Supplementary Material
Understanding Anomaly Detection with Deep
Invertible Networks through Hierarchies of
Distributions and Features

Robin Tibor Schirrmeister* Yuxuan Zhou
University Medical Center Freiburg Bosch Center for Artificial Intelligence
robin.schirrmeister@uniklinik-freiburg.de

Tonio Ball Dan Zhang
University Medical Center Freiburg Bosch Center for Artificial Intelligence

This document completes the presentation of the main paper with the following:

S1: Details about Glow and Pixel CNN++ architectures, and the likelihood decomposition equation
Eq. (3) of Sec. 4 in the main paper;

S2: Details about the modified (local/fully connected) Glow architectures for the analysis in Sec. 2
of the main paper;
S3: Fourier-based analysis of influence of amplitude and phase on likelihoods;

S4: Details about training and evaluation of Glow and PixelCNN++, including hyperparameter
choices and computing infrastructure;

S5: Details on the used datasets and dataset splits;

S6: Reasons why the results of Serra et al. [S] are not comparable as is, and details of our
reimplementation;

S7: Further quantitative results, including maximum-likelihood performance (S7.1)), finetuning vs.

from-scratch training (S7.2), variance over seeds (S7.3), further outlier datasets and
different outlier losses (S7.5);

S8: Qualitative analysis of the different anomaly detection metrics;
S9: Generative vs. discriminative approach for anomaly detection.

Please also note the attached supplementary codes.

S1 Glow and Pixel CNN++ architectures

S1.1 Glow Network architecture

Our implementation of the Glow network [2] is based on a publicly available Glow implementationﬂ
with one modification explained in The multi-scale Glow network consists of three sequential
scales processing representations of size 12 x 16 x 16, 24 x 8 x 8 and 48 x 4 x 4 (channel x width
x height). Each scale consists of a repeating sequence of activation normalization, invertible 1 x 1
convolution and affine coupling blocks, see the original paper [2] for details. Our Glow network,
consistent with aforementioned public implementation, uses 32 actnorm-1 conv-affine sequences per
scale.

*This work was partially done during an internship at the Bosch Center for Artificial Intelligence.
*https://github.com/y0ast/Glow-PyTorch/

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/y0ast/Glow-PyTorch/

S1.2 Pixel CNN++ architecture

We use a publicly available Pixel CNN++ implementation [|with only a single change. We reduce the
number of filters used across the model from 160 to 120 for fast single-GPU training.

S1.3 Independent 21, 22, 23

For a multi-scale model like Glow, the overall likelihood consists of the contributions from different
scales, see Eq. (3) in the main paper. In contrast to other implementations, we do not condition z; on
29 Or zo on z3 in our Glow model as described in Sec. @ Recall that Glow splits the complete
latent code into per-scales latent codes z1, 29, z3. Here, z; is the half of the output of the first scale
that is not processed further. Many implementations make z; dependent of 2z (and same for zo and
z3) as 21 ~ N(f(22),9(22)?) with f, g being small neural networks. For ease of implementation, we
do not do that, instead we directly evaluate z; under a standard-normal gaussian, so z; ~ N (0, 1).

Note that this does not fundamentally alter network expressiveness. An affine coupling layer can
already implement the same computation achieved by z; ~ N(f(22), g(22)?). Imagine z is split
for the affine coupling layer into z; and z,, with a coefficient network on 2z, used to compute
the affine scale and translation coefficients s,¢ to transform z{ = z; @ s(z2) + t(22). Then if
s(22) = —f(22) and t(22) = ;55 and 21 ~ N(f(22), g(22)*), it follows that z{ ~ N(0,1). In
other words, computing the mean and standard deviation for z; from 25 is the same as normalizing z;
by subtracting the mean and dividing by the standard deviation computed from z5, which a regular
affine coupling block can already learn.

In practice, there could still be differences due to the additional parameters, different kind of blocks
used to implement f and g, and the difference of computing the (log)std or its inverse. However, we
observe no appreciable bits/dim differences between our implementation and those using the explicit
conditioning step, see Section[S7.1]

S2 Local and Fully Connected Architectures

S2.1 Local Patches

We designed our local patches experiment to train compact Glow-like models that can only process
information from 8 x 8 patches in the original datasets. Full-sized Glow networks process the full
image using three scales as written in Section Our local Glow network instead processes local
8 x 8 patches using a single scale. The 32 x 32 input image is first cropped into 16 non-overlapping
8 x 8 patches. These 8 x 8 patches are then processed independently by a local Glow network
corresponding to a single scale of the full Glow network. In other words, we treat the image as
if it consists of independent 8 x 8 patches. Evaluating the likelihoods of these patches, their sum
is the likelihood of the image assigned by the local Glow model. Note that we aimed to create a
network restricted to learn a general local domain prior and not one with the best maximum-likelihood
performance.

S2.2 Fully Connected

We designed our fully-connected experiment to train fully-connected Glow networks that have a
different model bias to regular convolutional Glow networks. We kept the three-scale architecture
of Glow including the invertible subsampling steps at the beginning of each scale. Within each
scale, the fully-connected Glow first flattens the representation, e.g. from a 12 X 16 x 16 tensor
per rgb-image to a 3072-sized vector in the scale 1. This vector is then processed by the usual
sequence of actnorm-1 x 1-affine. We next detail the processing at the scale 1, whereas the other
scales follow the same design pattern. Activation normalization now processes 3072 dimensions,
so has substantially more parameters. The 1 x 1 is now an invertible linear projection keeping
the dimensionality, so a projection from 3072 dimensions to 3072 dimensions. To ensure training
stability, we did not train the 1 x 1-projections, but kept their parameters in the randomly initialized
starting state. The fully-connected affine coupling block uses a sequence of linear layer (1536 x 512)
- ReLU - linear layer (512 x 512) - ReLU - linear layer (512 x 3072) modules to compute the 1536

*https://github.com/pclucasi4/pixel-cnn-pp/tree/16c8b2fb8f53e¢838d705105751e3c5653653968a

S2

https://github.com/pclucas14/pixel-cnn-pp/tree/16c8b2fb8f53e838d705105751e3c56536f3968a

Result

Figure S1: Image Mixup in frequency domain via Fourier transform. Fourier amplitudes taken from
one image, phases from another and then inverted back to input space (Result). Note semantic content
is more similar to phase image than to amplitude image.

translation and 1536 scale coefficients. To allow fast single-GPU training, we reduced the number of
actnorm-1 x 1-affine sequences from 32 to 8 per scale. Similar to Section[S2.1] the fully-connected
network was designed to highlight the influence different model biases and not to reach the best
maximum-likelihood performance.

S3 Fourier-based Amplitude/Phase Analysis

To validate that low-level features dominate the likelihoods independent of the semantic content of
the image, we create mixed images in Fourier space. Concretely, we:

1. Compute the amplitudes and phases of a batch Fourier transformed images;

2. Mix up images in their frequency domain by using one image’ amplitudes and phases of the
other image

3. Apply the inverse Fourier transformation to invert these mixed images to the input domain

We show examples in Figure ST} Note that the mixed images are semantically much more similar to
the image the phases were extracted from. We then compare the CIFAR10-Glow likelihoods on the
original images and the mixed images for SVHN and CIFAR10 images. The likelihoods of the mixed
images correlate much more with the amplitude-image likelihoods (Spearman correlation > 0.8) than
with the phase-image likelihoods (Spearman correlation < 0.05).

S4 Training and Evaluation

S4.1 Glow Training

We stayed close to the training setting of a publicly available Glow repositoryﬂ Namely, we use
Adamax as the optimizer (learning rate 5 - 10~%, weight decay 5 - 10~°) and 250 training epochs. The

*https://github.com/y0ast/Glow-PyTorch/blob/master/train. py (we do not use warmstart)

S3

https://github.com/y0ast/Glow-PyTorch/blob/master/train.py

training setting also includes data augmentation (translations and horizontal flipping for CIFAR10/100,
only translations for SVHN, Fashion-MNIST and MNIST). These settings are the same for all exper-
iments (from-scratch training, finetuning, with and without outlier loss, unsupervised/supervised).
On 80 Million Tiny Images, we use substantially less training epochs, so that the number of batch
updates is identical between Tiny and the other experiments. All datasets were preprocessed to be in
the range [—0.5,0.5 — 51-] as is standard practice for Glow-network training, see also supplementary

256
code.

S4.2 Pixel CNN++ Training

We stayed close to the training setting of the public Pixel CNN++ repositoryﬂ Namely, we use Adam
as the optimizer (learning rate 2 - 10~%, no weight decay, negligible learning rate decay 5 - 10~° every
epoch). We substantially reduced the number of epochs from 5000 to 120 to save GPU resources,
and since our aim here was to show general applicability of our methods to another type of model
and not to reach maximum possible performance. Consistent with the public implementation, no data
augmentation is performed.

S4.3 Numerical stabilization of the training

When training networks with outlier loss, negative infinities can appear for numerical reasons. This is
actually expected as true outliers should ideally have likelihood zero and therefore log likelihood
equal to negative infinity. These do not contribute to the loss in theory, but cause numerical issues.
To ensure numerical stability during training, we remove examples that get assigned negative infinite
likelihoods from the current minibatch. In case this would remove more than 75% of the minibatch,
we skip the entire minibatch. These methods are only meant to ensure numerical stability, no specific
training stability methods like gradient norm clipping are used.

S4.4 Outlier Loss Hyperparameters

As described in the main manuscript, our outlier loss is:

Lo — —)\1 < (IOg(pg(Ig)) - 10g(pin(17g)))> _ vV pg(xg)

o = —A" Og g — —Alog) (Sl)
T Upin(wg) + /pg(ag)

where o is the sigmoid function, 7" a temperature and) is a weighting factor. Based on a brief manual

search on CIFAR10, we use 7' = 1000 A = 6000 as they had the highest train set anomaly detection

performance while retaining stable training. PixelCNN++ training works well with the same exact

values, validating the choice.

S4.5 Evaluation Details

We use the likelihoods computed on noise-free inputs for anomaly detection with Glow networks. In
practice, this means not adding dequantization noise and instead adding a constant, namely half of
the dequantization interval. We found this to yield slightly better anomaly detection performance in
preliminary experiments. Noise-free inputs are only used during evaluation for the anomaly detection
performance. Training is done adding the standard dequantization noise introduced as in [6]]. The
BPD numbers reported in Section and Table[ST|also are obtained using single samples with the
standard dequantization noise.

We clip log likelihoods from below by a very small number. When computing the log likelihoods
from networks trained with outlier loss, negative infinities are to be expected, see Section
To include these inputs in the AUC computation, we set non-finite log-likelihoods to a very small
constant (—3000000) before computing any log-likelihood difference.

S4.6 Computing Infrastructure

All experiments were computed on single GPUs. Runtimes vary between 2 to 8 days on
Nvidia Geforce RTX 2080 depending on the experiment setting (outlier loss or not, super-
vised/unsupervised).

https://github.com/pclucasi4/pixel-cnn-pp/tree/16c8b2fb8£53e838d705105751e3c5653613968a

S4

https://github.com/pclucas14/pixel-cnn-pp/tree/16c8b2fb8f53e838d705105751e3c56536f3968a

S5 Datasets

S5.1 Dataset Splits

We use the pre-defined train/test folds on CIFAR10, CIFAR100, SVHN, Fashion-MNIST and MNIST
and only train on the training fold. All results are reported on the test folds. For CelebA, we only
use the first 60000 images for faster computations. We use a 1 million random subset of 80 Million
Tiny Images in all of our experiments. For the Fashion-MNIST/MNIST experiments, we create a
greyscaled Tiny dataset from the rgb data as = r - 0.2989 + g - 0.5870 + b - 0.1140.

S5.2 MRI Dataset

For the MRI BRATS dataset, we also use the official train/test split. The dataset was introduced to
verify the log likelihood difference on a data from a slightly different domain (medical imaging).
Since our outliers defined as different modalities are not defined by the object type, we did not expect
last-scale likelihood contributions c3(z) to perform as good as on the object recognition datasets.
However, they still outperform raw likelihoods, by 59.2% to 53.3%.

S6 Replication of [5]]

The anomaly detection results from [S] were obtained using the training folds of the in-distribution
datasets, preventing a fair comparison to our results. In written communication with Serra et al.
[Sl], they explained to us that the AUROC-results reported in their paper compare in-distribution
training-fold examples with out-of-distribution test-fold examples. This makes a fair comparison to
our results and other works impossible. In contrast and in line with standard practice, our results
were obtained using the test folds of the in-distribution datasets. Unfortunately, Serra et al. [3]] are
unable to provide their training code and models at the current time, so we cannot recompute their
anomaly detection performance for the test fold of the in-distribution datasets. We also confirmed
that depending on the training setting, the anomaly-detection AUROC values can differ substantially
between the training and test fold of the in-distribution dataset.

In any case, we provide supplementary code to reproduce the method of[3]] to the best of our
understanding. Using a publicly available pretrained Glow—modeﬂ we find anomaly detection
performance results similar to the ones we report for PNG as a general-distribution model.

S7 Further Quantitative Results

S7.1 Maximum Likelihood Performance

The maximum-likelihood-performance of our finetuned Glow networks are similar to the performance
reported for from-scratch training in the original Glow paper [2]. We show the bits-per-dimension
values obtained using single dequantization samples in Table[ST] Note that the Glow model trained
on 80 Million Tiny Images already reaches bits per dimensions on CIFAR10 and CIFAR100 close to
the Glow models trained on the actual dataset (CIFAR10/CIFAR100), in line with our view that the
bits per dimension are dominated by the domain prior (results also do not substantially change when
including or excluding CIFAR-images from Tiny).

Our Glow-model architecture was chosen from a reimplementation of Nalisnick et al. [4] (see Section
[ST.T), in order to facilitate comparison of our results to other anomaly detection works. In future
work, evaluating anomaly detection performance of our method with newer types of normalizing
flows could be interesting.

S7.2 Finetuning

Training Glow networks on an in-distribution dataset by finetuning a Glow network trained on Tiny
substantially speeds up the training progress over training from scratch. As can be seen in Figures
and[S2] the Glow networks reach better results after less training epochs for both maximum-likelihood

Shttps://github.com/y0ast/Glow-PyTorch

S5

https://github.com/y0ast/Glow-PyTorch

Table S1: Maximum likelihood performance in bits per dimension. Results obtained using single
samples of uniform dequantization noise. Tiny is the Glow network trained on 80 Million Tiny
Images. Retr refers to from-scratch training on the in-distribution dataset, Finet refers to finetuning
aforementeioned Glow network trained on 80 Million Tiny Images. Note the original Glow paper [2]
reached 3.35 bpd on CIFAR-10 with multi-GPU training. The Glow network and training setup we use
is optimized for single-GPU training and not for maximum performance. The public implementation
we originally based our implementation on (and uses the explicit conditioning step discussed in[ST.3)
reaches 3.39 bpd on CIFARI10.

In-dist Tiny Retr Finet

SVHN 234 207 2.06
CIFAR10 341 340 3.36
CIFAR100 3.43 343 3.39

In-dist: CIFARLD In-dist: CIFAR100

— SVHN
— L5UN

Ancmaly Detection Performance [AUROC %]

20 —— From Scratch
- Finetuned
] 50 100 150 200 250 o 50 100 150 200 250
Epoch Epoch

Figure S2: Training Curves Anomaly Detection From Scratch vs. Finetuned. Conventions as in Fig.
[S3] Glow networks are trained without any outlier loss. AUROC refers to AUROC computed from
our log-likelihood ratio metric using another Glow-network trained on 80 Million Tiny Images. Note
that the finetuned Glow networks outperform the final from-scratch trained Glow networks after less
than 20% of the training epochs. Note that due to different evaluation (not noise-free) and different
subsets used for intermediate results, results in this figures vary from final results in result tables.

performance and anomaly-detection performance. The improvements are strongest for CIFAR100
and weakest for SVHN, in line with CIFAR100 being the most diverse dataset and most similar to 80
Million Tiny Images.

3.50 220
—— CFARLD H =—— SWVHN From Scratch
—— COFAR100 218 ===+ SVHN Finetuned
—— From Scratch -

- Finetuned

348
346 216
344 214

342 212

S

340

338

Enceding size [bits per dimensicn]
Enceding size [bits per dimension]

336 — 206

Epoch Epoch

CIFAR10/100 SVHN

Figure S3: Training Curves CIFAR10/100 and SVHN From Scratch vs. Finetuned. Transparent, thin
lines indicate single-seed runs, solid, think lines indicate means over these runs. Solid horizontal
lines indicate final mean performance of from-scratch trained models. Note that (i) finetuned Glow
networks are better in each epoch; (ii) for CIFAR10/100 the finetuned Glow networks outperform
the final from-scratch trained Glow networks after less than 20% of the training epochs and (iii) for
SVHN, the finetuned Glow network outperforms the final from-scratch-trained Glow network after
about 50% of the training epochs.

S6

In-dist: CIFAR10 In-dist: CIFAR100

80

ST —— SVHN
,f’ — LSUN
+ —— Finetuned Own
: - Finetuned Tiny

0 100 200 0 100 200
Epoch Epoch

Anomaly Detection Performance [AUROC %]
e

Figure S4: Training Curves Anomaly Detection Finetuned from Own model vs Finetuned from Tiny.
Conventions as in Fig. [S2] Finetuned from own model is the same as simply training twice as long on
the in-distribution. At the end of training for CIFAR100, the model finetuned from Tiny still performs
~6% better on anomaly detection.

There are are still gains on log-likelihood ratio based anomaly detection for CIFAR100 when
comparing finetuning a Glow a Glow network trained on Tiny to finetuning a Glow network already
trained on CIFAR100 (or in other words, training the Glow Network from scratch on CIFAR100 for
twice the number of epochs), see Figure[S4] This is likely because the exact Tiny-model be used as
the general distribution model later on, validating more similar models better cancel the model bias.

S7.3 Result Variance across Seeds

We present the original results including standard deviation in Table [S2] and provide a graphical
overview over our per-seed anomaly detection results in Figure[S3] Results are relatively stable across
seeds.

S7.4 Additional OOD Datasets

We report results on CelebA [3]] and Tiny Imagenetﬂ as additional out-of-distribution (OOD) datasets
in Table [S3]

S7.5 Margin Loss vs. Outlier Loss

In our experiments, the margin-based loss introduced in [1] is less stable than our outlier loss
for longer training runs, see Figure [S6] Note that our results for the margin-based loss already
substantially outperform the results reported for Pixel CNN with a margin-based loss in [1].

S8 Qualitative Analyses

Our different metrics (raw likelihoods, log-likelihood ratios and last-scale likelihood contributions)
result in qualitatively different highest-scoring images on 80 Million Tiny Images (see Fig. [S7and
[S8). We take a random 120000-images subset of 80 Million Tiny Images and use our Glow network
trained on CIFAR1O0 either with or without outlier loss to compute the metrics. Looking at the top 12
images per metric shows that using the log-likelihood ratio results in more reasonable images (closer
to the inliers) than the raw likelihood, albeit mostly still simple images (see Fig.[S7) and that using
the Glow network trained with outlier loss results in more fitting images for all metrics (see Fig. [S8).

"https://tiny- imagenet.herokuapp.com

S7

https://tiny-imagenet.herokuapp.com

Table S2: Anomaly detection performance summary (AUC in %). Values in parentheses are standard
deviation across 3 seeds. The new term Difft means to use in-distribution samples as the outliers to
train Tiny-Glow, see Sec. 5.4 in main paper.

Setting Unsupervised Supervised
In-dist Out-dist 4x4 Diff Diffy 4x4 Diff Diffy

SVHN 96.4(1.4) 98.6(0.1) 99.0(0.1) | 96.1 (1.7) 98.6(0.1) 99.1(0.1)

CIFAR10 CIFARI100 | 85.4(0.7) 84.5(0.6) 86.8(0.5) | 88.3(0.7) 87.4(0.5) 88.5(0.3)
LSUN 95.1(1.2) 94.1(1.5) 95.8(0.8) | 95.3(1.1) 94.1(1.7) 96.2(0.9)
Mean 92.3(1.0) 924 (0.6) 93.8(0.4) | 93.3(1.2) 93.4(0.8) 94.6 (0.4)
SVHN 84.5(2.1) 822@3.1) 854 (2.1) | 89.6(1.0) 88.6(0.8) 89.4(0.7)

CIFAR100 CIFARI10 | 61.9(0.5) 59.8(0.5) 62.5(0.3) | 67.0(0.6) 64.9(0.8) 653 (0.7)
LSUN 84.6(0.1) 82.4(0.3) 85.4(0.1) | 85.7(0.4) 843(0.3) 86.3(0.2)
Mean 77.00.7) 748 (1.1) 77.8(0.6) | 80.8(0.7) 79.3(0.6) 80.3(0.5)

Mean | 84.7(0.3) 83.6(0.3) 85.8(0.2) [87.0(0.9) 86.3(0.7) 87.5(0.4)

SVHN CIFAR100 LSUN
9 100 = :
= . w * Unsupervised
Lo r , " Supervised
[o 4xd
g% + Diff
= -
g 85] @ L] Difff
s
o SVHN CIFAR10O LSUN
E %
< * n . -

A "

5 8o g
g
270
*
Y60 > e ™
=

Figure S5: Graphical Overview over Anomaly Detection Results. Markers indicate mean result over
three seeds, error bars indicate standard error of that mean. Type of marker indicates type of anomaly
metric (defined as before and as in Table[S2)). Color indicates supervised or unsupervised setting.
Rows are in-distribution dataset and columns are OOD datasets. Supervised setting outperforms
unsupervised setting, especially on CIFAR10 vs. CIFAR100 and vice versa. Using a general-
distribution model trained with outlier loss on the in-distribution (Diff}) always outperforms general-
distribution model trained without outlier loss (Diff). Relative performance of final-scale method
(4 x 4) compared with log-likelihood-difference methods (Diff and Diff}) varies between dataset
pairs.

Table S3: Anomaly detection performance for additional OOD datasets CelebA and Tiny-Imagenet.
Conventions as in Table main manuscript.

Setting Unsupervised Supervised
In-dist Out-dist Raw [4x4] Diff Diff} Raw [4x4] Diff Diff}
CIFAR10 CelebA 96.6 (1.2) 96.1(1.2) 97.6(0.5) | 96.6(1.9) 96.2(2.1) 97.8(1.0)
Tiny-Imagenet | 90.7 (0.9) 90.6 (0.7) 92.1(0.4) | 91.1(0.8) 91.3(0.9) 92.7(0.4)
CIFAR100 CelebA 809 (1.3) 764(24) 804(1.1) | 81.9(54) 79.1(7.2) 81.7(4.7)
Tiny-Imagenet | 77.3(0.5) 77.5(0.5) 79.7(0.3) | 79.5(0.4) 79.7(0.5) 80.6(0.5)

S8

In-dist: CIFARLOD In-dist: CIFAR100
100.0

97.5
9.0
92.5
90.0
87.5

— SVHN

Ancmaly Detection Performance [AUROC %]

85.0 60 — LSUN
—— QOutlier Loss
82.5 50 -~ Margin Loss
80.0
0 50 00 150 200 250 0 50 100 150 200 250
Epoch Epoch

Figure S6: Training Curves Anomaly Detection Margin Loss vs Outlier Loss. AUROC refers to
AUROC computed from our log-likelihood-difference metric using another Glow-network trained on
80 Million Tiny Images. Note Glow networks trained with margin loss experience substantial drops
in anomaly detection performance in later stages of the training.

Figure S7: Most likely images from 80 Million Tiny Images for CIFAR10-Glow. 12 highest-scoring
images selected according to different metrics. First row: raw likelihood, second row: log-likelihood
ratio to Tiny-Glow, third row: raw last-scale z3 likelihood contribution. Note that constant images
attain the highest raw likelihood, showing the effect of the natural-images domain prior on the raw
likelihoods. The highest-scoring log-likelihood-ratio images show a bias towards blue images and
some contain actual CIFAR10 objects, namely birds and planes. Overall, the difference selects some
correct images, but is still sensitive to surface features such as the global color. The last-scale results
are harder to interpret, the more diverse images suggest it is slightly less affected by the domain prior
of smoothness.

Figure S8: Most likely images from 80 Million Tiny Images for CIFAR10-Glow with the outlier loss.
Conventions as in Figure[S8] Now any of the three metrics lead to selecting mostly CIFAR10-like
images, with the log-likelihood difference metric selecting more diverse images with less of a bias
towards blueish images.

S9

Table S4: Binary Classifier Anomaly Detection Results. Wide-ResNet classifier trained on 80 Million
Tiny Images vs in-distribution as binary classification. We use presnet (Yindist|Z) as our anomaly
metric after training for the AUC computations.

In-dist OOD AUC
CIFAR-10 SVHN 93
CIFAR-100 89
LSUN 93

CIFAR-100 SVHN 73
CIFAR-10 70
LSUN 89
SVHN CIFAR-10 100
CIFAR-100 100
LSUN 100

S9 Pure Discriminative Approach

As an additional baseline, we also evaluated using a purely discriminative approach. We trained
a Wide-ResNet classifier to distinguish between the in-distribution and 80 Million Tiny-Images,
without using any in-distribution labels. Concretely, we trained the classifier using samples of the
in-distribution as the positive class and samples from 80 Million Tiny Images as the negative class in
a normal supervised training setting. We use the training settings and architecture from a publicly
available Wide-ResNet repository °| After training, we use the prediction presnet (Yindist|) as our
anomaly metric.

For CIFAR10/100 in-distribution, results show this baseline performs better for OOD dataset CI-
FAR100/10 (89% and 70% vs. 87% and 63% AUROC), similar for OOD dataset LSUN (93% and
89% vs. 96% and 86%) and worse for OOD dataset SVHN (93% and 73% vs. 99% and 85%)
compared to our unsupervised generative methods (compare Table[S4]to unsupervised in[S2). Future
work may further show what properties, advantages and disadvantages these different approaches
have.

Acknowledgments and Disclosure of Funding

Use unnumbered first level headings for the acknowledgments. All acknowledgments go at the
end of the paper before the list of references. Moreover, you are required to declare funding
(financial activities supporting the submitted work) and competing interests (related financial activities
outside the submitted work). More information about this disclosure can be found at: https:
//neurips.cc/Conferences/2020/PaperInformation/FundingDisclosure,

Do neot include this section in the anonymized submission, only in the final paper. You can use
the ack environment provided in the style file to autmoatically hide this section in the anonymized
submission.

References

[1] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. In International Conference on Learning Representations (ICLR), 2019.

[2] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems (NeuRIPs), pages 10215-10224, 2018.

[3] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In International Conference on Computer Vision (ICCV), 2015.

$https://github.com/meliketoy/wide-resnet.pytorch, with depth=28 and widen-factor=10

S10

https://neurips.cc/Conferences/2020/PaperInformation/FundingDisclosure
https://neurips.cc/Conferences/2020/PaperInformation/FundingDisclosure
https://github.com/meliketoy/wide-resnet.pytorch

[4] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan.
Do deep generative models know what they don’t know? In International Conference on
Learning Representations (ICLR), 2019.

[5] Joan Serra, David Alvarez, Vicen¢ Gémez, Olga Slizovskaia, José F. Nufiez, and Jordi Luque.
Input complexity and out-of-distribution detection with likelihood-based generative models. In
International Conference on Learning Representations, 2020.

[6] L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models. In
International Conference on Learning Representations (ICLR), 2016.

S11

	Glow and PixelCNN++ architectures
	Glow Network architecture
	PixelCNN++ architecture
	Independent z1, z2, z3

	Local and Fully Connected Architectures
	Local Patches
	Fully Connected

	Fourier-based Amplitude/Phase Analysis
	Training and Evaluation
	Glow Training
	PixelCNN++ Training
	Numerical stabilization of the training
	Outlier Loss Hyperparameters
	Evaluation Details
	Computing Infrastructure

	Datasets
	Dataset Splits
	MRI Dataset

	Replication of Serra2020Input
	Further Quantitative Results
	Maximum Likelihood Performance
	Finetuning
	Result Variance across Seeds
	Additional OOD Datasets
	Margin Loss vs. Outlier Loss

	Qualitative Analyses
	Pure Discriminative Approach

