
Appendix

A Approximation algorithms for weighted hierarchical clustering

In this section we first prove that running constant-approximation algorithms on fairlets gives good
solutions for value objective, and then give constant approximation algorithms for both revenue and
value in weighted hierarchical clustering problem, as is mentioned in Corollary 9 and 12. That is, a
weighted version of average-linkage, for both weighted revenue and value objective, and weighted
(✏/n)-locally densest cut algorithm, which works for weighted value objective. Both proofs are easily
adapted from previous proofs in [19] and [33].

A.1 Running constant-approximation algorithms on fairlets

In this section, we prove Theorem 10, which says if we run any �-approximation algorithm for the
upper bound on weighted value on the fairlet decomposition, we get a fair tree with minimal loss in
approximation ratio. For the remainder of this section, fix any hierarchical clustering algorithm A that
is guaranteed on any weighted input (V, d,m) to construct a hierarchical clustering with objective
value at least �m(V)d(V) for the value objective on a weighted input. Recall that we extended the
value objective to a weighted variant in the Preliminaries Section and m(V) =

P
u2V mu. Our

aim is to show that we can combine A with the fairlet decomposition Y introduced in the prior
section to get a fair hierarchical clustering that is a �(1� ✏)-approximation for the value objective, if
�(Y)  ✏d(V).

In the following definition, we transform the point set to a new set of points that are weighted. We
will analyze A on this new set of points. We then show how we can relate this to the objective value
of the optimal tree on the original set of points.
Definition 18. Let Y = {Y1, Y2, . . .} be the fairlet decomposition for V that is produced by the local

search algorithm. Define V (Y) as follows:

• Each set Yi has a corresponding point ai in V (Y).

• The weight mi of ai is set to be |Yi|.

• For each partitions Yi, Yj , where i 6= j and Yi, Yj 2 Y , d(ai, aj) = d(Yi, Yj).

We begin by observing the objective value that A receives on the instance V (Y) is large compared to
the weights in the original instance.
Theorem 19. On the instance V (Y) the algorithm A has a total weighted objective of �(1 � ✏) ·
nd(V).

Proof. Notice that m(V (Y)) = |V | = n. Consider the total sum of all the distances in V (Y). This
is
P

ai,aj2V (Y) d(ai, aj) =
P

Yi,Yj2Y d(Yi, Yj) = d(V)� �(Y). The upper bound on the optimal
solution is (

P
Yi2Y mi)(d(V)� �(Y) = n(d(V)� �(Y)). Since �(Y)  ✏d(V), this upper bound

is at least (1� ✏)nd(V). Theorem 10 follows from the fact that the algorithm A archives a weighted
revenue at least a � factor of the total weighted distances.

A.2 Weighted hierarchical clustering: Constant-factor approximation

For weighted hierarchical clustering with positive integral weights, we define the weighted average-
linkage algorithm for input (V, d,m) and (V, s,m). Define the average distance to be Avg(A,B) =

d(A,B)
m(A)m(B) for dissimilarity-based input, and Avg(A,B) = s(A,B)

m(A)m(B) for similarity-based input. In
each iteration, weighted average-linkage seeks to merge the clusters which minimizes this value, if
dissimilarity-based, and maximizes this value, if similarity-based.
Lemma 20. Weighted average-linkage is a

2
3 (resp.,

1
3) approximation for the upper bound on

weighted value (resp., revenue) objective with positive, integral weights.

Proof. We prove it for weighted value first. This is directly implied by the fact that average-linkage
is 2

3 approximation for unweighted value objective, as is proved in [19]. We have already seen in the

12

last subsection that a unweighted input V can be converted into weighted input V (Y). Vice versa,
we can construct a weighted input (V, d,m) into unweighted input with same upper bound for value
objective.

In weighted hierarchical clustering we treat each point p with integral weights as m(p) duplicates of
points with distance 0 among themselves, let’s call this set S(p). For two weighted points (p,m(p))

and (q,m(q)), if i 2 S(p), j 2 S(q), let d(i, j) = d(p,q)
m(p)m(q) . This unweighted instance, composed

of many duplicates, has the same upper bound as the weighted instance. Notice that running average-
linkage on the unweighted instance will always choose to put all the duplicates S(p) together first for
each p, and then do hierarchical clustering on top of the duplicates. Thus running average-linkage on
the unweighted input gives a valid hierarchical clustering tree for weighted input. Since unweighted
value upper bound equals weighted value upper bound, the approximation ratio is the same.

Now we prove it for weighted revenue. In [33], average-linkage being 1
3 approximation for un-

weighted revenue is proved by the following. Given any clustering C, if average-linkage chooses to
merge A and B in C, we define a local revenue for this merge:

merge-rev(A,B) =
X

C2C\{A,B}

|C||A||B|Avg(A,B).

And correspondingly, a local cost:

merge-cost(A,B) =
X

C2C\{A,B}

(|B||A||C|Avg(A,C) + |A||B||C|Avg(B,C)).

Summing up the local revenue and cost over all merges gives the upper bound. [33] used the property
of average-linkage to prove that at every merge, merge-cost(A,B)  2merge-rev(A,B), which
guarantees the total revenue, which is the summation of merge-rev(A,B) over all merges, is at least
1
3 of the upper bound. For the weighted case, we define

merge-rev(A,B) =
X

C2C\{A,B}

m(C)m(A)m(B)Avg(A,B).

And

merge-cost(A,B)
X

C2C\{A,B}

(m(B)m(A)m(C)Avg(A,C) +m(A)m(B)m(C)Avg(B,C)).

And the rest of the proof works in the same way as in [33], proving weighted average-linkage to be 1
3

for weighted revenue.

Next we define the weighted (✏/n)-locally-densest cut algorithm. The original algorithm, introduced
in [19], defines a cut to be d(A,B)

|A||B| . It starts with the original set as one cluster, at every step, it seeks
the partition of the current set that locally maximizes this value, and thus constructing a tree from top
to bottom. For the weighted input (V, d,m), we define the cut to be d(A,B)

m(A)m(B) , and let n = m(V).
For more description of the algorithm, see Algorithm 4 in Section 6.2 in [19].
Lemma 21. Weighted (✏/n)-locally-densest cut algorithm is a

2
3 � ✏ approximation for weighted

value objective.

Proof. Just as in the average-linkage proof, we convert each weighted point p into a set S of m(p)
duplicates of p. Notice that the converted unweighted hierarchical clustering input has the same upper
bound as the weighted hierarchical clustering input, and the ✏/n-locally-densest cut algorithm moves
all the duplicate sets S around in the unweighted input, instead of single points as in the original
algorithm in [19].

Focus on a split of cluster A [B into (A,B). Let S be a duplicate set. 8S ✓ A, where S is a set of
duplicates, we must have

(1 +
✏

n
)
d(A,B)

|A||B| �
d(A \ S,B [S)

(|A|� |S|)(|B|+ |S|) .

13

Pick up a point q 2 S,

(1 +
✏

n
)d(A,B)|S|(|A|� 1)(|B|+ 1)

= (1 +
✏

n
)d(A,B)(|A||B|+ |A|� |B|� 1)|S|

= (1 +
✏

n
)d(A,B)(|A||B|+ |A||S|� |B||S|� |S|) + (1 +

✏

n
)d(A,B)(|A||B|)(|S|� 1)

� (1 +
✏

n
)d(A,B)(|A|� |S|)(|B|+ |S|) + d(A,B)|A||B|(|S|� 1)

� |A||B|d(A \ S,B [S) + d(A,B)|A||B|(|S|� 1)

= |A||B|(d(A,B) + |S|d(q,A)� |S|d(q,B)) + |A||B|(|S|� 1)d(A,B)

= |A||B||S|(d(A,B) + d(q, A)� d(q,B)).

Rearrange the terms and we get the following inequality holds for any point q 2 A:
⇣
1 +

✏

n

⌘ d(A,B)

|A||B| �
d(A,B) + d(q, A)� d(q,B)

(|A|� 1)(|B|+ 1)
.

The rest of the proof goes exactly the same as the proof in [19, Theorem 6.5].

B Proof of Theorem 8

Proof. Let A be the �-approximation algorithm to (1). For a given instance G = (V, s), let
Y = {Y1, Y2, . . .} be a fairlet decomposition of V ; let mf = maxY 2Y |Y |. Recall that n = |V |.
We use Y to create a weighted instance GY = (Y, sY ,mY). For Y, Y 0 2 Y , we define s(Y, Y 0) =P

i2Y,j2Y 0 s(i, j) and we define mY(Y) = |Y |.

We run A on GY and let TY be the hierarchical clustering obtained by A. To extend this to a tree T
on V , we simply place all the points in each fairlet as leaves under the corresponding vertex in TY .

We argue that revG(T) � �
⇣
1� 2mf

n

⌘
(n� 2)s(V).

Since A obtains a �-approximation to hierarchical clustering on GY , we have revGY

�
TY) � � ·P

Y,Y 02Y s(Y, Y 0)(n�m(Y)�m(Y 0)).

Notice the fact that, for any pair of points u, v in the same fairlet Y 2 Y , the revenue they get in the
tree T is (n�m(Y))s(u, v). Then using revG(T) =

P
Y 2Y(n�m(Y))s(Y) + rev(TY),

revG(T) �
X

Y 2Y
�(n�m(Y))s(Y) + �

X

Y,Y 02Y
s(Y, Y 0)(n�m(Y)�m(Y 0))

� �(n� 2mf)

0

@
X

Y 2Y
s(Y) +

X

Y,Y 02Y
s(Y, Y 0)

1

A � �

✓
1� 2mf

n

◆
(n� 2)s(V).

Thus the resulting tree T is a �
⇣
1� 2mf

n

⌘
-approximation of the upper bound.

C Proofs for (✏/n)-locally-optimal local search algorithm

In this section, we prove that Algorithm 1 gives a good fairlet decomposition for the fairlet decompo-
sition objective 3, and that it has polynomial run time.

C.1 Proof for a simplified version of Lemma 15

In Subsection C.2, we will prove Lemma 15. For now, we will consider a simpler version of Lemma 15
in the context of [16]’s disparate impact problem, where we have red and blue points and strive to
preserve their ratios in all clusters. Chierichetti et al. [16] provided a valid fairlet decomposition in
this context, where each fairlet has at most b blue points and r red points. Before going deeper into
the analysis, we state the following useful proposition.

14

Proposition 22. Let rt = |red(V)| be the total number of red points and bt = |blue(V)| the number

of blue points. We have that, max{ r
rt
, b
bt
}  2(b+r)

n .

Proof. Recall that balance(V) = bt
rt
� b

r , and wlog bt  rt. Since the fractions are positive and
bt
rt
� b

r we know that bt
bt+rt

� b
b+r . Since bt + rt = n we conclude that bt � b

b+rn. Similarly, we
conclude that rt

bt+rt
 r

b+r . Therefore rt  r
b+rn.

Thus, r
rt
� b+r

n �
b
bt

. However, since bt  rt and bt + rt = n, rt � 1
2n, r

rt
 2r

n 
2(b+r)

n .

Using this, we can define and prove the following lemma, which is a simplified version of Lemma 15.
Lemma 23. The fairlet decomposition Y computed by Algorithm 1 has an objective value for (3) of

at most (1 + ✏) 2(b+r)
n d(V).

Proof. Let Y : V 7! Y denote a mapping from a point in V to the fairlet it belongs to. Let dR(X) =P
u2red(X) d(u,X), and dB(X) =

P
v2blue(X) d(v,X). Naturally, dR(X) + dB(X) = 2d(X) for

any set X . For a fairlet Yi 2 Y , let ri and bi denote the number of red and blue points in Yi.

We first bound the total number of intra-fairlet pairs. Let xi = |Yi|, we know that 0  xi  b+ r
and

P
i xi = n. The number of intra-fairlet pairs is at most

P
i x

2
i 

P
i(b+ r)xi = (b+ r)n.

The While loop can end in two cases: 1) if Y is (✏/n)-locally-optimal; 2) if
P

Yk2Y d(Yk)  �.
Case 2 immediately implies the lemma, thus we focus on case 1. By definition of the algorithm, we
know that for any pair u 2 Y (u) and v 2 Y (v) where u, v have the same color and Y (u) 6= Y (v)
the swap does not increase objective value by a large amount. (The same trivially holds if the pair are
in the same cluster.)

X

Yk

d(Yk)  (1 +
✏

n
)(
X

Yk

d(Yk)� d(u, Y (u))� d(v, Y (v)) + d(u, Y (v)) + d(v, Y (u))� 2d(u, v))

 (1 +
✏

n
)(
X

Yk

d(Yk)� d(u, Y (u))� d(v, Y (v)) + d(u, Y (v)) + d(v, Y (u))).

After moving terms and some simplification, we get the following inequality:

d(u, Y (u)) + d(v, Y (v))

 d(u, Y (v)) + d(v, Y (u)) +
✏/n

1 + ✏/n

X

Yk2Y
d(Yk)

 d(u, Y (v)) + d(v, Y (u)) +
✏

n

X

Yk2Y
d(Yk).

(4)

Then we sum up (4), d(u, Y (u)) + d(v, Y (v))  d(u, Y (v)) + d(v, Y (u)) + ✏
n

P
Yk2Y d(Yk), over

every pair of points in red(V) (even if they are in the same partition).

rt
X

Yi

dR(Yi) 

X

Yi

ridR(Yi)

!
+

X

u2red(V)

X

Yi 6=Y (u)

rid(u, Yi)

!
+ r2t

✏

n

X

Yi

d(Yi).

Divide both sides by rt and use the fact that ri  r for all Yi:

X

Yi

dR(Yi) 

X

Yi

r

rt
dR(Yi)

!
+

0

@
X

u2red(V)

X

Yi 6=Y (u)

r

rt
d(u, Yi)

1

A+
rt✏

n

X

Yi

d(Yi). (5)

For pairs of points in blue(V) we sum (4) to similarly obtain:

X

Yi

dB(Yi) 

X

Yi

b

bt
dB(Yi)

!
+

0

@
X

v2blue(V)

X

Yi 6=Y (v)

b

bt
d(v, Yi)

1

A+
bt✏

n

X

Yi

d(Yi). (6)

15

Now we sum up (5) and (6). The LHS becomes:
X

Yi

(dR(Yi) + dB(Yi)) =
X

Yi

X

u2Yi

d(u, Yi) = 2
X

Yi

d(Yi.)

For the RHS, the last term in (5) and (6) is ✏(bt+rt)
n

P
Yi

d(Yi) = ✏
P

Yi
d(Yi).

The other terms give:
r

rt

X

Yi

dR(Yi) +
r

rt

X

u2red(V)

X

Yi 6=Y (u)

d(u, Yi) +
b

bt

X

Yi

dB(Yi) +
b

bt

X

v2blue(V)

X

Yi 6=Y (v)

d(v, Yi)

 max{ r

rt
,
b

bt
}
(
X

Yi

(dR(Yi) + dB(Yi)) +
X

u2V

X

Yi 6=Y (u)

d(u, Yi)

)

= max{ r

rt
,
b

bt
}
(
X

Yi

X

u2Yi

d(u, Yi) +
X

Yi

X

Yj 6=Yi

d(Yi, Yj)

)

= 2max{ r

rt
,
b

bt
}d(V)

 4(b+ r)

n
d(V).

The last inequality follows from Proposition 22. All together, this proves that

2
X

Yk

d(Yk) 
4(b+ r)

n
d(V) + ✏

X

Yk

d(Yk).

Then,
P

Yk
d(Yk)

d(V)  2(b+r)
n · 1

1�✏/2  (1 + ✏) 2(b+r)
n . The final step follows from the fact that

(1 + ✏)(1� ✏/2) = 1 + ✏
2 (1� ✏) � 1. This proves the lemma.

C.2 Proof for the generalized Lemma 15

Next, we prove Lemma 15 for the more generalized definition of fairness, which is ↵-capped fairness.

Proof of [Lemma 15] The proof follows the same logic as in the two-color case: we first use the
(✏/n)-local optimality of the solution, and sum up the inequality over all pairs of points with the same
color.

Let Y : V 7! Y denote a mapping from a point in V to the fairlet it belongs to. Let Ri(X) be the set
of Ri colored points in a set X . Let dRi(X) =

P
u2Ri(X) d(u,X). Naturally,

P
i dRi(x) = 2d(X)

for any set X since the weight for every pair of points is repeated twice.

The While loop can end in two cases: 1) if Y is (✏/n)-locally-optimal; 2) if
P

Yk2Y d(Yk)  �.
Case 2 immediately implies the lemma, thus we focus on case 1.

By definition of the algorithm, we know that for any pair u 2 Y (u) and v 2 Y (v) where u, v have
the same color and Y (u) 6= Y (v) the swap does not increase objective value by a large amount. (The
same trivially holds if the pair are in the same cluster.) We get the following inequality as in the two
color case:

d(u, Y (u)) + d(v, Y (v))  d(u, Y (v)) + d(v, Y (u)) +
✏

n

X

Yk2Y
d(Yk). (7)

For any color Ri, we sum it over every pair of points in Ri(V) (even if they are in the same partition).

ni

X

Yk

dRi(Yk) 

X

Yk

rikdRi(Yk)

!
+

X

u2Ri(V)

X

Yk 6=Y (u)

rikd(u, Yk)

!
+ n2

i
✏

n

X

Yk

d(Yk).

Divide both sides by ni and we get:

X

Yk

dRi(Yk) 

X

Yk

rik
ni

dRi(Yk)

!
+

0

@
X

u2Ri(V)

X

Yk 6=Y (u)

rik
ni

d(u, Yk)

1

A+
ni✏

n

X

Yk

d(Yk). (8)

16

Now we sum up this inequality over all colors Ri. The LHS becomes:
X

Yk

X

i

dRi(Yk) =
X

Yk

X

u2Yk

d(u, Yk) = 2
X

Yk

d(Yk).

For the RHS, the last term sums up to ✏(
P

i ni)
n

P
Yk

d(Yk) = ✏
P

Yk
d(Yk). Using the fact that

rik
ni
 maxi,k

rik
ni

, the other terms sum up to :
X

i

X

Yk

rik
ni

dRi(Yk) +
X

i

X

u2Ri(V)

X

Yk 6=Y (u)

rik
ni

d(u, Yk)

 max
i,k

rik
ni

(
X

Yk

X

i

dRi(Yi) +
X

u2V

X

Yk 6=Y (u)

d(u, Yk)

)

= max
i,k

rik
ni

(
X

Yk

X

u2Yk

d(u, Yk) +
X

Yk

X

Yj 6=Yk

d(Yj , Yk)

)

= 2max
i,k

rik
ni

· d(V).

Therefore, putting LHS and RHS together, we get

2
X

Yk

d(Yk)  2max
i,k

rik
ni

d(V) + ✏
X

Yk

d(Yk).

Then,
P

Yk
d(Yk)

d(V)  maxi,k
rik
ni

· 1
1�✏/2  (1 + ✏) ·maxi,k

rik
ni

. The final step follows from the fact
that (1 + ✏)(1� ✏/2) = 1 + ✏

2 (1� ✏) � 1.

In the two-color case, the ratio maxi,k
rik
ni

becomes max{ r
rt
, b
bt
}, which can be further bounded

by 2(b+r)
n (see Proposition 22). If there exists a caplet decomposition such that maxi,k

rik
ni

= o(1),
Lemma 15 implies we can build a fair hierarchical clustering tree with o(1) loss in approximation
ratio for value objective.

Assuming for all color class Ri, ni ! +1 as n! +1, here we give a possible caplet decomposition
for ↵ = 1

t (t <= c) with size O(t) for positive integer t, thus guaranteeing maxi,k
rik
ni

= o(1) for
any i.
Lemma 24. For any set P of size p that satisfies fairness constraint with ↵ = 1/t, there exists a

partition of P into sets (P1, P2, . . .) where each Pi satisfies the fairness constraint and t  |Pi| < 2t.

Proof. Let p = m⇥ t+ r with 0  r < t, then the fairness constraints ensures that there are at most
m elements of each color. Consider partitioning obtained through the following process: consider
an ordering of elements where points of the same color are in consecutive places, assign points to
sets P1, P2, . . . , Pm in a round robin fashion. So each set Pi gets at least t elements and at most
t+ r < 2t elements assigned to it. Since there are at most m elements of each color, each set gets at
most one point of any color and hence all sets satisfy the fairness constraint as 1  1

t · |Pi|.

C.3 Proof for the running time of (✏/n)-locally-optimal fairlet decomposition algorithm

Proof of [Lemma 16] Notice that finding the maximum pairwise distance takes O(n2) time. Thus,
we focus on analyzing the time spent on the While loop.

Let t be the total number of swaps. We argue that t = Õ(n/✏). If t = 0 the conclusion trivially
holds. Otherwise, consider the decomposition Yt�1 before the last swap. Since the While loop
does not terminate here,

P
Yk2Yt�1

d(Yk) � � = b+r
n dmax. However, at the beginning, we haveP

Yk2Y d(Yk)  (b + r)n · dmax = n2�  n2
P

Yk2Yt�1
d(Yk). Therefore, it takes at most

log1+✏/n(n
2) = Õ(n/✏) iterations to finish the While loop.

17

It remains to discuss the running time of each iteration. We argue that there is a way to finish each
iteration in O(n2) time. Before the While loop, keep a record of d(u, Yi) for each point u and
each fairlet Yi. This takes O(n2) time. If we know d(u, Yi) and the objective value from the last
iteration, in the current iteration, it takes O(1) time to calculate the new objective value after each
swap (u, v), and there are at most n2 such calculations, before the algorithm either finds a pair to
swap, or determines that no such pair is left. After the swap, the update for all the d(u, Yi) data takes
O(n) time. In total, every iteration takes O(n2) time.

Therefore, Algorithm 1 takes Õ(n3/✏) time.

D Hardness of optimal fairlet decomposition

Before proving Theorem 7, we state that the PARTITION INTO TRIANGLES (PIT) problem is
known to belong to the NP-complete class [23], defined as follows. In the definition, we call a clique
k-clique if it has k nodes. A triangle is a 3-clique.
Definition 25. PARTITION INTO TRIANGLES
(PIT). Given graph G = (V,E), where V = 3n, determine if V can be partitioned into 3-element

sets S1, S2, . . . , Sn, such that each Si forms a triangle in G.

The NP-hardness of PIT problem gives us a more general statement.
Definition 26. PARTITION INTO k-CLIQUES
(PIKC). For a fixed number k treated as constant, given graph G = (V,E), where V = kn, determine

if V can be partitioned into k-element sets S1, S2, . . . , Sn, such that each Si forms a k-clique in G.

Lemma 27. For a fixed constant k � 3, the PIKC problem is NP-hard.

Proof. We reduce the PIKC problem from the PIT problem. For any graph G = (V,E) given to the
PIT problem where |V | = 3n, construct another graph G0 = (V 0, E0). Let V 0 = V [C1 [C2 [
· · · [Cn, where all the Ci’s are (k � 3)-cliques, and there is no edge between any two cliques Ci

and Cj where i 6= j. For any Ci, let all points in Ci to be connected to all nodes in V .

Now let G0 be the input to PIKC problem. We prove that G can be partitioned into triangles if
and only if G0 can be partitioned into k-cliques. If V has a triangle partition V = {S1, . . . , Sn},
then V 0 = {S1 [C1, . . . , Sn [Cn} is a k-clique partition. On the other hand, if V 0 has a k-
clique partition V 0 = {S0

1, . . . , S
0
n} then C1, . . . , Cn must each belong to different k-cliques since

they are not connected to each other. Without loss of generality we assume Ci ✓ Si, then V =
{S0

1 \ C1, . . . , S0
n \ Cn} is a triangle partition.

We are ready to prove the theorem.

Proof of [Theorem 7] We prove Theorem 7 by proving that for given z � 4, if there exists a c-
approximation polynomial algorithm A for (3), it can be used to solve the PIKC problem where
k = z � 1 for any instance as well. This holds for any finite c.

Given any graph G = (V,E) that is input to the PIKC problem, where |V | = kn = (z � 1)n, let a
set V 0 with distances be constructed in the following way:

1. V 0 = V [{C1, . . . , Cn}, where each Ci is a singleton.
2. Color the points in V red, and color all the Ci’s blue.
3. For a e = (u, v), let d(u, v) = 0, if it satisfies one of the three conditions: 1) e 2 E. 2)

u, v 2 Ci for some Ci. 3) one of u, v is in V , while the other belong to some Ci.
4. All other edges have distance 1.

Obviously the blue points make up a 1/z fraction of the input so each fairlet should have exactly 1
blue point and z � 1 red points.

We claim that G has a k-clique partition if and only if algorithm A gives a solution of 0 for (3). The
same argument as in the proof of Lemma 27 will show that G has a k-clique partition if and only if
the optimal solution to (3) is 0. This is equal to algorithm A giving a solution of 0 since otherwise
the approximate is not bounded.

18

E Optimizing cost with fairness

In this section, we present our fair hierarchical clustering algorithm that approximates Dasgupta’s cost
function and satisfies Theorem 17. Most of the proofs can be found in Section E.1. We consider the
problem of equal representation, where vertices are red or blue and ↵ = 1/2. From now on, whenever
we use the word “fair”, we are referring to this fairness constraint. Our algorithm also uses parameters
t and ` such that n � t` and t > `+ 108t2/`2 for n = |V |, and leverages a �-approximation for cost
and �t-approximation for minimum weighted bisection. We will assume these are fixed and use them
throughout the section.

We will ultimately show that we can find a fair solution that is a sublinear approximation for the
unfair optimum T ⇤

unfair, which is a lower bound of the fair optimum. Our main result is Theorem 17,
which is stated in the body of the paper.

The current best approximations described in Theorem 17 are �t = O(log3/2 n) by [22] and � =p
log n by both [20] and [12]. If we set t =

p
n(log3/4 n) and ` = n1/3

p
log n, then we get

Corollary 28.
Corollary 28. Consider the equal representation problem with two colors. There is an

O
⇣
n5/6 log5/4 n

⌘
-approximate fair clustering under the cost objective.

The algorithm will be centered around a single clustering, which we call C, that is extracted from an
unfair hierarchy. We will then adapt this to become a similar, fair clustering C0. To formalize what C0

must satisfy to be sufficiently “similar” to C, we introduce the notion of a C-good clustering. Note
that this is not an intuitive set of properties, it is simply what C0 must satisfy in order
Definition 29 (Good clustering). Fix a clustering C whose cluster sizes are at most t. A fair clustering

C0
is C-good if it satisfies the following two properties:

1. For any cluster C 2 C, there is a cluster C 0 2 C0
such that all but (at most) an O(`�t/t+

t�t/`2)-fraction of the weight of edges in C is also in C 0
.

2. Any C 0 2 C0
is not too much bigger, so |C 0|  6t`.

The hierarchy will consist of a C-good (for a specifically chosen C) clustering C0 as its only nontrivial
layer.
Lemma 30. Let T be a �-approximation for cost and C be a maximal clustering in T under the

condition that all cluster sizes are at most t. Then, a fair two-tiered hierarchy T 0
whose first level

consists of a C-good clustering achieves an O
⇣

n
t + t`+ n`�t

t + nt�t

`2

⌘
�-approximation for cost.

Proof. Since T is a �-approximation, we know that:

cost(T)  �cost(T ⇤
unfair)

We will then utilize a scheme to account for the cost contributed by each edge relative to their cost in
T in the hopes of extending it to T ⇤

unfair. There are three different types of edges:

1. An edge e that is merged into a cluster of size t or greater in T , thus contributing t · s(e) to
the cost. At worst, this edge is merged in the top cluster in T 0 to contribute n · s(e). Thus,
the factor increase in the cost contributed by e is O(n/t). Then since the total contribution
of all such edges in T is at most cost(T), the total contribution of all such edges in T 0 is at
most O(n/t) · cost(T).

2. An edge e that started in some cluster C 2 C that does not remain in the corresponding cluster
C 0. We are given that the total weight removed from any such C is an O(`�t/t+ t�t/`2)-
fraction of the weight contained in C. If we sum across the weight in all clusters in C, that is
at most cost(T). So the total amount of weight moved is at most O(`�t/t+t�t/`2)·cost(T).
These edges contributed at least 2s(e) in T as the smallest possible cluster size is two. In
T 0, these may have been merged at the top of the cluster, for a maximum cost contribution
of n · s(e). Therefore, the total cost across all such edges is increased by at most a factor of
n/2, which gives a total cost of at most O(n`�t/t+ nt�t/`2) · cost(T).

3. An edge e that starts in some cluster C 2 C and remains in the corresponding C 0 2 C0.
Similarly, this must have contributed at least 2s(e) in T , but now we know that this edge is

19

merged within C 0 in T 0, and that the size of C 0 is |C 0|  6t`. Thus its contribution increases
at most by a factor of 3t`. By the same reasoning from the first edge type we discussed, all
these edges total contribute at most a factor of O(t`) · cost(T).

We can then put a conservative bound by putting this all together.

cost(T 0) O
✓
n

t
+ t`+

n`�t
t

+
nt�t
`2

◆
cost(T).

Finally, we know T is a �-approximation for T ⇤
unfair.

cost(T 0)  O

✓
n

t
+ t`+

n`�t
t

+
nt�t
`2

◆

· � · cost(T ⇤
unfair).

With this proof, the only thing left to do is find a C-good clustering C0 (Definition 29). Specifically,
using the clustering C mentioned in Lemma 30, we would like to find a C-good clustering C0 using
the following.
Lemma 31. There is an algorithm that, given a clustering C with maximum cluster size t, creates a

C-good clustering.

The proof is deferred to the Section E.1. With these two Lemmas, we can prove Theorem 17.

Proof. Consider our graph G. We first obtain a �-approximation for unfair cost, which yields a
hierarchy tree T . Let C be the maximal clustering in T under the constraint that the cluster sizes must
not exceed t. We then apply the algorithm from Lemma 31 to get a C-good clustering C0. Construct
T 0 such that it has one layer that is C0. Then we can apply the results from Lemma 30 to get the
desired approximation.

From here, we will only provide a high-level description of the algorithm for Lemma 31. For precise
details and proofs, see Section E.1. To start, we need to propose some terminology.
Definition 32 (Red-blue matching). A red-blue matching on a graph G is a matching M such that

M(u) = v implies u and v are different colors.

Red-blue matchings are interesting because they help us ensure fairness. For instance, suppose M
is a red-blue matching that is also perfect (i.e., touches all nodes). If the lowest level of a hierarchy
consists of a clustering such that v and M(v) are in the same cluster for all v, then that level of the
hierarchy is fair since there is a bijection between red and blue vertices within each cluster. When
these clusters are merged up in the hierarchy, fairness is preserved.

Our algorithm will modify an unfair clustering to be fair by combining clusters and moving a small
number of vertices. To do this, we will use the following notion.
Definition 33 (Red-blue clustering graph). Given a graph G and a clustering C = {C1, . . . , Ck}, we

can construct a red-blue clustering graph HM = (VM , EM) that is associated with some red-blue

matching M . Then HM is a graph where VM = C and (Ci, Cj) 2 EM if and only if there is a

vi 2 Ci and M(vi) = vj 2 Cj .

Basically, we create a graph of clusters, and there is an edge between two clusters if and only if
there is at least one vertex in one cluster that is matched to some vertex in the other cluster. We now
show that the red-blue clustering graph can be used to construct a fair clustering based on an unfair
clustering.
Proposition 34. Let HM be a red-blue clustering graph on a clustering C with a perfect red-blue

matching M . Let C0
be constructed by merging all the clusters in each component of HM . Then C0

is

fair.

Proof. Consider some C 2 C0. By construction, this must correspond to a connected component
in HM . By definition of HM , for any vertex v 2 C, M(v) 2 C. That means M , restricted to C,
defines a bijection between the red and blue nodes in C. Therefore, C has an equal number of red
and blue vertices and hence is fair.

20

We will start by extracting a clustering C from an unfair hierarchy T that approximates cost. Then,
we will construct a red-blue clustering graph HM with a perfect red-blue matching M . Then we can
use the components of HM to define our first version of the clustering C0. However, this requires a
non-trivial way of moving vertices between clusters in C.

We now give an overview of our algorithm in Steps (A)–(G). For a full description, see our pseudocode
in Section H.

(A) Get an unfair approximation T . We start by running a �-approximation for cost in the unfair
setting. This gives us a tree T such that cost(T)  � · cost(T ⇤

unfair).

(B) Extract a t-maximal clustering. Given T , we find the maximal clustering C such that (i) every
cluster in the clustering is of size at most t, and (ii) any cluster above these clusters in T is of size
more than t.

(C) Combine clusters to be size t to 3t. We will now slowly change C into C0 during a number of
steps. In the first step, we simply define C0 by merging small clusters |C|  t until the merged size is
between t and 3t. Thus clusters in C are contained within clusters in C0, and all clusters are between
size t and 3t.

(D) Find cluster excesses. Next, we strive to make our clustering more fair. We do this by trying to
find an underlying matching between red and blue vertices that agrees with C0 (matches are in the
same cluster). If the matching were perfect, then the clusters in C0 would have equal red and blue
representation. However, this is not guaranteed initially. We start by conceptually matching as many
red and blue vertices within clusters as we can. Note we do not actually create this matching; we just
want to reserve the space for this matching to ensure fairness, but really some of these vertices may
be moved later on. Then the remaining unmatched vertices in each cluster is either entirely red or
entirely blue. We call this amount the excess and the color the excess color. We label each cluster
with both of these.

(E) Construct red-blue clustering graph. Next, we would like to construct HM = (VM , EM),
our red-blue clustering graph on C0. Let VM = C0. In addition, for the within-cluster matchings
mentioned in Step (D), let those matches be contained in M . With this start, we will do a matching
process to simultaneously construct EM and the rest of M . Note the unmatched vertices are
specifically the excess vertices in each cluster. We will match these with an iterative process given
our parameter `:

1. Select a vertex Ci 2 VM with excess at least ` to start a new connected component in HM .
Without loss of generality, say its excess color is red.

2. Find a vertex Cj 2 VM whose excess color is blue and whose excess is at least `. Add
(Ci, Cj) to EM .

3. Say without loss of generality that the excess of Ci is less than that of Cj . Then match all
the excess in Ci to vertices in the excess of Cj . Now Cj has a smaller excess.

4. If Cj has an excess less than ` or Cj is the `th cluster in this component, end this component.
Start over at (1) with a new cluster.

5. Otherwise, use Cj as our reference and continue constructing this component at (2).
6. Complete when there are no more clusters with over ` excess that are not in a component

(or all remaining such clusters have the same excess color).

We would like to construct C0 by merging all clusters in each component. This would be fair if M
were a perfect matching, however this is not true yet. In the next step, we handle this.

(F) Fix unmatched vertices. We now want to match excess vertices that are unmatched. We do this
by bringing vertices from other clusters into the clusters that have unmatched excess, starting with all
small unmatched excess. Note that some clusters were never used in Step (E) because they had small
excess to start. This means they had many internal red-blue matches. Remove t2/`2 of these and
put them into clusters in need. For other vertices, we will later describe a process where t/` of the
clusters can contribute 108t2/`2 vertices to account for unmatched excess. Thus clusters lose at most
108t2/`2 vertices, and we account for all unmatched vertices. Call the new clustering C1. Now M is
perfect and HM is unchanged.

(G) Define C0. Finally, we create the clustering C0 by merging the clusters in each component of
HM . Note that Proposition 34 assures C 0 is fair. In addition, we will show that cluster sizes in C1

21

are at most 6t, so C0 has the desired upper bound of 6t` on cluster size. Finally, we removed at most
`+ t2/`2 vertices from each cluster. This is the desired C-good clustering.

Further details and the proofs that the above sequence of steps achieve the desired approximation can
be found in the next section. While the approximation factor obtained is not as strong as the ones for
revenue or value objectives with fairness, we believe cost is a much harder objective with fairness
constraints.

E.1 Proof of Theorem 17

This algorithm contains a number of components. We will discuss the claims made by the description
step by step. In Step (A), we simply utilize any �-approximation for the unfair approximation. Step
(B) is also quite simple. At this point, all that is left is to show how to find C0, ie, prove Lemma 31
(introduced in Section 6). This occurs in the steps following Step (B). In Step (C), we apply our first
changes to the starting clustering from T . We now prove that the cluster sizes can be enforced to be
between t and 3t.
Lemma 35. Given a clustering C, we can construct a clustering C0, where each C 2 C0 is a union

of clusters in C and t  |C| < 3t.

Proof. We iterate over all clusters in C whose size are less than t and continually merge them until
we create a cluster of size � t. Note that since the last two clusters we merged were of size < t, this
cluster is of size t  |C| < 2t. We then stop this cluster and continue merging the rest of the clusters.
At the end, if we are left with a single cluster of size < t, we simply merge this with any other cluster,
which will then be of size t  |C| < 3t.

Step (D) describes a rather simple process. All we have to do in each cluster is count the amount of
each color in each cluster, find which is more, and also compute the difference. No claims are made
here.

Step (E) defines a more careful process. We describe this process and its results here.
Lemma 36. There is an algorithm that, given a clustering C0 with t  |C|  3t for C 2 C0, can

construct a red-blue clustering graph HM = (VM , EM) on C0 with underlying matching M such

that:

1. HM is a forest, and its max component size is `.

2. For every (Ci, Cj) 2 EM , there are at least ` matches between Ci and Cj in M . In other

words, |M(Ci) \ Cj | � `.

3. For most Ci 2 VM , at most ` vertices in Ci are unmatched in M . The only exceptions to

this rule are (1) exactly one cluster in every `-sized component in HM , and (2) at most n/2
additional clusters.

Proof. We use precisely the process from Step 5. Let VM = C0. HM will look like a bipartite graph
with some entirely isolated nodes. We then try to construct components of HM one-by-one such that
(1) the max component size is `, and (2) edges represent at least ` matches in M .

Let us show it satisfies the three conditions of the lemma. For condition 1, note that we will always
halt component construction once it reaches size `. Thus no component can exceed size `. In addition,
for every edge added to the graph, at least one of its endpoints now has small excess and will not be
considered later in the program. Thus no cycles can be created, so it is a forest.

For condition 2, consider the construction of any edge (Ci, Cj) 2 EM . At this point, we only
consider Ci and Cj to be clusters with different-color excess of at least ` each. In the next part of the
algorithm, we match as much excess as we can between the two clusters. Therefore, there must be at
least ` underlying matches.

Finally, condition 3 will be achieved by the completion condition. By the completion condition, there
are no isolated vertices (besides possibly those leftover of the same excess color) that have over `
excess. Whenever we add a cluster to a component, either that cluster matches all of its excess, or
the cluster it becomes adjacent to matches all of its excess. Therefore at any time, any component

22

has at most one cluster with any excess at all. If the component is smaller than ` (and is not the final
component), then that can only happen when in the final addition, both clusters end up with less
than ` excess. Therefore, no cluster in this component can have less than ` excess. For an `-sized
component, by the rule mentioned before, only one cluster can remain with ` excess. When the
algorithm completes, we are left with a number of large-excess clusters with the same excess color,
say red without loss of generality. Assume for contradiction there are more than n/2 such clusters,
and so there is at least n`/2 . Since we started with half red and half blue vertices, the remaining
excess in the rest of the clusters must match up with the large red excess. Thus the remaining at most
n/2 clusters must have at least n`/2 blue excess, but this is only achievable if they have large excess
left. This is a contradiction. Thus we satisfy condition 3.

This concludes Step (E). In Step (F), we will transform the underlying clustering C0 such that we can
achieve a perfect matching M . This will require removing a small number of vertices from some
clusters in C0 and putting them in clusters that have unmatched vertices. This process will at most
double cluster size.

Lemma 37. There is an algorithm that, given a clustering C0 with t  |C|  3t for C 2 C0, finds a

clustering C1 and an underlying matching M 0
such that:

1. There is a bijection between C0 and C1.

2. For any cluster C0 2 C0 and its corresponding C1 2 C1, |C0|� |C1|  `+ 108t2/`2. This

means that at most ` vertices are removed from C0 in the construction of C1.

3. For all C1 2 C1, t� `� 108t2/`2  |C1|  6t.

4. M 0
is a perfect red-blue matching.

5. HM is a red-blue clustering graph of C1 with matching M 0
, perhaps with additional edges.

Proof. Use Lemma 36 to find the red-blue clustering graph HM and its corresponding graph M .
Then we know that only one cluster in every `-sized component plus one other cluster can have
a larger than ` excess. Since cluster sizes are at least t, |VM | � n/t. This means that at most
n/(t`) + 1 = (n+ t`)/(t`)  2n/(t`) clusters need more than ` vertices. Since the excess is upper
bounded by cluster size which is upper bounded by 3t, this is at most 6n/` vertices in large excess
that need matches.

We will start by removing all small excess vertices from clusters. This removes at most ` from any
cluster. These vertices will then be placed in clusters with large excess of the right color. If we run out
of large excess of the right color that needs matches, since the total amount of red and blue vertices is
balanced, that means we can instead transfer the unmatched small excess red vertices to clusters with
a small amount of unmatched blue vertices. In either case, this accounts for all the small unmatched
excess. Now all we need to account for is at most 6n/` unmatched vertices in large excess clusters.
At this point, note that the large excess should be balanced between red and blue. From now on, we
will remove matches from within and between clusters to contribute to this excess. Since this always
contributes the same amount of red and blue vertices by breaking matches, we do not have to worry
about the balance of colors. We will describe how to distribute these contributions across a large
number of clusters.

Consider vertices that correspond to clusters that (ignoring the matching M) started out with at most
` excess. So the non-excess portion, which is at least size t� `, is entirely matched with itself. We
will simply remove t2/`2 of these matches to contribute.

Otherwise, we will consider vertices that started out with large excess. We must devise a clever way
to break matches without breaking too many incident upon a single cluster. For every tree in HM

(since HM is a forest by Lemma 36), start at the root, and do a breadth-first search over all internal
vertices. At any vertex we visit, break ` matches between it and its child (recall by by Lemma 36 that
each edge in HM represents at least ` inter-cluster matches). Thus, each break contributes 2` vertices.
We do this for every internal vertex. Since an edge represents at least ` matches and the max cluster
size is at most 3t, any vertex can have at most 3t/` children. Thus the fraction of vertices in HM that
correspond to a contribution of 2` vertices is at least `/(3t).

23

Clearly, the worst case is when all vertices in HM have large excess, as this means that fewer clusters
are ensured to be able to contribute. By Lemma 36, at least n/2 of these are a part of completed
connected components (ie, of size ` or with each cluster having small remaining excess). So consider
this case. Since |VM | � n/(3t), then this process yields n`2/(18t2) vertices. To achieve 6n/`
vertices, we must then run 108t2/`3 iterations. If an edge no longer represents ` matches because of
an earlier iteration, consider it a non-edge for the rest of the process. The only thing left to consider is
if a cluster C becomes isolated in HM during the process. We know C began with at least t vertices,
and at most ` were removed by removing small excess. So as long as t > ` + 108t2/`2, we can
remove the rest of the 108t2/`2 vertices from the non-excess in C (the rest must be non-excess) in
the same way as vertices that were isolated in HM to start. Thus, we can account for the entire set of
unmatched vertices without removing more than 108t2/`2 vertices from any given cluster.

Now we consider the conditions. Condition 1 is obviously satisfied because we are just modifying
clusters in C0, not removing them. The second condition is true because of our careful accounting
scheme where we only remove ` + 108t2/`2 vertices per cluster. The same is true for the lower
bound in condition 3. When we add them to new clusters, since we only add a vertex to match an
unmatched vertex, we at most double cluster size. So the max cluster size is 6t.

For the fourth condition, note that we explicitly executed this process until all unmatched vertices
became matched, and any endpoint in a match we broke was used to create a new match. Thus the
new matching, which we call M 0, is perfect. It is still red-blue. Finally, note we did not create any
matches between clusters. Therefore, no match in M 0 can violate HM . Thus condition 5 is met.

Finally, we construct our final clustering in Step (G). However, to satisfy the qualities of Lemma 30,
we must first argue about the weight loss from each cluster.
Lemma 38. Consider any clustering C with cluster sizes between t and 6t. Say each cluster has

a specified r number of red vertices to remove and b number of blue vertices to remove such that

r + b  x for some x, and r (resp. b) is nonzero only if the number of red (resp. blue) vertices in the

cluster is O(n). Then we can remove the desired number of each color while removing at most an

O((x/t)�t) of the weight originally contained within the cluster.

Proof. Consider some cluster C with parameters r and b. We will focus first on removing red vertices.
Let Cr be the red vertex set in C. We create a graph K corresponding to this cluster as follows. Let
b0 be a vertex representing all blue vertices from C, b00 be the “complement” vertex to b0, and R be a
set of vertices ri corresponding to all red vertices in C. We also add a set of 2r � |Cr|+ 2X dummy
vertices (where X is just some large value that makes it so 2r � |Cr|+X > 0). 2r � |Cr|+X of
the dummy vertices will be connected to b0 with infinite edge weight (denote these �i), the other X
will be connected to b00 with infinite edge weight (denote these �0i). This will ensure that b0 and b00 are
in the same partitions as their corresponding dummies. Let sG and sK be the similarity function in
the original graph and new graph respectively.

sK(b0, �i) =1
sK(b00, �

0
i) =1

The blue vertex b0 is also connected to all ri with the following weight (where Cb is the set of blue
vertices in C):

sK(b0, ri) =
X

bj2Cb

sG(ri, bj) +
1

2

X

rj2R\{rj}

sG(ri, rj)

This edge represents the cumulative edge weight between ri and all blue vertices. The additional
summation term, which contains the edge weights between ri and all other red vertices, is necessary
to ensure our bisection cut will also contain the edge weights between two of the removed red vertices.

Next, the edge weights between red vertices must contain the other portion of the corresponding edge
weight in the original graph.

sK(ri, rj) =
1

2
sG(ri, rj)

24

Now, we note that there are a total of 2 � |Cr| + 2X + |Cr| = 2r + 2X vertices. So a bisection
will partition the graph into vertex sets of size r +X . Obviously, in any approximation, b0 must be
grouped with all �i and b00 must be grouped with all �0i. This means the b0 partition must contain
|Cr|� r of the R vertices, and the b00 partition must contain the other r. These r vertices in the latter
partition are the ones we select to move.

Consider any set S of r red vertices in K. Then it is a valid bisection. We now show that the edge
weight in the cut for this bisection is exactly the edge weight lost by removing S from K. We can do
this algebraically. We start by breaking down the weight of the cut into the weight between the red
vertices in S and b0, and also the red vertices in S and the red vertices not in S.

sK(S, V (K) \ S)

=
X

ri2S

sK(b0, ri) +
X

ri2S,rj2R\S

sK(ri, rj)

=
X

ri2S

0

@
X

bj2B

sG(ri, bj) +
1

2

X

rj2R\{rj}

sG(ri, rj)

1

A

+
X

ri2S,rj2R\S

1

2
sG(ri, rj)

=
X

ri2S

0

@
X

bj2B

sG(ri, bj) +
1

2

X

rj2R\{rj}

sG(ri, rj)

+
1

2

X

rj2R\S

sG(ri, rj)

1

A

Notice that the two last summations have an overlap. They both contribute half the edge weight
between ri and vertices in R \S. Thus, these edges contribute their entire edge weight. All remaining
vertices in S \ {ri} only contribute half their edge weight. We can then distribute the summation.

sK(S, V (K) \ S)

=
X

ri2S

0

@
X

bj2B

sG(ri, bj) +
1

2

X

rj2S\{rj}

sG(ri, rj)

+
X

rj2R\S

sG(ri, rj)

1

A

=
X

ri2S,bj2B

sG(ri, bj) +
1

2

X

ri2S,rj2S\{rj}

sG(ri, rj)

+
X

ri2S,rj2R\S

sG(ri, rj)

In the middle summation, note that every edge e = (u, v) is counted twice when ri = u and rj = v,
and when ri = v and rj = u. We can then rewrite this as:

25

sK(S, V (K) \ S) =
X

ri2S,bj2B

sG(ri, bj)

+
X

ri,rj2S

sG(ri, rj)

+
X

ri2S,rj2R\S

sG(ri, rj)

When we remove S, we remove the connections between S and blue vertices, the connections
within S, and the connections between S and red vertices not in S. This is precisely what this
accounts for. Therefore, any bisection on K directly corresponds to removing a vertex set S of r red
vertices from C. If we have a �t-approximation for minimum weighted bisection, then, this yields a
�t-approximation for the smallest loss we can achieve from removing r red vertices.

Now we must compare the optimal way to remove r vertices to the total weight in a cluster. Let
⇢ = |Cr| be the number of red vertices in a cluster. Then the total number of possible cuts to isolate
r red vertices is

�⇢
r

�
. Let S be the set of all possible cuts to isolate r red vertices. Then if we

sum over the weight of all possible cuts (where weight here is the weight between the r removed
vertices and all vertices, including each other), that will sum over each red-red edge and blue-red
edge multiple times. A red-red edge is counted if either of its endpoints is in S 2 S , and this happens
2
� ⇢
r�1

�
�
�R�1
r�2

�
 2
� ⇢
r�1

�
of the time. A blue-red edge is counted if its red endpoint is in S, which

happens
� ⇢
r�1

�
 2
� ⇢
r�1

�
. And of course, since no blue-blue edge is covered, each is covered under

2
� ⇢
r�1

�
times. Therefore, if we sum over all these cuts, we get at most 2

� ⇢
r�1

�
times the weight of all

edges in C.

X

S2S
s(S)  2

✓
⇢

r � 1

◆
s(C)

Let OPT be the minimum possible cut. Now since there are
�⇢
r

�
cuts, we know the lefthand side here

is bounded above by
�⇢
r

�
s(OPT).

✓
⇢

r

◆
s(OPT)  2

✓
⇢

r � 1

◆
s(C)

We can now simplify.

s(OPT)  2r

⇢
s(C)

But note we are given ⇢ = O(t). So if we have a �t approximation for the minimum bisection
problem, this means we can find a way to remove r vertices such that the removed weight is at most
O(r/t)�t. We can do this again to get a bound on the removal of the blue vertices. This yields a total
weight removal of O(x/t)�t.

Finally, we can prove Lemma 31, which satisfies the conditions of Lemma 30.

Proof. Start by running Lemma 35 on C to yield C0. Then we can apply Lemma 37 to yield C1
with red-blue clustering graph HM and underlying perfect red-blue matching M 0. We create C0 by
merging components in HM into clusters. Since the max component size is ` and the max cluster
size in C1 is 6t, then the max cluster size in C0 is 6t`. This satisfies condition 2 of being C-good. In
addition, it is fair by Proposition 34.

Finally, we utilize the fact that we only moved at most ` + 108t2`2 vertices from any cluster, and
note that we only move vertices of a certain color if we have O(n) of that color in that cluster. Then
by Lemma 38, we know we lost at most O(`�t/t+ t�t/`2) fraction of the weight from any cluster.
This satisfies the second condition and therefore C0 is C-good.

26

Table 5: Impact of different fairlet decomposition on ratio over original average-linkage in percentage
(mean ± std. dev).

Samples 100 200 400 800 1600
CENSUSGENDER, initial 74.12 ± 2.52 76.16 ± 3.42 74.15 ± 1.44 70.17 ± 1.01 65.02 ± 0.79

final 92.32 ± 2.70 95.75 ± 0.74 95.68 ± 0.96 96.61 ± 0.60 97.45 ± 0.19
CENSUSRACE, initial 65.67 ± 7.53 65.31 ± 3.74 61.97 ± 2.50 59.59 ± 1.89 56.91 ± 0.82

final 85.38 ± 1.68 92.98 ± 1.89 94.99 ± 0.52 96.86 ± 0.85 97.24 ± 0.63
BANKMARRIAGE, initial 75.19 ± 2.53 73.58 ± 1.05 74.03 ± 1.33 73.68 ± 0.59 72.94 ± 0.63

final 93.88 ± 2.16 96.91 ± 0.99 96.82 ± 0.36 97.05 ± 0.71 97.81 ± 0.49
BANKAGE, initial 77.48 ± 1.45 78.28 ± 1.75 76.40 ± 1.65 75.95 ± 0.77 75.33 ± 0.28

final 91.26 ± 2.66 95.74 ± 2.17 96.45 ± 1.56 97.31 ± 1.94 97.84 ± 0.92

F Additional experimental results for revenue

We have conducted experiments on the four datasets for revenue as well. The Table 5 shows the ratio
of fair tree built by using average-linkage on different fairlet decompositions. We run Algorithm 1
on the subsamples with Euclidean distances. Then we convert distances into similarity scores using
transformation s(i, j) = 1

1+d(i,j) . We test the performance of the initial random fairlet decomposition
and final fairlet decomposition found by Algorithm 1 for revenue objective using the converted
similarity scores.

G Additional experimental results for multiple colors

We ran experiments with multiple colors and the results are analogous to those in the paper. We tested
both Census and Bank datasets, with age as the protected feature. For both datasets we set 4 ranges
of age to get 4 colors and used ↵ = 1/3. We ran the fairlet decomposition in [3] and compare the fair
hierarchical clustering’s performance to that of average-linkage. The age ranges and the number of
data points belonging to each color are reported in Table 6. Colors are named {1, 2, 3, 4} descending
with regard to the number of points of the color. The vanilla average-linkage has been found to be
unfair: if we take the layer of clusters in the tree that is only one layer higher than the leaves, there is
always one cluster with ↵ > 1

3 for the definition of ↵-capped fairness, showing the tree to be unfair.

Table 6: Age ranges for all four colors for Census and Bank.
Dataset Color 1 Color 2 Color 3 Color 4

CENSUSMULTICOLOR (26, 38] : 9796 (38, 48] : 7131 (48,+1) : 6822 (0, 26] : 6413
BANKMULTICOLOR (30, 38] : 14845 (38, 48] : 12148 (48,+1) : 11188 (0, 30] : 7030

As in the main body, in Table 7, we show for each dataset the ratiovalue both at the time of initialization
(Initial) and after using the local search algorithm (Final), where ratiovalue is the ratio between the
performance of the tree built on top of the fairlets and that of the tree directly built by average-linkage.

Table 7: Impact of Algorithm 1 on ratiovalue in percentage (mean ± std. dev).
Samples 200 400 800 1600 3200 6400

CENSUSMULTICOLOR, initial 88.55 ± 0.87 88.74 ± 0.46 88.45 ± 0.53 88.68 ± 0.22 88.56 ± 0.20 88.46 ± 0.30
final 99.01 ± 0.09 99.41 ± 0.57 99.87 ± 0.28 99.80 ± 0.27 100.00 ± 0.14 99.88 ± 0.30

BANKMULTICOLOR, initial 90.98 ± 1.17 91.22 ± 0.84 91.87 ± 0.32 91.70 ± 0.30 91.70 ± 0.18 91.69 ± 0.14
final 98.78 ± 0.22 99.34 ± 0.32 99.48 ± 0.16 99.71 ± 0.16 99.80 ± 0.08 99.84 ± 0.05

Table 8 shows the performance of trees built by average-linkage based on different fairlets, for Revenue
objective. As in the main body, the similarity score between any two points i, j is s(i, j) = 1

1+d(i,j) .
The entries in the table are mean and standard deviation of ratios between the fair tree performance and
the vanilla average-linkage tree performance. This ratio was calculated both at time of initialization
(Initial) when the fairlets were randomly found, and after Algorithm 1 terminated (Final).

Table 9 shows the run time of Algorithm 1 with multiple colors.

H Pseudocode for the cost objective

27

Table 8: Impact of Algorithm 1 on revenue, in percentage (mean ± std. dev).
Samples 200 400 800 1600 3200

CENSUSMULTICOLOR, initial 75.76 ± 2.86 73.60 ± 1.77 69.77 ± 0.56 66.02 ± 0.95 61.94 ± 0.61
final 92.68 ± 0.97 94.66 ± 1.66 96.40 ± 0.61 97.09 ± 0.60 97.43 ± 0.77

BANKMULTICOLOR, initial 72.08 ± 0.98 70.96 ± 0.69 70.79 ± 0.72 70.77 ± 0.49 69.88 ± 0.53
final 94.99 ± 0.79 95.87 ± 2.07 97.19 ± 0.81 97.93 ± 0.59 98.43 ± 0.14

Table 9: Average running time of Algorithm 1 in seconds.
Samples 200 400 800 1600 3200 6400

CENSUSMULTICOLOR 0.43 1.76 7.34 35.22 152.71 803.59
BANKMULTICOLOR 0.43 1.45 6.77 29.64 127.29 586.08

Algorithm 2 Fair hierarchical clustering for cost objective.
Input: Graph G, edge weight w : E ! R, color c : V ! {red, blue}, parameters t and `

{Step (A)}
T UNFAIRHC(G,w) {Blackbox unfair clustering that minimizes cost}

{Step (B)}
Let C ;
Do a BFS of T , placing visited cluster C in C if |C|  t, and not proceeding to C’s children

{Step (C)}
C0, C 0 ;
for C in C do
C 0 C 0 [C
if |C 0| � t then

Add C 0 to C0
Let C 0 ;

end if
end for
If |C 0| > 0, merge C 0 into some cluster in C0

{Step (D)}
for C in C0 do

Let exc(C) majority color in C
Let ex(C) difference between majority and minority colors in C

end for

{Step (E}
HM BuildClusteringGraph(C0, ex, exc)

{Step (F)}
fV FixUnmatchedVertices(C0, HM , ex, exc)

{Step (G)}
C0 ConstructClustering(C0, ex, exc, fV)
return C0

28

Algorithm 3 BuildClusteringGraph (C0, ex, exc)
HM (VM = C0, EM = ;)
Let Ci 2 VM be any vertex
Let ` n1/3

p
log n

while 9 an unvisited Cj 2 VM such that exc(Cj) 6= exc(Ci) do
Add (Ci, Cj) to EM

Swap labels Ci and Cj if ex(Cj) > ex(Ci)
Let ex(Ci) ex(Ci)� ex(Cj)
if ex(Ci) < ` or |component(Ci)| � ` then

Reassign starting point Ci to an unvisited vertex in VM

end if
end while
return HM

Algorithm 4 FixUnmatchedVertices(C0, HM , ex, exc)

Let ` n1/3
p
log n

for C 2 C0 \ VM do
Let fV (C, red), fV (C, blue) m2/`2

end for
for i from 1 to 108t2/`3 do

for each k component in HM do
for p in a BFS of k do

Let ch some child of p
fV (p, exc(p)) fV (p, exc(p)) + `
ex(p) ex(p)� `
fV (ch, exc(ch)) fV (ch, exc(ch)) + `
ex(ch) ex(ch)� `
if # matches between p and ch < ` then

Remove (p, ch) from EM {This creates a new component}
end if

end for
end for

end for
return fV

Algorithm 5 ConstructClustering(C0, ex, exc, fV)

Let C0, R ;
for C in C0 do

for c in {red, blue} do
Let f = fV (C, c)
Let Cf = {v 2 C : c(v) = c}
Create the transformed graph L from Cf {Described in the proof of Lemma 38}
C 0 MINWEIGHTBISECTION(L) {Blackbox, returns isolated Cf vertices}
C C \ C 0

R R [C 0

ex(C) ex(C)� |C 0|
end for

end for
for C 2 C0 do

Let S ⇢ R such that |S| = ex(C) with no vertices of color exc(C)
C = C [S
R R \ S
Add C to C0

end for
return C0

29

