2−µ1

d as the normal
vector of the perpendicular bisector line between µ1 and µ2. Due to the symmetry of Gaussian
distribution, f1(x) − f2(x) is positive for all x where a>x − a>µ1 − d

2 > 0 and negative for
all x on the other symmetric side. When a>x − a>µ1 − d

2 > 0,
∫
x∈Rn [f1(x) − f2(x)]dx =

Φ(d
2σ)− (1− Φ(d

2σ)) = 2Φ(d
2σ)− 1. Thus,

DTV (X1, X2) =

∫
x∈Rn

|f1(x)− f2(x)|dx

= 2

∫
a>x−a>µ1− d2>0

(f1(x)− f2(x))dx

= 2(Φ(
d

2σ
)− (1− Φ(

d

2σ
)))

= 2(2Φ(
d

2σ
)− 1)

Then we use the Taylor series for Φ(x) at x = 0:

Φ(x) =
1

2
+

1√
2π

∞∑
n=0

(−1)nx2n+1

2nn!(2n+ 1)

Since we consider the case where d is small, we only keep the first order term and obtain:

DTV (X1, X2) =

√
2

π

d

σ
+O(d3)

Theorem 6. DTV (π̄(·|s), π̄(·|ŝ)) =
√

2/π dσ +O(d3), where d = ‖π(s)− π(ŝ)‖2.

Proof. This theorem is a special case of Lemma 2 where X1 = π̄(·|s), X2 = π̄(·|s′) and X1 ∼
N (π(s), σ2I), X2 ∼ N (π(s′), σ2I).

C Optimization Techniques

C.1 More Backgrounds for Convex Relaxation of Neural Networks

In our work, we frequently need to solve a minimax problem:

min
θ

max
φ∈S

g(θ, φ) (27)

One approach we will discuss is to first solve the inner maximization problem (approximately)
using an optimizer like SGLD. However, due to the non-convexity of πθ, we cannot solve the inner
maximization to global maxima, and the gap between local maxima and global maxima can be large.
Using convex relaxations of neural networks, we can instead find an upper bound of maxφ∈S g(θ, φ):

g(θ) ≥ max
φ∈S

g(θ, φ)

Thus we can minimize an upper bound instead, which can guarantee the original objective (27) is
minimized.

23

As an illustration on how to find g(θ) using convex relaxations, following Salman et al. [57] we
consider a simple L-layer MLP network f(θ, x) with parameters θ = {(W (i), b(i)), i ∈ {1, · · · , L}}
and activation function σ. We denote x(0) = x as the input, x(i) as the post-activation value for layer
i, z(i) as the pre-activation value for layer i. i ∈ {1, · · · , L}. The output of the network f(θ, x) is
z(L). Then, we consider the following optimization problem:

max
x∈S

f(θ, x), where S is the set of perturbations

which is equivalent to the following optimization problem:

max z(L)

s.t. z(l) = W (l)x(l−1) + b(l), l ∈ [L],

x(l) = σ(z(l)), l ∈ [L− 1],

x(0) ∈ S

(28)

In this constrained optimization problem (28), assuming S is a convex set, the constraint on z(l) is
convex (linear) and the only non-convex constraints are those for x(l), l = {1, · · · , L− 1}, where a
non-linear activation function is involved. Note that activation function σ(z) itself can be a convex
function, but when used as an equality constraint, the feasible solution is constrained to the graph of
σ(z), which is non-convex.

Previous works [79, 86, 57] propose to use convex relaxations of non-linear units to relax the non-
convex constraint x(l) = σ(z(l)) with a convex one, x(l) = convex(σ(z(l))), such that (28) can be
solved efficiently. We can then obtain an upper bound of f(θ, x) since the constraints are relaxed.

Zhang et al. [86] gave several concrete examples (e.g., ReLU, tanh, sigmoid) on how these relaxations
are formed. In the special case where linear relaxations are used, (28) can be solved efficiently and
automatically (without manual derivation and implementation) for general computational graphs [83].
Generally, using the framework from Xu et al. [83] we can access an oracle function ConvexRelaxUB
defined as below:

Definition 2. Given a neural network function f(X) where X is any input for this function, and
X ∈ S where S is the set of perturbations, the oracle function ConvexRelaxUB provided by an
automatic neural network convex relaxation tool returns an upper bound f , which satisfies:

f ≥ max
X∈S

f(X)

Note that in the above definition, X can by any input for this computation (e.g., X can be s, a, or
θ for a Qθ(s, a) function). In the special case of our paper, for simplicity we define the notation
ConvexRelaxUB(f, θ, s∈B(s)) which returns an upper bound function f(θ) for maxs∈B(s) f(θ, s).

Computational cost Many kinds of convex relaxation based methods exist [57], where the ex-
pensive ones (which give a tighter upper bound) can be a few magnitudes slower than forward
propagation. The cheapest method is interval bound propagation (IBP), which only incurs twice
more costs as forward propagation; however, IBP base training has been reported unstable and hard
to reproduce as its bounds are very loose [88, 3]. To avoid potential issues with IBP, in all our
environments, we use the IBP+Backward relaxation scheme following [88, 83], which produces
considerably tighter bounds, while being only a few times slower than forward propagation (e.g., 3
times slower than forward propagation when loss fusion [83] is implemented). In fact, Xu et al. [83]
used the same relaxation for training downscaled ImageNet dataset on very large vision models. For
DRL the policy neural networks are typically small and can be handled quite efficiently. In our paper,
we use convex relaxation as a blackbox tool (provided by the auto_LiRPA library [83]), and any new
development for improving its efficiency can benefit us.

C.2 Solving the Robust Policy Regularizer using SGLD

Stochastic gradient Langevin dynamics (SGLD) [18] can escape saddle points and shallow local
optima in non-convex optimization problems [54, 89, 10, 84], and can be used to solve the inner

24

maximization with zero gradient at ŝ = s. SGLD uses the following update rule to find ŝK to
maximizeRs(ŝ, θµ):

ŝk+1 ← proj
(
ŝk − ηk∇ŝkRs(ŝk, θµ) +

√
2ηk/βkξ

)
, ŝ0 = s, k = 0, · · · ,K − 1

where ηk is step size, ξ is an i.i.d. standard Gaussian random variable in R|S|, βk is an inverse
temperature hyperparameter, and proj(·) projects the update back into B(s). We find that SGLD is
sufficient to escape the stationary point at ŝ = s. However, due to the non-convexity of µθµ(ŝ, θµ),
this approach only provides a lower boundRs(ŝK , θµ) of maxŝ∈B(s)Rs(ŝ, θµ). Unlike the convex
relaxation based approach, minimizing this lower bound does not guarantee to minimize (5), as the
gap between maxŝ∈B(s)Rs(ŝ, θµ) andRs(ŝK , θµ) can be large.

Computational Cost In SGLD, we first need to solve the inner maximization problem (such as
Eq. (5)). The additional time cost depends on the number of SGLD steps. In our experiments for PPO
and DDPG, we find that using 10 steps are sufficient. However, the total training cost does not grow
by 10 times, as in many environments the majority of time was spent on environment simulation
steps, rather than optimizing a small policy network.

D Additional details for adversarial attacks on state observations

D.1 More details on the Critic based attack

In Section 3.5 we discuss the critic based attack [50] as a baseline. This attack requires a Q function
Q(s, a) to find the best perturbed state. In Algorithm 2 we present our “corrected” critic based attack
based on [50]:

Algorithm 2 Critic based attack [50]

Input: A policy function π under attack, a corresponding Q(s, a) network, and a initial state s0,
K is the number of attack steps, η is the step size, s and s are valid lower and upper range of s
(assuming a `∞ norm-like threat model).
for k = 1 to K do
gk = ∇sk−1Q(s0, π(sk−1)) = ∂Q

∂π
∂π

∂sk−1

gk ← proj(gk) .project gk according to norm constraint of s; for `∞ norm simply take the sign
sk ← sk−1 − ηgk
sk ← min(max(sk, s), s) .only needed for `∞ norm threat model

end for
Output: An adversarial state ŝ := sK

Note that in Algorithm 4 of [50], given a state s0 under attack, they use the gradient∇sQ(s, π(s)) =
∂Q
∂s + ∂Q

∂π
∂π
∂s which essentially attempts to minimize Q(ŝ, π(ŝ)), but they then sample randomly

along this gradient direction to find the best ŝ that minimizes Q(s0, π(ŝ)). Our corrected formulation
directly minimizes Q(s0, π(ŝ)) using this gradient instead∇sQ(s0, π(s)) = ∂Q

∂π
∂π
∂s .

For PPO, since there is no Q(s, a) available during training, we extend [50] to perform attack relying
on V (s): we find a state ŝ that minimizes V (ŝ). Unfortunately, it does not match our setting of
perturbing state observations; it looks for a state ŝ that has the worst value (i.e., taking action π(ŝ) in
state ŝ is bad), but taking the action π(ŝ) at state s0 does not necessarily trigger a low reward action,
because V (ŝ) = maxaQ(ŝ, a) 6= maxaQ(s0, a). Thus, in Table 1 we can observe that critic based
attack typically does not work very well for PPO agents.

D.2 More details on the Maximal Action Difference (MAD) attack

We present the full algorithm of MAD attack in Algorithm 3. It is a relatively simple attack by directly
maximizing a KL-divergence using SGLD, yet it usually outperforms random attack and critic attack
on many environments (e.g., see Figure 10).

25

Algorithm 3 Maximal Action Difference (MAD) Attack (a critic-independent attack)

Input: A policy function π under attack, and a initial state s0, T is the number of attack steps, η is
the step size, β is the (inverse) temperature parameter for SGLD, s and s are valid lower and upper
range of s.
Define loss function LMAD(s) = −DKL(π(·|s0)‖π(·|s))
for t = 1 to T do

Sample ξ ∼ N (0, 1)

gt = ∇LMAD(st−1) +
√

2
βη ξ

gt ← proj(gt) .project gt according to norm constraint of s; for `∞ norm simply take the sign
st ← st−1 − ηgt
st ← min(max(st, s), s)

end for
Output: An adversarial state ŝ := sT

D.3 More details on the Robust Sarsa attack

Algorithm 4 gives the full procedure of the Robust Sarsa attack. We collect trajectories of the agents
and then optimize the ordinary temporal difference (TD) loss along with a robust objective Lrobust(θ).
Lrobust(θ) constrains that when an input action a is slightly changed, the value QπRS(s, a) should not
change significantly. We set the perturbation set Bp(a, ε) to be a `p norm ball with radius ε around an
action a. We gradually increase ε from 0 to εmax during training to learn a critic that is increasingly
more robust. The inner maximization of Lrobust(θ) is upper bounded by convex relaxations of neural
networks, which we introduced in section C.1. Once the inner maximization is eliminated, we solve
the final objective using regular first order optimization methods. In our attacks to DDPG and PPO,
we try multiple regularization parameter λRS to find the best Sarsa model that achieves lowest attack
rewards.

Algorithm 4 Train a robust value function for critic-independent attack (Robust Sarsa attack)

Input: Any policy function π under attack, T is the number of training steps, and an epsilon schedule
εt
Initialize QπRS(s, a) to be a random network
for t = 1 to T do

Run the agent with policy π and collect a batch of N steps: {si, ai, ri, s′i, a′i}, i ∈ [N]

LTD(θ) =
∑
i∈[N] [ri + γQπRS(s′i, a

′
i)−QπRS(si, ai)]

2

Lrobust(θ) =
∑
i∈[N] maxâ∈Bp(ai,εt)(Q

π
RS(si, â)−QπRS(si, ai))

2

Lrobust = ConvexRelaxUB(Lrobust, θ, Bp(ai, εt)), where Lrobust(θ) ≤ Lrobust(θ) .Solving the
inner maximization by upper bounding Lrobust using an automatic NN convex relaxation tool
Minimize LRS(θ) = LTD(θ) + λRSLrobust(θ) using any gradient based optimizer (e.g., Adam)

end for
Output: A robust critic function QπRS that can be used for Algorithm 2.

Although it is beyond the scope of this paper, RS attack can also be used as a blackbox attack
when perturbing the actions rather than state observations, as QπθRS can be learned by observing the
environment and the agent without any internal information of the agent. Then, using the robust critic
we learned, black-box attacks can be performed on action space by solving minQπθRS (s, a) with a
norm constrained a.

For a practical implementation, to improve convergence and reduce instability, two QπRS(s, a) func-
tions can be also used similarly as in double Q learning [23]. In our case, since the policy is not
being updated and stable, we find that using a single Q function is also sufficient for most settings
and usually converges faster.

We provide some empirical justifications for the necessity of using a robust objective. For both
PPO and DDPG, we conduct attacks using a Sarsa network trained with and without the robustness
objective, in Table 4 and Table 5, respectively. We observe that the robust objective can decrease
reward further more in most settings.

26

Table 4: Comparison between Non-robust Sarsa attack (without the robustness objective Lrobust(θ))
and robust Sarsa attack on PPO and SA-PPO agents in Table 1. The Robust Sarsa Attack Reward
column is the same result presented in RS column of Table 1. We report mean reward ± standard
deviation over 50 attack episodes.

Env.
`∞ norm perturb-

ation budget ε Method Non-robust Sarsa
Attack Reward

Robust Sarsa
Attack Reward

PPO (vanilla) 2757.0±604.2 779.4±33.2
PPO (adv. 50%) 276 ±140 49 ± 50

PPO (adv. 100%) 14.4± 4.20 3.8 ± 0.9
SA-PPO (SGLD) 3642.9±4.0 1403.3±55.0

Hopper 0.05

SA-PPO (Convex) 3014.9±656.1 1235.8±50.2
PPO (vanilla) 2224.7±1438.7 913.7±54.3

PPO (adv. 50%) -10.79 ± 0.93 -11.55 ± 0.79
PPO (adv. 100%) -111.9± 4.5 -114.4 ± 4.0
SA-PPO (SGLD) 4777.1±305.5 2605.6±1255.7

Walker2d 0.05

SA-PPO (Convex) 3701.1±1013.3 2168.2± 665.4
PPO (vanilla) 716.4±166.1 1036.0±420.2

PPO (adv. 50%) 166± 78 98 ± 69
PPO (adv. 100%) 122.6± 15.9 113.2 ± 18.5
SA-PPO (SGLD) 6115.4±783.2 6200.5±818.1

Humanoid 0.075

SA-PPO (Convex) 6241.2±540.8 4707.2±1359.1

Table 5: Comparison between Non-robust Sarsa attack (without the robustness objective) and robust
Sarsa attack on DDPG and SA-DDPG agents in Table 2. The Robust Sarsa Attack Reward column
presents the same results as presented in the RS attack rows of Table 6. We report mean reward ±
standard deviation over 50 attack episodes.

Env.
`∞ norm perturb-

ation budget ε Method Non-robust Sarsa
Attack Reward

Robust Sarsa
Attack Reward

DDPG (vanilla) 700± 305 336± 283Ant 0.2 SA-DDPG (Convex) 2380± 142 1820± 635
DDPG (vanilla) 1362± 1468 606± 124Hopper 0.075 SA-DDPG (Convex) 1323± 491 1258± 561
DDPG (vanilla) 1000± 0 92± 1InvertedPendulum 0.3 SA-DDPG (Convex) 1000± 0 1000± 0
DDPG (vanilla) −24.11± 7.19 −21.74± 5.14Reacher 1.5 SA-DDPG (Convex) −11.67± 3.57 −11.40± 3.56
DDPG (vanilla) 951± 1146 959± 1001Walker2d 0.05 SA-DDPG (Convex) 3200± 1939 1986± 1993

D.4 Hybrid RS+MAD attack

We find that RS and MAD attack can achieve the best results (lowest attack reward) in many cases.
We also consider combining them to form a hybrid attack, which minimizes the robust critic predicted
value and in the meanwhile maximizes action differences. It can be conducted by minimizing this
combined loss function to find an adversarial state ŝ ∈ B(s):

LHybrid(ŝ) = αRS-MADQθQ(s, πθRS (ŝ)) + (1− αRS-MAD)LMAD(ŝ)

For a practical implementation, it is important to choose αRS-MAD so that the two parts of the loss are
roughly balanced. The value of QθQ depends on environment reward (if reward is not normalized),
and might be much larger in magnitudes than RS-MAD, so typically αRS-MAD is close to 1.

We try different values of αRS-MAD and report the lowest reward as the final reward under this attack.

D.5 Projected Gradient Decent (PGD) Attack for DQN

For DQN, we use the regular untargeted Projected Gradient Decent (PGD) attack in the literature [36,
50, 81]. The untargeted PGD attack with K iterations updates the state K times as follows:

sk+1 = sk + ηproj[∇skH(Qθ(s
k, ·), a∗)],

s0 = s, k = 0, . . . ,K − 1
(29)

where H(Qθ(s
k, ·), a∗) is the cross-entropy loss between the output logits of Qθ(sk, ·) and the

onehot-encoded distribution of a∗ := arg maxaQθ(s, a). proj[·] is a projection operator depending
on the norm constraint of B(s) and η is the learning rate. A successful untargeted PGD attack will
then perturb the state to lead the Q network to output an action other than the optimal action a∗
chosen at the original state s. To guarantee that the final state obtained by the attack is within an `∞
ball around s (Bε(s) = {ŝ : s − ε ≤ ŝ ≤ s + ε}), the projection proj[·] is a sign operator and η is
typically set to η = ε

K .

27

E Robustness Certificates for Deep Reinforcement Learning

If we use the convex relaxation in Section C.1 to train our networks, it can produce robustness
certificates [79, 44, 88] for our task. However in some RL tasks the certificates have interpretations
different from classification tasks, as discussed in detail below.

Robustness Certificates for DQN. In DQN, the action space is finite, so we have a robustness
certificate on the actions taken at each state. More specifically, at each state s, policy π’s action is
certified if its corresponding Q function satisfies

arg max
a

Qθ(s, a) = arg max
a

Qθ(ŝ, a) = a∗, for all ŝ ∈ B(s). (30)

Given a states s, we can use neural network convex relaxations to compute an upper bound uQθ,a∗,a(s)
such that

Qθ(ŝ, a)−Qθ(ŝ, a∗) ≤ uQθ,a∗,a(s)

holds for all ŝ ∈ B(s). So if uQθ,a∗,a(s) ≤ 0 for all a ∈ A, we have
Qθ(ŝ, a)−Qθ(ŝ, a∗) ≤ 0 (31)

is guaranteed for all ŝ ∈ B(s), which means that the agent’s action will not change when the state
observation is in B(s). When the agent’s action is not changed under an adversarial perturbation, its
reward and transition at current step will not change in the DQN setting, either.

In some settings, we find that 100% of the actions are guaranteed to be unchanged (e.g., the Pong
environment in Table 3). In that case, we can in fact also certify that the accumulated reward is not
changed given the specific initial conditions for testing. Otherwise, if some steps during the roll-out
do not have this certificate, or have a weaker certificate that more than one actions are possible given
ŝ ∈ B(s), all the possible actions have to be explored as the next action input to the environment.
When there are n states which are not certified to have unchanged actions, each with m possible
actions, we need to run nm trajectories to find the worst case cumulative reward. This is impractical
for typical settings.

However, even in the 100% certificate rate setting like Pong, it can still be challenging to certify that
the agent is robust under any starting condition. Since the agent is started with a random initialization,
it is impractical to enumerate all possible initializations and guarantee all generated trajectories are
certified. Similarly, in the classification setting, many existing certified defenses [80, 44, 19, 88] can
only practically guarantee robustness on a specific test set (by computing a “verified test error”),
rather than on any input image.

Robustness Certificates for PPO and DDPG. In DDPG and PPO, the action space is continuous,
hence it is not possible to certify that actions do not change under adversary. We instead seek for a
different type of guarantee, where we can upper bound the change in action given a norm bounded
input perturbation:

Us ≥ max
ŝ∈B(s)

‖πθπ (ŝ)− πθπ (s)‖ (32)

Given a state s, we can use convex relaxations to compute an upper bound Us. Generally speaking,
if B(s) is small, a robust policy desires to have a small Us, otherwise it can be possible to find
an adversarial state perturbation that greatly changes πθπ (ŝ) and causes the agent to misbehave.
However, giving certificates on cumulative rewards is still challenging, as it requires to bound reward
r(s, a) given a fixed state s, and a perturbed and bounded action a (bounded via (32)). Since the
environment dynamics can be quite complex in practice (except for the simplest environment like
InvertedPendulum), it is hard to bound reward changes given a bounded action. We leave this part as
a future direction for exploration and we believe the robustness certificates in (32) can be useful for
future works.

F Additional details for SA-PPO

Algorithm We present the full SA-PPO algorithm in Algorithm 5. Compared to vanilla PPO, we
add a robust state-adversarial regularizer which constrains the KL divergence on state perturbations.
We highlighted these changes in Algorithm 5. The regularizerRPPO(θπ) can be solved using SGLD
or convex relaxations of neural networks. We define the perturbation set B(s) to be an `p norm ball
around state s with radius ε: Bp(s, ε) := {s′|‖s′ − s‖p ≤ ε}. We use a ε-schedule during training,
where the perturbation budget is slowly increasing dduring each epoch t as εt until reaching ε.

28

Algorithm 5 State-Adversarial Proximal Policy Optimization (SA-PPO). We highlight its differences
compared to vanilla PPO in brown.

Input: Number of iterations T , a ε schedule εt
1: Initialize actor network π(a|s) and critic network V (s) with parameter θπ and θV ,
2: for t = 1 to T do
3: Run πθπ to collect a set of trajectories D = {τk} containing |D| episodes, each τk is a

trajectory contain |τk| samples, τk := {(sk,i, ak,i, rk,i, sk,i+1)}, i ∈ [|τk|]
4: Compute cumulative reward R̂k,i for each step i in every episode k using the trajectories and

discount factor γ
5: Update value function by minimizing the mean-square error:

θV ← arg min
θV

1∑
k |τk|

∑
τk∈D

|τk|∑
i=0

(
V (sk,i)− R̂k,i

)2

6: Estimate advantage Âk,i for each step i in every episode k using generalized advantage
estimation (GAE) and value function VθV (s)

7: Define the state-adversarial policy regularier:

RPPO(θπ) :=
∑
τk∈D

|τk|∑
i=0

max
s̄k,i∈Bp(sk,i,εt)

DKL (π(a|sk,i)‖π(a|s̄k,i))

8: Option 1: SolveRPPO(θπ) using SGLD:
9: find ŝk,i = arg maxs̄k,i∈Bp(sk,i,εt)

DKL(π(a|sk,i)‖π(a|s̄k,i)) using SGLD optimization
for all k, i (the objective can be solved in a batch)

10: setRPPO(θπ) :=
∑
τk∈D

∑|τk|
i=0 DKL(π(a|sk,i)‖π(a|ŝk,i))

11: Option 2: SolveRPPO(θπ) using convex relaxations:
12: RPPO(θπ) := ConvexRelaxUB(RPPO, θπ, s̄k,i ∈ Bp(sk,i, εt))
13: Update the policy by minimizing the SA-PPO objective (the minimization is solved using

ADAM):

θπ ← arg min
θ′π

1∑
k |τk|

∑
τk∈D

|τk|∑
i=0

min
(
rθ′π (ak,i|sk,i)Âk,i, g(rθ′π (ak,i|sk,i))Âk,i

)
+ κPPORPPO(θ′π)


where rθ′π (ak,i|sk,i) :=

πθ′π
(ak,i|sk,i)

πθπ (ak,i|sk,i) , g(r) := clip(rθ′π (ak,i|sk,i), 1− εclip, 1 + εclip)

14: end for

Hyperparameters for Regular PPO Training We use the optimal hyperparameters in [14] which
were found using a grid search for vanilla PPO. However, we found that their parameters are not
optimal for Humanoid and achieves a cumulative reward of only about 2000 after 1× 107 steps. Thus
we redo hyperparameter search on Humanoid and change learning rate for actor to 5 × 10−5 and
critic to 1× 10−5. This new set of hyperemeters allows us to obtain Humanoid reward about 5000 for
vanilla PPO. Note that even under the original, non-optimal set of hyperemeters by [14], our SA-PPO
variants still achieve high rewards similarly to those reported in our paper. Our hyperparameter
change only significantly improves the performance of vanilla PPO baseline.

We run 2048 simulation steps per iteration, and run policy optimization of 10 epochs with a minibatch
size of 64 using Adam optimizer with learning rate 3× 10−4, 4× 10−4 and 5× 10−5 for Walker,
Hopper and Humanoid, respectively. The value network is also trained in 10 epochs per iteration with
a minibatch size of 64, using Adam optimizer with learning rate 0.00025, 3× 10−4, and 1× 10−5

for Walker, Hopper and Humanoid environments, respectively (the same as in [14] without further
tuning, except for Humanoid as discussed above). Both networks are 3-layer MLPs with [64, 64]
hidden neurons. The clipping value ε for PPO is 0.2. We clip rewards to [−10, 10] and states to
[−10, 10]. The discount factor γ for reward is 0.99 and the discount factor used in generalized
advantage estimation (GAE) is 0.95. We found that in [14] the agent rewards are still improving when
training finishes, thus in our experiments we run the agents longer for better convergence: we run

29

Walker2d and Hopper 2× 106 steps (976 iterations) and Humanoid 1× 107 steps (4882 iterations) to
ensure convergence.

Hyperparameter for SA-PPO Training For SA-PPO, we use the same set of hyperparam-
eters as in PPO. Note that the hyperparameters are tuned for PPO but not specifically for
SA-PPO. The additional regularization parameter κPPO for the regularizer RPPO is chosen in
{0.003, 0.01, 0.03, 0.1, 0.3, 1.0}. We linearly increase εt, the norm of `∞ perturbation on normalized
states, from 0 to the target value (ε for evaluation, reported in Table 1) during the first 3/4 iterations,
and keep εt = ε for the reset iterations. The same ε schedule is used for both SGLD and convex re-
laxation training. For SGLD, we run 10 iterations with step size εt

10 and set the temperature parameter
β = 1 × 10−5. For convex relaxations, we use the efficient IBP+Backward scheme [83], and we
use a training schedule similar to [88] by mixing the IBP bounds and backward mode perturbation
analysis bounds.

G Additional Details for SA-DDPG

Algorithm We present the SA-DDPG training algorithm in Algorithm 6. The main difference
between DDPG and SA-DDPG is the additional loss term RDDPG(θπ), which provides an upper
bound on maxs∈B(si) ‖π(s)− π(si)‖22. We highlighted these changes in Algorithm 6. We define the
perturbation setB(s) to be a `p norm ball around s with radius ε: Bp(s, ε) := {s′|‖s′−s‖p ≤ ε}. We
use a ε-schedule during training, where the perturbation budget is slowly increasing during training
as εt until reaching ε.

Algorithm 6 State-Adversarial Deep Deterministic Policy Gradient (SA-DDPG). We highlight its
differences compared to vanilla DDPG in brown.

Initialize actor network π(s) and critic network Q(s, a) with parameter θπ and θQ
Initialize target network π′(s) and critic network Q′(s, a) with weights θπ′ ← θπ and θQ′ ← θQ
Initial replay buffer B
for t = 1 to T do

Initial a random process N for action exploration
Choose action at ∼ π(st) + ε, ε ∼ N
Observe reward rt, next state st+1 from environment
Store transition {st, at, rt, st+1} into B
Sample a mini-batch of N samples {si, ai, ri, s′i} from B
yi ← ri + γQ′(s′i, π

′(s′i)) for all i ∈ [N]

Update θQ by minimizing loss L(θQ) = 1
N

∑
i (yi −Q(si, ai))

2

RDDPG(θπ, s̄i) :=
∑
i maxs̄i∈Bp(si,εt) ‖πθπ (si)− πθπ (s̄i)‖2

Option 1: SolveRDDPG(θπ) using SGLD:
find ŝi = arg maxs̄i∈Bp(si,εt) ‖πθπ (si) − πθπ (s̄i)‖2 for all i (solved in a batch using

SGLD)
setRDDPG(θπ) :=

∑
i ‖πθπ (si)− πθπ (ŝi)‖2

Option 2: SolveRDDPG(θπ) using convex relaxations:
RDDPG(θπ) := ConvexRelaxUB(RDDPG, θπ, s̄i ∈ Bp(si, εt))

Update θπ using deterministic policy gradient and gradient ofRDDPG:
∇θπJ(θπ) = 1

N

∑
i

[
∇aQ(s, a)|s=si,a=π(si)∇θππ(s)|s=si + κDDPG∇θπRDDPG

]
Update Target Network:
θQ′ ← τθQ + (1− τ)θQ′
θπ′ ← τθπ + (1− τ)θπ′

end for

Hyperparameters for Regular DDPG Training. Our hyperparameters are from [61]. Both actor
and critic networks are 3-layer MLPs with [400, 300] hidden neurons. We run each environment for
2× 106 steps. Actor network learning rate is 1× 10−4 and critic network learning rate is 1× 10−3

(except that for Hopper-v2 and Ant-v2 the critic learning rate is reduced to 1× 10−4 due to the larger
values of rewards); both networks are optimized using Adam optimizer. No reward scaling is used,
and discount factor is set to 0.99. We use a replay buffer with a capacity of 1× 106 items and we do

30

not use prioritized replay buffer sampling. For the random process N used for exploration, we use a
Ornstein-Uhlenbeck process with θ = 0.15 and σ = 0.2. The mixing parameter of current and target
actor and critic networks is set to τ = 0.001.

Hyperparameters for SA-DDPG Training. SA-DDPG uses the same hyperparameters as
in DDPG training. For the additional regularization parameter κ for π(s), we choose in
{0.1, 0.3, 1.0, 3.0} for InvertedPendulum and Reacher due to their low dimensionality and
{30, 100, 300, 1000} for other environments.. We train the actor network without state-adversarial
regularization for the first 1× 106 steps, then increase εt from 0 to the target value in 5× 105 steps,
and then keep training at the target ε for 5× 105 steps. The same ε schedule is used for both SGLD
and convex relaxation. For SGLD, we run 5 iterations with step size εt

5 and set the temperature
parameter β = 1× 10−5. For convex relaxations, we use the efficient IBP+Backward scheme [83],
and a training schedule similar to [88] by mixing the IBP bounds and backward mode perturbation
analysis bounds. The total number of training steps is thus 2× 106, which is the same as the regular
DDPG training. The target ε values for each task is the same as ε listed in Table 2 for evaluation.
Note that we apply perturbation on normalized environment states. The normalization factors are the
standard deviations calculated using data collected on the baseline policy (vanilla DDPG) without
adversaries.

H Additional Details for SA-DQN

Algorithm We present the SA-DQN training algorithm in Algorithm 7. The main difference be-
tween SA-DQN and DQN is the additional state-adversarial regularizerRDQN(θ), which encourages
the network not to change its output under perturbations on the state observation. We highlighted
these changes in Algorithm 7. Note that the use of hinge loss is not required; other loss functions
(e.g., cross-entropy loss) may also be used.

Algorithm 7 State-Adversarial Deep Q-Learning (SA-DQN). We highlight its differences compared
to vanilla DQN in brown.

1: Initialize current Q network Q(s, a) with parameters θ.
2: Initialize target Q network Q′(s, a) with parameters θ′ ← θ.
3: Initial replay buffer B
4: for t = 1 to T do
5: With probability εt select a random action at at, otherwise select at = arg maxaQθ(st, a; θ)
6: Execute action at in environment and observe reward rt and state st+1

7: Store transition {st, at, rt, st+1} in B.
8: Randomly sample a minibatch of N samples {si, ai, ri, s′i} from B.
9: For all si, compute a∗i = arg maxaQθ(si, a; θ).

10: Set yi = ri + γmaxa′ Q
′
θ′(s
′
i, a
′; θ) for non-terminal si, and yi = ri for terminal si.

11: Compute TD-loss for each transition: TD-L(si, ai, s
′
i; θ) = Huber(yi −Qθ(si, ai; θ))

12: DefineRDQN(θ) :=
∑
i max

{
maxŝi∈B(s) maxa6=a∗i Qθ(ŝi, a; θ)−Qθ(ŝi, a∗i ; θ),−c

}
.

13: Option 1: Use projected gradient descent (PGD) to solveRDQN(θ).
14: Run PGD to solve: ŝi = arg maxŝi∈B(si) maxa6=a∗i Qθ(ŝi, a; θ)−Qθ(ŝi, a∗i ; θ).
15: Compute the sum of hinge loss of each si:

RDQN(θ) =
∑
i max{maxa6=a∗i Qθ(ŝi, a; θ)−Qθ(ŝi, a∗i),−c}.

16: Option 2: Use convex relaxations of neural networks to solve a surrogate loss ofRDQN(θ).
17: For all si and all a 6= a∗i , obtain upper bounds on Qθ(s, a; θ)−Qθ(s, a∗i ; θ):

ua∗i ,a(si; θ) = ConvexRelaxUB(Qθ(s, a; θ)−Qθ(s, a∗i ; θ), θ, s ∈ B(si))
18: Compute a surrogate loss for the hinge loss:

RDQN(θ) =
∑
i max

{
maxa6=a∗i {ua∗i ,a(si)},−c

}
19: Perform a gradient descent step to minimize 1

N [
∑
i TD-L(si, ai, s

′
i; θ) + κDQNRDQN(θ)].

20: Update Target Network every M steps: θ′ ← θ.
21: end for

Hyperparameters for Vanilla DQN training. For Atari games, the deep Q networks have 3 CNN
layers followed by 2 fully connected layers (following [77]). The first CNN layer has 32 channels,

31

a kernel size of 8, and stride 4. The second CNN layer has 64 channels, a kernel size of 4, and
stride 2. The third CNN layer has 64 channels, a kernel size of 3, and stride 1. The fully connected
layers have 512 hidden neurons for both value and advantage heads. We run each environment for
6 × 106 steps without framestack. We set learning rate as 6.25 × 10−5 (following [26]) for Pong,
Freeway and RoadRunner; for BankHeist our implementation cannot reliably converge within 6
million steps, so we reduce learning rate to 1× 10−5. For all Atari environments, we clip reward to
−1,+1 (following [46]) and use a replay buffer with a capacity of 2× 105.

We set discount factor set to 0.99. Prioritized replay buffer sampling is used with α = 0.5 and β
increased from 0.4 to 1 linearly through the end of training. A batch size of 32 is used in training.
Same as in [46], we choose Huber loss as the TD-loss. We update the target network every 2k steps
for all environments.

Hyperparameters for SA-DQN training. SA-DQN uses the same network structure and hyper-
parameters as in DQN training. The total number of SA-DQN training steps in all environments
are the same as those in DQN (6 million). We update the target network every 2k steps for all
environments except that the target network is updated every 32k steps for RoadRunner’s SA-DQN,
which improves convergence for our short training schedule of 6 million frames. For the additional
state-adversarial regularization parameter κ for robustness, we choose κ ∈ {0.005, 0.01, 0.02}. For
all 4 Atari environments, we train the Q network without regularization for the first 1.5× 106 steps,
then increase ε from 0 to the target value in 4× 106 steps, and then keep training at the target ε for
the rest 5× 105 steps.

Training Time As Atari training is expensive, we train DQN and SA-DQN only 6 million frames;
the rewards reported in most DQN paper (e.g., [46, 77, 26]) are obtained by training 20 million
frames. Thus, the rewards (without attacks) reported maybe lower than some baselines. The training
time for vanilla DQN, SA-DQN (SGLD) and SA-DQN (convex) are roughly 15 hours, 40 hours and
50 hours on a single 1080 Ti GPU, respectively. The training time of each environment varies but is
very close.

Note that the training time for convex relaxation based method can be further reduced when using an
more efficient relaxation. The fastest relaxation is interval bound propagation (IBP), however it is too
inaccurate and can make training unstable and hard to tune [88]. We use the tighter IBP+Backward
relaxation, and its complexity can be further improved to the same level as IBP with the recently
developed loss fusion technique [83], while providing a much better relaxation than IBP. Our work
simply uses convex relaxations as a blackbox tool and we leave further improvements on convex
relaxation based methods as a future work.

I Additional Experimental Results

I.1 More results on SA-PPO

Box plots of rewards for SA-PPO agents In Table 1, we report the mean and standard deviation
of rewards for agents under attack. However, since the distribution of cumulative rewards can be
non-Gaussian, in this section we include box plots of rewards for each task in Figure 9. We can
observe that the rewards (median, 25% and 75% percentiles) under the strongest attacks (Figure 9b)
significantly improve.

Evaluation using multiple ε In Figure 10 we show the attack rewards of PPO and SA-PPO agents
with different perturbation budget ε. We can see that the lowest attack rewards of SA-PPO agents are
higher than those of PPO under all ε values. Additionally, Robust Sarsa (RS) attacks and RS+MAD
attacks are typically stronger than other attacks. On vanilla PPO agents, the MAD attack is also
competitive.

Convergence of PPO and SA-PPO agents We want to confirm that our better performing Hu-
manoid agents under state-adversarial regularization are not just by chance. We train each environment
using SA-PPO and PPO at least 15 times, and collect rewards during training. We plot the median,
25% and 75% percentile of rewards during the training process for all these runs in Figure 11.

32

Hop
pe

r V
an

illa
 PP

O

Hop
pe

r a
dv

. tr
ain

 (1
00

%)

Hop
pe

r a
dv

. tr
ain

 (5
0%

)

Hop
pe

r S
A-PP

O(Con
ve

x)

Hop
pe

r S
A-PP

O(SG
LD

)

Walk
er

Van
illa

 PP
O

Walk
er

ad
v.

tra
in

(10
0%

)

Walk
er

ad
v.

tra
in

(50
%)

Walk
er

SA
-PP

O(Con
ve

x)

Walk
er

SA
-PP

O(SG
LD

)

Hum
an

oid
 Van

illa
 PP

O

Hum
an

oid
 ad

v.
tra

in
(10

0%
)

Hum
an

oid
 ad

v.
tra

in
(50

%)

Hum
an

oid
 SA

-PP
O(Con

ve
x)

Hum
an

oid
 SA

-PP
O(SG

LD
)

0

1000

2000

3000

4000

5000

6000

Re
wa

rd

(a) Natural rewards (no attacks)

Hop
pe

r V
an

illa
 PP

O

Hop
pe

r a
dv

. tr
ain

 (1
00

%)

Hop
pe

r a
dv

. tr
ain

 (5
0%

)

Hop
pe

r S
A-PP

O(Con
ve

x)

Hop
pe

r S
A-PP

O(SG
LD

)

Walk
er

Van
illa

 PP
O

Walk
er

ad
v.

tra
in

(10
0%

)

Walk
er

ad
v.

tra
in

(50
%)

Walk
er

SA
-PP

O(Con
ve

x)

Walk
er

SA
-PP

O(SG
LD

)

Hum
an

oid
 Van

illa
 PP

O

Hum
an

oid
 ad

v.
tra

in
(10

0%
)

Hum
an

oid
 ad

v.
tra

in
(50

%)

Hum
an

oid
 SA

-PP
O(Con

ve
x)

Hum
an

oid
 SA

-PP
O(SG

LD
)

0

1000

2000

3000

4000

5000

6000

Re
wa

rd

(b) Rewards under the best (strongest) attacks

Figure 9: Box plots of natural rewards and rewards under the strongest (best) attacks for PPO,
adversarially trained PPO and SA-PPO agents corresponding to the results presented in Table 1
(Table 1 only reports mean and standard deviation). Each box shows the distribution of cumulated
rewards collected from 50 episodes of a single agent. The red lines inside the boxes are median
rewards, and the upper and lower sides of the boxes show 25% and 75% percentile rewards of 50
episodes. The line segments outside of the boxes show min or max rewards.

We can see that our SA-PPO agents consistently outperform vanilla PPO agents in Humanoid.
Since we also present the 25% and 75% percentile of the rewards among 15 agents, we believe this
improvement is not because of cherry-picking. For Hopper and Walker environments, SA-PPO has
almost no performance drop compared to vanilla PPO.

I.2 More results on SA-DDPG

Reproducibility over multiple training runs. To show that our SA-DDPG can consistently obtain
a robust agent and we do not cherry-pick good results, we repeatedly train all 5 environments using
SA-DDPG and DDPG 11 times each and attack all agents. We report the median, minimum, 25% and
75% rewards of 11 agents in box plots. The results are shown in Figure 12. We can observe that SA-
DDPG is able to consistently improve the robustness: the median, 25% and 75% percentile rewards
under attacks are significantly and consistently better than vanilla DDPG over all 5 environments.

Full attack results In Table 6 we present attack rewards on all of our DDPG agents. In the main
text, we only report the strongest (lowest) attack rewards since the lowest reward determines the true
agent robustness.

I.3 Robustness Certificates

We report robustness certificates for SA-DQN in Table 3. As discussed in section E, for DQN we can
guarantee that an action does not change under bounded adversarial noise. In Table 3, the “Action
Cert. Rate” is the ratio of actions that does not change under any `∞ norm bounded noise. In some
settings, we find that 100% of the actions are guaranteed to be unchanged (e.g., the Pong environment
in Table 3). In that case, we can in fact also certify that the cumulative reward is not changed given
the specific initial conditions for testing.

In SA-DDPG, we can obtain robustness certificates that give bounds on actions in the presence of
bounded perturbation on state inputs. Given an input state s, we use convex relaxations of neural
networks to obtain the upper and lower bounds for each action: li(s) ≤ πi(ŝ) ≤ ui(s),∀ŝ ∈ B(s).
We consider the following certificates on π(s): the average output range ‖u(s)−l(s)‖1

|A| which reflect the
tightness of bounds, and the `2 distance. Note that bounds on other `p norms can also be computed
given li(s) and ui(s). Since the action space is normalized within [−1, 1], the worst case output
range is 2. We report both certificates for all five environments in Table 7. DDPG without our
robust regularizer usually cannot obtain non-vacuous certificates (range is close to 2). SA-DDPG
can provide robustness certificates (bounded inputs guarantee bounded outputs). We include some
discussions on these certificates in Section E.

For SA-PPO, since the action follows a Gaussian policy, we can upper bound its KL-divergence
under state perturbations. The results are shown in Table 8. Note that, by increasing the regularization
parameter κ, it is possible to obtain an even tighter certificate at the cost of model performance.

33

Hopper

0.00 0.02 0.04 0.06 0.08 0.10
0

500

1000

1500

2000

2500

3000

3500

PPO

MAD
Random
Critic
RS
RS+MAD

0.00 0.02 0.04 0.06 0.08 0.10

SA-PPO (Convex)

MAD
Random
Critic
RS
RS+MAD

0.00 0.02 0.04 0.06 0.08 0.10

SA-PPO (SGLD)

MAD
Random
Critic
RS
RS+MAD

Walker

0.00 0.02 0.04 0.06 0.08 0.10
0

1000

2000

3000

4000

5000
PPO

MAD
Random
Critic
RS
RS+MAD

0.00 0.02 0.04 0.06 0.08 0.10

SA-PPO (Convex)

MAD
Random
Critic
RS
RS+MAD

0.00 0.02 0.04 0.06 0.08 0.10

SA-PPO (SGLD)

MAD
Random
Critic
RS
RS+MAD

Humanoid

0.00 0.02 0.04 0.06 0.08 0.10
0

1000

2000

3000

4000

5000

6000

PPO

MAD
Random
Critic
RS
RS+MAD

0.00 0.02 0.04 0.06 0.08 0.10

SA-PPO (Convex)

MAD
Random
Critic
RS
RS+MAD

0.00 0.02 0.04 0.06 0.08 0.10

SA-PPO (SGLD)

MAD
Random
Critic
RS
RS+MAD

Figure 10: Attacking PPO agents under different ε values using 5 attacks. Each data point reported in
this figure is an average of 50 episodes.

34

0 200 400 600 800 1000
Epoch

500

1000

1500

2000

2500

3000

3500

M
ed

ia
n

Re
wa

rd

PPO
SA-PPO (Convex)
SA-PPO (SGLD)

(a) Hopper

0 200 400 600 800 1000
Epoch

1000

2000

3000

4000

5000

M
ed

ia
n

Re
wa

rd

PPO
SA-PPO (Convex)
SA-PPO (SGLD)

(b) Walker

0 1000 2000 3000 4000 5000
Epoch

1000

2000

3000

4000

5000

6000

7000

M
ed

ia
n

Re
wa

rd

PPO
SA-PPO (Convex)
SA-PPO (SGLD)

(c) Humanoid

Figure 11: The median, 25% and 75% percentile episode reward of at least 15 PPO and 15 SA-PPO
agents during training. The region of the shaded colors (light blue: SA-PPO solved with SGLD;
light green: SA-PPO solved with convex relaxations; light red: vanilla PPO) represent the interval
between 25% and 75% percentile rewards over these 15 different training runs, and the solid line is
the median rewards over these runs.

35

(a) Natural Rewards (no attacks) (b) Rewards under the best (strongest) attacks

Figure 12: Box plots of natural and attack rewards for DDPG and SA-DDPG. Each box is obtained
from 11 agents trained with the same parameters as the agents reported in Table 2 and tested for 50
episodes (each sample of the box is an average reward over 50 episodes). The red lines inside the
boxes are median rewards, and the upper and lower sides of the boxes show 25% and 75% percentile
rewards. The line segments outside of the boxes show min or max rewards.

The robustness certificates for SA-DDPG and SA-PPO are computed using interval bound propagation
(IBP). For vanilla DDPG and PPO, we use CROWN [86], a much tighter convex relaxation to obtain
the certificates, but they are often still vacuous.

36

Environment Ant Hopper Inverted Pendulum Reacher Walker2d
ε 0.2 0.075 0.3 1.5 0.05

State Space 111 11 4 11 17

Vanilla
DDPG

Natural Reward 1487± 850 3302± 762 1000± 0 −4.37± 1.54 1870± 1418
Critic Attack 187± 157 2504± 1207 1000± 0 −24.35± 5.10 1301± 1229

Random Attack 1473± 795 3086± 1006 1000± 0 −8.71± 2.42 1828± 1456
MAD Attack 180± 200 2745± 1073 1000± 0 −27.67± 5.32 1564± 1405

RS Attack 336± 283 606± 124 92± 1 −21.74± 5.14 959± 1001
RS+MAD 142± 180 2056± 1225 1000± 0 −27.87± 4.38 790± 985

Best Attack 142 606 92 -27.87 790

DDPG with
adv. training
(50% steps)

Pattanaik et al.
[50]

Natural Reward 1522± 831 2694± 497 1000± 0 −5.20± 1.70 1818± 1187
Critic Attack 222± 299 1789± 1143 703± 373 −23.88± 5.05 1391± 1083

Random Attack 1389± 785 2316± 741 1000± 0 −9.09± 2.42 1793± 955
MAD Attack 92± 240 1497± 839 238± 240 −25.81± 6.53 1680± 1106

RS Attack 129± 156 41± 105 39± 0 −25.45± 6.70 837± 722
RS+MAD 31± 179 1503± 851 116± 90 −25.81± 6.53 1120± 859

Best Attack 31 41 39 -25.81 837

DDPG with
adv. training
(100% steps)
Pattanaik et al.

[50]

Natural Reward 1082± 574 973± 0 1000± 0 −5.71± 1.80 462± 569
Critic Attack 126± 148 62± 34 174± 66 −21.91± 3.52 809± 525

Random Attack 832± 545 577± 431 998± 5 −9.60± 2.56 751± 568
MAD Attack 43± 165 56± 50 121± 19 −26.47± 4.19 699± 484

RS Attack 115± 286 24± 15 82± 0 −22.17± 4.46 302± 260
RS+MAD −52± 231 56± 50 110± 26 −27.44± 4.05 488± 406

Best Attack −52 24 82 −27.44 302

SA-DDPG
solved by

SGLD

Natural Reward 2186± 534 3068± 223 1000± 0 −5± 1 3318± 680
Critic Attack 2076± 556 2899± 439 423± 281 −12.10± 4.58 1210± 979

Random Attack 2162± 524 3071± 196 1000± 0 −11.41± 4.96 3058± 848
MAD Attack 2128± 482 3093± 17 733± 284 −11.94± 4.79 3252± 689

RS Attack 2038± 401 1729± 792 832± 328 −11.69± 4.80 2224± 1050
RS+MAD 2007± 686 1609± 676 724± 322 −12.01± 4.84 1933± 1055

Best Attack 2007 1609 423 −12.10 1210

SA-DDPG
solved by

convex
relaxations

Natural Reward 2254± 430 3128± 453 1000± 0 −5.24± 2.06 4540± 1562
Critic Attack 1826± 568 2546± 843 1000± 0 −11.51± 3.80 2245± 1881

Random Attack 2249± 491 3036± 593 1000± 0 −9.87± 3.95 4216± 1616
MAD Attack 2106± 573 2959± 663 1000± 0 −12.43± 3.76 4135± 1884

RS Attack 1820± 635 1258± 561 1000± 0 −11.40± 3.56 1986± 1993
RS+MAD 2005± 699 1202± 402 1000± 0 −12.44± 3.77 2315± 2127

Best Attack 1820 1202 1000 −12.44 1986

Table 6: Average episode rewards on 5 MuJoCo environments using policies trained by DDPG and
SA-DDPG. Natural reward is the reward in clean environment without adversarial attacks. The “Best
Attack” rows report the lowest reward over all five attacks (representing the strongest attack), and this
lowest reward is used for robustness evaluation.

Table 7: Robustness certificates on bounded action changes under bounded state perturbations for
DDPG agents. Results are averaged over 50 episodes. A smaller number is better. A vanilla DDPG
agent typically cannot provide non-vacuous robustness guarantees.

Settings Ant Hopper InvertedPendulum Reacher Walker2d

Certificates (`2 upper bound) SA-DDPG (Convex) 0.181 0.050 0.787 0.202 0.169
DDPG (vanilla) 3.972 2.612 0.992 1.491 2.484

Certificates (`1 upper bound) SA-DDPG (Convex) 0.454 0.074 0.787 0.283 0.301
DDPG (vanilla) 11.087 4.345 0.992 2.107 4.923

Certificates (`∞ upper bound) SA-DDPG (Convex) 0.104 0.041 0.787 0.157 0.131
DDPG (vanilla) 1.734 1.794 0.992 1.073 1.570

Certificates (Range) SA-DDPG (Convex) 0.057 0.025 0.787 0.142 0.050
DDPG (vanilla) 1.386 1.448 0.992 1.054 0.821

Table 8: Upper bound on KL-divergence DKL(π(a|s)‖π(a|ŝ)) for three PPO environments. A
smaller number is better. SA-PPO can reduce this upper bound significantly especially for high
dimensional environments like Humanoid.

Settings Hopper Walker2d Humanoid

Certificates (KL upper bound) SA-PPO (Convex) 0.1232 0.09831 3.529
PPO (vanilla) 32.16 31.56 925140

37

